The Role of β-effect and a Uniform Current on Tropical Cyclone Intensity

A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification...

Full description

Saved in:
Bibliographic Details
Published inAdvances in atmospheric sciences Vol. 21; no. 1; pp. 75 - 86
Main Author 端义宏 伍荣生 余晖 梁旭东 陈仲良
Format Journal Article
LanguageEnglish
Published Shanghai Typhoon Institute,Shanghai 200030%Department of Atmosphere Science,Nanjing University,Nanjing 210008%Shanghai Typhoon Institute,Shanghai,200030%Dept.of Physics and Materials Science,City University of Hong Kong,Hong Kong 01.01.2004
Department of Atmosphere Science,Nanjing University,Nanjing 210008
Subjects
Online AccessGet full text
ISSN0256-1530
1861-9533
DOI10.1007/BF02915681

Cover

Loading…
Abstract A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes.On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core,and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically,the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.
AbstractList A limited-area primitive equation model is used to study the role of the beta -effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an if-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a beta -plane intensifies slower than one on an if-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or beta -effect is introduced. But a fairly symmetric TC structure is simulated on an if-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an if-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the beta -effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an if-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a beta -plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii > 450 km, and hence there is a lesser intensification.
A limited-area primitive equation model is used to study the role of the beta -effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a beta -plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or beta -effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the beta -effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a beta -plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity.It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current.On an f-plane,the rate of intensification of a tropical cyclone is larger than that of the uniform flow.A TC on a β-plane intensifies slower than one on an f-plane.The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced.But a fairly symmetric TC structure is simulated on an f-plane.The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes.On an f-plane,the convection tends to be symmetric,which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core.On the other hand,horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core,and hence the TC is not as intense.This advective process is due to the tilt of the vortex as a result of the β-effect.A similar situation occurs in the presence of a uniform flow.Thus,the asymmetric horizontal advection of temperature plays an important role in the temperature distribution.Dynamically,the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere.However,the total AM exports at the upper levels for a TC either on aβ-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km,and hence there is a lesser intensification.
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes.On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core,and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically,the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.
Author 端义宏 伍荣生 余晖 梁旭东 陈仲良
AuthorAffiliation DepartmentofAtmosphereScience,NanjingUniversity,Nanjing210008 Dept.ofPhysicsandMaterialsScience,CityUniversityofHongKong,HongKong ShanghaiTyphoonInstitute,Shanghai200030
AuthorAffiliation_xml – name: Department of Atmosphere Science,Nanjing University,Nanjing 210008;Shanghai Typhoon Institute,Shanghai 200030%Department of Atmosphere Science,Nanjing University,Nanjing 210008%Shanghai Typhoon Institute,Shanghai,200030%Dept.of Physics and Materials Science,City University of Hong Kong,Hong Kong
Author_xml – sequence: 1
  fullname: 端义宏 伍荣生 余晖 梁旭东 陈仲良
BookMark eNqF0c2KFDEQB_AgKzi7evEJ4kVQaK10Pjp91MHVgQVBZs8hnVR2M9uTzCQ96PhYPsg-07bMgiCCp7r8qoqq_zk5SzkhIS8ZvGMA3fuPl9D2TCrNnpAF04o1veT8jCyglaphksMzcl7rBoD3XLMFWa1vkX7LI9Ic6P2vBkNAN1GbPLX0OsWQy5YuD6VgmmhOdF3yLjo70uXRjfNuukoTphqn43PyNNix4ovHekGuLz-tl1-aq6-fV8sPV43jkk2N7tqgdC8k9wIH0aNTTMvgPZdeDQ4tDNwxD1wMFsE7xpz0QYHgrLNaKn5B3pzmfrcp2HRjNvlQ0rzR-P3dj81Pgy2AgPkderavT3ZX8v6AdTLbWB2Oo02YD9W0WsiuF_y_kHUdsL5rZ_j2BF3JtRYMZlfi1pajYWB-R2D-RDBj-Au7ONkp5jQVG8d_t7x6bLnN6WYf5_sG6-5CHNH0UrdCK_4ABSKULw
CitedBy_id crossref_primary_10_1007_s00703_006_0253_0
crossref_primary_10_1007_BF02915595
crossref_primary_10_1007_s00376_007_0024_y
crossref_primary_10_1007_s13351_013_0503_2
crossref_primary_10_1007_s00703_013_0263_7
crossref_primary_10_1007_BF02915577
Cites_doi 10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2
10.1002/qj.49712152406
10.1175/1520-0477-73.3.264
10.1175/1520-0493(2001)129<1462:SOTTSO>2.0.CO;2
10.1111/j.2153-3490.1975.tb01699.x
10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2
10.1175/1520-0469(1992)049<0140:HVMAEI>2.0.CO;2
10.1175/1520-0493(1999)127<0611:TCGIAG>2.0.CO;2
10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2
10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2
10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
10.1175/1520-0493(1978)106<1125:AETSFN>2.0.CO;2
10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2
10.1002/met.5060020211
10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2
10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2
10.1175/1520-0469(1984)041<0901:EWASTC>2.0.CO;2
10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2
10.1175/1520-0469(1999)056<1404:ANSOTC>2.0.CO;2
10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2
10.1002/qj.49711046510
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/BF02915681
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1861-9533
EndPage 86
ExternalDocumentID dqkxjz_e200401008
10_1007_BF02915681
9582486
GrantInformation_xml – fundername: 国家自然科学基金; Part of the computations was completed during the first author's visit to the City University of Hong Kong through the sponsorship of various research grants of CityU
  funderid: 国家自然科学基金; (CityU)through the sponsorship of various research grants of CityU
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
67M
6J9
6NX
7XC
88I
8FE
8FH
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABUWG
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADTIX
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMYLF
AMYQR
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
C1A
CAG
CCEZO
CCVFK
CDYEO
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
D1K
DNIVK
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IPNFZ
ITM
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
K6-
KOV
L8X
LAS
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NF0
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
PATMY
PCBAR
PF0
PQEST
PQQKQ
PQUKI
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCL
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNX
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGP
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
W94
WK6
WK8
YLTOR
Z7R
Z8M
Z8U
Z8W
ZMTXR
~A9
~WA
-SA
-S~
5XA
5XB
AACDK
AAJBT
AAPKM
AASML
AATNV
AAYXX
AAYZH
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABQSL
ABTKH
ABWNU
ACAOD
ACDTI
ACMFV
ACPIV
ACSTC
ACZOJ
ADHKG
ADMLS
ADTPH
AEFQL
AEMSY
AESKC
AEUYN
AEVLU
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AGQEE
AGQPQ
AGRTI
AHPBZ
AHWEU
AIGIU
AIXLP
AMXSW
AOCGG
ATHPR
AYFIA
BSONS
CAJEA
CCPQU
CITATION
DDRTE
DPUIP
IKXTQ
IWAJR
NPVJJ
PHGZM
PHGZT
Q--
SNPRN
SOHCF
U1G
U5K
7TG
ABRTQ
KL.
8FD
H8D
L7M
4A8
PMFND
PSX
ID FETCH-LOGICAL-c351t-872f689453d4eb49ec6185fdd35d6bcea0b3c1d034bae0dc11c5df604317a8563
ISSN 0256-1530
IngestDate Thu May 29 04:02:39 EDT 2025
Fri Jul 11 16:48:53 EDT 2025
Mon Jul 21 11:13:20 EDT 2025
Thu Apr 24 22:57:31 EDT 2025
Tue Jul 01 02:40:52 EDT 2025
Thu Nov 24 20:34:46 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords asymmetric structure
uniform current
β-effect
tropical cyclone intensity change
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-872f689453d4eb49ec6185fdd35d6bcea0b3c1d034bae0dc11c5df604317a8563
Notes P444
11-1925/O4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 17701972
PQPubID 23462
PageCount 12
ParticipantIDs wanfang_journals_dqkxjz_e200401008
proquest_miscellaneous_28457943
proquest_miscellaneous_17701972
crossref_primary_10_1007_BF02915681
crossref_citationtrail_10_1007_BF02915681
chongqing_backfile_9582486
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-01-01
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – month: 01
  year: 2004
  text: 2004-01-01
  day: 01
PublicationDecade 2000
PublicationTitle Advances in atmospheric sciences
PublicationTitleAlternate Advances in Atmospheric Sciences
PublicationTitle_FL ADVANCES IN ATMOSPHERIC SCIENCES
PublicationYear 2004
Publisher Shanghai Typhoon Institute,Shanghai 200030%Department of Atmosphere Science,Nanjing University,Nanjing 210008%Shanghai Typhoon Institute,Shanghai,200030%Dept.of Physics and Materials Science,City University of Hong Kong,Hong Kong
Department of Atmosphere Science,Nanjing University,Nanjing 210008
Publisher_xml – name: Shanghai Typhoon Institute,Shanghai 200030%Department of Atmosphere Science,Nanjing University,Nanjing 210008%Shanghai Typhoon Institute,Shanghai,200030%Dept.of Physics and Materials Science,City University of Hong Kong,Hong Kong
– name: Department of Atmosphere Science,Nanjing University,Nanjing 210008
References J. Brown (BF02915681_CR4) 1978; 106
J. C.-L. Chan (BF02915681_CR6) 1999; 127
M. DeMaria (BF02915681_CR10) 1996; 53
Y. Kurihara (BF02915681_CR21) 1993; 121
T. Fujita (BF02915681_CR13) 1952; 23
M. DeMaria (BF02915681_CR9) 1984; 41
J. T. Heming (BF02915681_CR14) 1995; 2
BF02915681_CR17
Lester E. Carr (BF02915681_CR5) 1995; 123
G. J. Holland (BF02915681_CR16) 1984; 110
J. W. Deardorff (BF02915681_CR8) 1972; 100
R. Hodur (BF02915681_CR15) 1997; 125
A. P. Khain (BF02915681_CR19) 1988; 24
L. J. Shapiro (BF02915681_CR26) 1992; 49
S. M. Peng (BF02915681_CR23) 1999; 56
J. C.-L. Chan (BF02915681_CR7) 2001; 58
R. L. Elsberry (BF02915681_CR11) 1992; 73
H. -L. Kuo (BF02915681_CR20) 1974; 31
R. V. Madala (BF02915681_CR22) 1975; 27
R. L. Pfeffer (BF02915681_CR24) 1981; 38
W. M. Frank (BF02915681_CR12) 2001; 129
R. A. Anthes (BF02915681_CR2) 1987
E. A. Ritchie (BF02915681_CR25) 2001; 129
S. C. Jones (BF02915681_CR18) 1995; 121
M. A. Bender (BF02915681_CR3) 1997; 54
R. A. Anthes (BF02915681_CR1) 1977; 105
References_xml – volume: 125
  start-page: 1414
  year: 1997
  ident: BF02915681_CR15
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2
– volume: 121
  start-page: 821
  year: 1995
  ident: BF02915681_CR18
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49712152406
– volume: 73
  start-page: 264
  year: 1992
  ident: BF02915681_CR11
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/1520-0477-73.3.264
– volume: 129
  start-page: 1462
  year: 2001
  ident: BF02915681_CR25
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<1462:SOTTSO>2.0.CO;2
– volume: 27
  start-page: 453
  year: 1975
  ident: BF02915681_CR22
  publication-title: Tellus
  doi: 10.1111/j.2153-3490.1975.tb01699.x
– volume: 100
  start-page: 93
  year: 1972
  ident: BF02915681_CR8
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2
– volume: 49
  start-page: 140
  year: 1992
  ident: BF02915681_CR26
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1992)049<0140:HVMAEI>2.0.CO;2
– volume: 127
  start-page: 611
  year: 1999
  ident: BF02915681_CR6
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1999)127<0611:TCGIAG>2.0.CO;2
– volume: 53
  start-page: 2076
  year: 1996
  ident: BF02915681_CR10
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2
– volume: 121
  start-page: 2030
  year: 1993
  ident: BF02915681_CR21
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2
– volume: 129
  start-page: 2249
  year: 2001
  ident: BF02915681_CR12
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
– volume: 106
  start-page: 1125
  year: 1978
  ident: BF02915681_CR4
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1978)106<1125:AETSFN>2.0.CO;2
– ident: BF02915681_CR17
– volume: 58
  start-page: 154
  year: 2001
  ident: BF02915681_CR7
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2
– volume: 2
  start-page: 171
  year: 1995
  ident: BF02915681_CR14
  publication-title: Meteor. Appl.
  doi: 10.1002/met.5060020211
– volume: 38
  start-page: 2393
  year: 1981
  ident: BF02915681_CR24
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2
– volume: 54
  start-page: 703
  year: 1997
  ident: BF02915681_CR3
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2
– volume: 41
  start-page: 901
  year: 1984
  ident: BF02915681_CR9
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1984)041<0901:EWASTC>2.0.CO;2
– volume: 23
  start-page: 437
  year: 1952
  ident: BF02915681_CR13
  publication-title: Geophys. Mag.
– volume: 24
  start-page: 266
  issue: 4
  year: 1988
  ident: BF02915681_CR19
  publication-title: Izv. Acad. Sci. USSR. Atmos. Oceanic Phys.
– volume: 31
  start-page: 1232
  year: 1974
  ident: BF02915681_CR20
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
– volume: 123
  start-page: 265
  year: 1995
  ident: BF02915681_CR5
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2
– volume: 56
  start-page: 1404
  year: 1999
  ident: BF02915681_CR23
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1999)056<1404:ANSOTC>2.0.CO;2
– volume-title: Description of the Penn State/NCAR mesoscale Model Version 4 (MM4)
  year: 1987
  ident: BF02915681_CR2
– volume: 105
  start-page: 270
  year: 1977
  ident: BF02915681_CR1
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2
– volume: 110
  start-page: 723
  year: 1984
  ident: BF02915681_CR16
  publication-title: Quant. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49711046510
SSID ssj0039381
Score 1.6749252
Snippet A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC...
A limited-area primitive equation model is used to study the role of the beta -effect and a uniform current on tropical cyclone (TC) intensity. It is found...
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity.It is found that TC...
SourceID wanfang
proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75
SubjectTerms 热力学试验
热带气旋
物理特征
Title The Role of β-effect and a Uniform Current on Tropical Cyclone Intensity
URI http://lib.cqvip.com/qk/84334X/20041/9582486.html
https://www.proquest.com/docview/17701972
https://www.proquest.com/docview/28457943
https://d.wanfangdata.com.cn/periodical/dqkxjz-e200401008
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ti9MwHA56h-AX8RV76hlUBBk92jRN249z7Biym3JsuG8lb9V5s73bOtT76_2lTdsNJ758KWsJWcnzNHmS_PL8EHoV-YqbBX1XR9pzKZPETeLMc7U0gjliiahOvZ9N2GhG383DeZPe3Z4uKcWJvN57ruR_UIVngKs5JfsPyLaVwgP4DfjCFRCG619jfG7DA4Uuec-twzNqB1ajJ40k7TUeTAD0dFVcVrAMfshlkdeBk7mJy9hWqf06MKAKleXl12JtvAcWsmeHyy4X_aZePm3l8MdNBdlJ25dU96P2frywy9PzndUGurXaUHdKxPgWhnYvxfagxP-FKXV3WCdFaQZWtrfL9ppAdJL4xg2tG5iazfjJ-_R0Nh6n0-F8ehMdEpgQmFwVM9JvxtwgCap0tO3b7RrR2pqNfcbnIv90BaJgV4Z0c4tb33ieQVNsiYzpXXTHzg5wv4b6Hrqh8_vIOYOJTbGq9j_wazxYLmCWUd09QGOgADYUwEWGDQWwpQAGCmCOLQWwpQAuctxQAFsK4JYCD9HsdDgdjFybIMOVQeiXMJKRjMUJDQNFtaCJlgzkV6ZUECompOaeCKSvvIAKrj0lfV-GKmPGTynicciCR-gghz96jDAPiKJhxgItBFVxHItMRczXIuaUSBY76KhtOxBY8sLYhqVJGBMaMwe9aRozldZa3mQ4WaaNKXYHgoNetmUva0OVvaWeN5ik0N-ZTSye62KzTv3IJBCIyO9LgOAKje2hg15YMFP7za5TdXXx_ct1qg21PeNrdfTHap6g292H8BQdlKuNfgZCtBTH6PDtcPLh_Lji4k_Wk4iF
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+beta+-effect+and+a+Uniform+Current+on+Tropical+Cyclone+Intensity&rft.jtitle=Advances+in+atmospheric+sciences&rft.au=Duan%2C+Y&rft.au=Wu%2C+R.&rft.au=Yu%2C+H.&rft.au=Liang%2C+X&rft.date=2004-01-01&rft.issn=0256-1530&rft.volume=21&rft.issue=1&rft.spage=75&rft.epage=86&rft_id=info:doi/10.1007%2FBF02915681&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84334X%2F84334X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdqkxjz-e%2Fdqkxjz-e.jpg