The Role of β-effect and a Uniform Current on Tropical Cyclone Intensity
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification...
Saved in:
Published in | Advances in atmospheric sciences Vol. 21; no. 1; pp. 75 - 86 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Shanghai Typhoon Institute,Shanghai 200030%Department of Atmosphere Science,Nanjing University,Nanjing 210008%Shanghai Typhoon Institute,Shanghai,200030%Dept.of Physics and Materials Science,City University of Hong Kong,Hong Kong
01.01.2004
Department of Atmosphere Science,Nanjing University,Nanjing 210008 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1530 1861-9533 |
DOI | 10.1007/BF02915681 |
Cover
Loading…
Abstract | A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes.On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core,and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically,the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification. |
---|---|
AbstractList | A limited-area primitive equation model is used to study the role of the beta -effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an if-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a beta -plane intensifies slower than one on an if-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or beta -effect is introduced. But a fairly symmetric TC structure is simulated on an if-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an if-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the beta -effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an if-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a beta -plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii > 450 km, and hence there is a lesser intensification. A limited-area primitive equation model is used to study the role of the beta -effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a beta -plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or beta -effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the beta -effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a beta -plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification. A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity.It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current.On an f-plane,the rate of intensification of a tropical cyclone is larger than that of the uniform flow.A TC on a β-plane intensifies slower than one on an f-plane.The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced.But a fairly symmetric TC structure is simulated on an f-plane.The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes.On an f-plane,the convection tends to be symmetric,which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core.On the other hand,horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core,and hence the TC is not as intense.This advective process is due to the tilt of the vortex as a result of the β-effect.A similar situation occurs in the presence of a uniform flow.Thus,the asymmetric horizontal advection of temperature plays an important role in the temperature distribution.Dynamically,the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere.However,the total AM exports at the upper levels for a TC either on aβ-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km,and hence there is a lesser intensification. A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes.On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core,and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically,the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification. |
Author | 端义宏 伍荣生 余晖 梁旭东 陈仲良 |
AuthorAffiliation | DepartmentofAtmosphereScience,NanjingUniversity,Nanjing210008 Dept.ofPhysicsandMaterialsScience,CityUniversityofHongKong,HongKong ShanghaiTyphoonInstitute,Shanghai200030 |
AuthorAffiliation_xml | – name: Department of Atmosphere Science,Nanjing University,Nanjing 210008;Shanghai Typhoon Institute,Shanghai 200030%Department of Atmosphere Science,Nanjing University,Nanjing 210008%Shanghai Typhoon Institute,Shanghai,200030%Dept.of Physics and Materials Science,City University of Hong Kong,Hong Kong |
Author_xml | – sequence: 1 fullname: 端义宏 伍荣生 余晖 梁旭东 陈仲良 |
BookMark | eNqF0c2KFDEQB_AgKzi7evEJ4kVQaK10Pjp91MHVgQVBZs8hnVR2M9uTzCQ96PhYPsg-07bMgiCCp7r8qoqq_zk5SzkhIS8ZvGMA3fuPl9D2TCrNnpAF04o1veT8jCyglaphksMzcl7rBoD3XLMFWa1vkX7LI9Ic6P2vBkNAN1GbPLX0OsWQy5YuD6VgmmhOdF3yLjo70uXRjfNuukoTphqn43PyNNix4ovHekGuLz-tl1-aq6-fV8sPV43jkk2N7tqgdC8k9wIH0aNTTMvgPZdeDQ4tDNwxD1wMFsE7xpz0QYHgrLNaKn5B3pzmfrcp2HRjNvlQ0rzR-P3dj81Pgy2AgPkderavT3ZX8v6AdTLbWB2Oo02YD9W0WsiuF_y_kHUdsL5rZ_j2BF3JtRYMZlfi1pajYWB-R2D-RDBj-Au7ONkp5jQVG8d_t7x6bLnN6WYf5_sG6-5CHNH0UrdCK_4ABSKULw |
CitedBy_id | crossref_primary_10_1007_s00703_006_0253_0 crossref_primary_10_1007_BF02915595 crossref_primary_10_1007_s00376_007_0024_y crossref_primary_10_1007_s13351_013_0503_2 crossref_primary_10_1007_s00703_013_0263_7 crossref_primary_10_1007_BF02915577 |
Cites_doi | 10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2 10.1002/qj.49712152406 10.1175/1520-0477-73.3.264 10.1175/1520-0493(2001)129<1462:SOTTSO>2.0.CO;2 10.1111/j.2153-3490.1975.tb01699.x 10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2 10.1175/1520-0469(1992)049<0140:HVMAEI>2.0.CO;2 10.1175/1520-0493(1999)127<0611:TCGIAG>2.0.CO;2 10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2 10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2 10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2 10.1175/1520-0493(1978)106<1125:AETSFN>2.0.CO;2 10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2 10.1002/met.5060020211 10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2 10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2 10.1175/1520-0469(1984)041<0901:EWASTC>2.0.CO;2 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2 10.1175/1520-0469(1999)056<1404:ANSOTC>2.0.CO;2 10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2 10.1002/qj.49711046510 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 7TG KL. 8FD H8D L7M 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/BF02915681 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1861-9533 |
EndPage | 86 |
ExternalDocumentID | dqkxjz_e200401008 10_1007_BF02915681 9582486 |
GrantInformation_xml | – fundername: 国家自然科学基金; Part of the computations was completed during the first author's visit to the City University of Hong Kong through the sponsorship of various research grants of CityU funderid: 国家自然科学基金; (CityU)through the sponsorship of various research grants of CityU |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 2.D 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 67M 6J9 6NX 7XC 88I 8FE 8FH 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZAB ABBBX ABDZT ABECU ABEOS ABFGW ABFTV ABHQN ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABUWG ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIHN ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFGCZ AFKRA AFLOW AFQWF AFRAH AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMYLF AMYQR ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ C1A CAG CCEZO CCVFK CDYEO CHBEP COF CQIGP CS3 CSCUP CW9 D1K DNIVK DWQXO EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IPNFZ ITM IXC I~X I~Z J-C JBSCW JZLTJ K6- KOV L8X LAS LK5 LLZTM M1Q M2P M4Y M7R MA- N2Q NB0 NDZJH NF0 NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P PATMY PCBAR PF0 PQEST PQQKQ PQUKI PROAC PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCL SCLPG SDH SEV SHX SISQX SJYHP SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 W94 WK6 WK8 YLTOR Z7R Z8M Z8U Z8W ZMTXR ~A9 ~WA -SA -S~ 5XA 5XB AACDK AAJBT AAPKM AASML AATNV AAYXX AAYZH ABAKF ABBRH ABDBE ABFSG ABJNI ABQSL ABTKH ABWNU ACAOD ACDTI ACMFV ACPIV ACSTC ACZOJ ADHKG ADMLS ADTPH AEFQL AEMSY AESKC AEUYN AEVLU AEZWR AFBBN AFDZB AFHIU AFOHR AGQEE AGQPQ AGRTI AHPBZ AHWEU AIGIU AIXLP AMXSW AOCGG ATHPR AYFIA BSONS CAJEA CCPQU CITATION DDRTE DPUIP IKXTQ IWAJR NPVJJ PHGZM PHGZT Q-- SNPRN SOHCF U1G U5K 7TG ABRTQ KL. 8FD H8D L7M 4A8 PMFND PSX |
ID | FETCH-LOGICAL-c351t-872f689453d4eb49ec6185fdd35d6bcea0b3c1d034bae0dc11c5df604317a8563 |
ISSN | 0256-1530 |
IngestDate | Thu May 29 04:02:39 EDT 2025 Fri Jul 11 16:48:53 EDT 2025 Mon Jul 21 11:13:20 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Tue Jul 01 02:40:52 EDT 2025 Thu Nov 24 20:34:46 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | asymmetric structure uniform current β-effect tropical cyclone intensity change |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-872f689453d4eb49ec6185fdd35d6bcea0b3c1d034bae0dc11c5df604317a8563 |
Notes | P444 11-1925/O4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 17701972 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_dqkxjz_e200401008 proquest_miscellaneous_28457943 proquest_miscellaneous_17701972 crossref_primary_10_1007_BF02915681 crossref_citationtrail_10_1007_BF02915681 chongqing_backfile_9582486 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-01-01 |
PublicationDateYYYYMMDD | 2004-01-01 |
PublicationDate_xml | – month: 01 year: 2004 text: 2004-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Advances in atmospheric sciences |
PublicationTitleAlternate | Advances in Atmospheric Sciences |
PublicationTitle_FL | ADVANCES IN ATMOSPHERIC SCIENCES |
PublicationYear | 2004 |
Publisher | Shanghai Typhoon Institute,Shanghai 200030%Department of Atmosphere Science,Nanjing University,Nanjing 210008%Shanghai Typhoon Institute,Shanghai,200030%Dept.of Physics and Materials Science,City University of Hong Kong,Hong Kong Department of Atmosphere Science,Nanjing University,Nanjing 210008 |
Publisher_xml | – name: Shanghai Typhoon Institute,Shanghai 200030%Department of Atmosphere Science,Nanjing University,Nanjing 210008%Shanghai Typhoon Institute,Shanghai,200030%Dept.of Physics and Materials Science,City University of Hong Kong,Hong Kong – name: Department of Atmosphere Science,Nanjing University,Nanjing 210008 |
References | J. Brown (BF02915681_CR4) 1978; 106 J. C.-L. Chan (BF02915681_CR6) 1999; 127 M. DeMaria (BF02915681_CR10) 1996; 53 Y. Kurihara (BF02915681_CR21) 1993; 121 T. Fujita (BF02915681_CR13) 1952; 23 M. DeMaria (BF02915681_CR9) 1984; 41 J. T. Heming (BF02915681_CR14) 1995; 2 BF02915681_CR17 Lester E. Carr (BF02915681_CR5) 1995; 123 G. J. Holland (BF02915681_CR16) 1984; 110 J. W. Deardorff (BF02915681_CR8) 1972; 100 R. Hodur (BF02915681_CR15) 1997; 125 A. P. Khain (BF02915681_CR19) 1988; 24 L. J. Shapiro (BF02915681_CR26) 1992; 49 S. M. Peng (BF02915681_CR23) 1999; 56 J. C.-L. Chan (BF02915681_CR7) 2001; 58 R. L. Elsberry (BF02915681_CR11) 1992; 73 H. -L. Kuo (BF02915681_CR20) 1974; 31 R. V. Madala (BF02915681_CR22) 1975; 27 R. L. Pfeffer (BF02915681_CR24) 1981; 38 W. M. Frank (BF02915681_CR12) 2001; 129 R. A. Anthes (BF02915681_CR2) 1987 E. A. Ritchie (BF02915681_CR25) 2001; 129 S. C. Jones (BF02915681_CR18) 1995; 121 M. A. Bender (BF02915681_CR3) 1997; 54 R. A. Anthes (BF02915681_CR1) 1977; 105 |
References_xml | – volume: 125 start-page: 1414 year: 1997 ident: BF02915681_CR15 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2 – volume: 121 start-page: 821 year: 1995 ident: BF02915681_CR18 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49712152406 – volume: 73 start-page: 264 year: 1992 ident: BF02915681_CR11 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/1520-0477-73.3.264 – volume: 129 start-page: 1462 year: 2001 ident: BF02915681_CR25 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<1462:SOTTSO>2.0.CO;2 – volume: 27 start-page: 453 year: 1975 ident: BF02915681_CR22 publication-title: Tellus doi: 10.1111/j.2153-3490.1975.tb01699.x – volume: 100 start-page: 93 year: 1972 ident: BF02915681_CR8 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2 – volume: 49 start-page: 140 year: 1992 ident: BF02915681_CR26 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1992)049<0140:HVMAEI>2.0.CO;2 – volume: 127 start-page: 611 year: 1999 ident: BF02915681_CR6 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1999)127<0611:TCGIAG>2.0.CO;2 – volume: 53 start-page: 2076 year: 1996 ident: BF02915681_CR10 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2 – volume: 121 start-page: 2030 year: 1993 ident: BF02915681_CR21 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2 – volume: 129 start-page: 2249 year: 2001 ident: BF02915681_CR12 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2 – volume: 106 start-page: 1125 year: 1978 ident: BF02915681_CR4 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1978)106<1125:AETSFN>2.0.CO;2 – ident: BF02915681_CR17 – volume: 58 start-page: 154 year: 2001 ident: BF02915681_CR7 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2 – volume: 2 start-page: 171 year: 1995 ident: BF02915681_CR14 publication-title: Meteor. Appl. doi: 10.1002/met.5060020211 – volume: 38 start-page: 2393 year: 1981 ident: BF02915681_CR24 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2 – volume: 54 start-page: 703 year: 1997 ident: BF02915681_CR3 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2 – volume: 41 start-page: 901 year: 1984 ident: BF02915681_CR9 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1984)041<0901:EWASTC>2.0.CO;2 – volume: 23 start-page: 437 year: 1952 ident: BF02915681_CR13 publication-title: Geophys. Mag. – volume: 24 start-page: 266 issue: 4 year: 1988 ident: BF02915681_CR19 publication-title: Izv. Acad. Sci. USSR. Atmos. Oceanic Phys. – volume: 31 start-page: 1232 year: 1974 ident: BF02915681_CR20 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 – volume: 123 start-page: 265 year: 1995 ident: BF02915681_CR5 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2 – volume: 56 start-page: 1404 year: 1999 ident: BF02915681_CR23 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1999)056<1404:ANSOTC>2.0.CO;2 – volume-title: Description of the Penn State/NCAR mesoscale Model Version 4 (MM4) year: 1987 ident: BF02915681_CR2 – volume: 105 start-page: 270 year: 1977 ident: BF02915681_CR1 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2 – volume: 110 start-page: 723 year: 1984 ident: BF02915681_CR16 publication-title: Quant. J. Roy. Meteor. Soc. doi: 10.1002/qj.49711046510 |
SSID | ssj0039381 |
Score | 1.6749252 |
Snippet | A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC... A limited-area primitive equation model is used to study the role of the beta -effect and a uniform current on tropical cyclone (TC) intensity. It is found... A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity.It is found that TC... |
SourceID | wanfang proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 75 |
SubjectTerms | 热力学试验 热带气旋 物理特征 |
Title | The Role of β-effect and a Uniform Current on Tropical Cyclone Intensity |
URI | http://lib.cqvip.com/qk/84334X/20041/9582486.html https://www.proquest.com/docview/17701972 https://www.proquest.com/docview/28457943 https://d.wanfangdata.com.cn/periodical/dqkxjz-e200401008 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ti9MwHA56h-AX8RV76hlUBBk92jRN249z7Biym3JsuG8lb9V5s73bOtT76_2lTdsNJ758KWsJWcnzNHmS_PL8EHoV-YqbBX1XR9pzKZPETeLMc7U0gjliiahOvZ9N2GhG383DeZPe3Z4uKcWJvN57ruR_UIVngKs5JfsPyLaVwgP4DfjCFRCG619jfG7DA4Uuec-twzNqB1ajJ40k7TUeTAD0dFVcVrAMfshlkdeBk7mJy9hWqf06MKAKleXl12JtvAcWsmeHyy4X_aZePm3l8MdNBdlJ25dU96P2frywy9PzndUGurXaUHdKxPgWhnYvxfagxP-FKXV3WCdFaQZWtrfL9ppAdJL4xg2tG5iazfjJ-_R0Nh6n0-F8ehMdEpgQmFwVM9JvxtwgCap0tO3b7RrR2pqNfcbnIv90BaJgV4Z0c4tb33ieQVNsiYzpXXTHzg5wv4b6Hrqh8_vIOYOJTbGq9j_wazxYLmCWUd09QGOgADYUwEWGDQWwpQAGCmCOLQWwpQAuctxQAFsK4JYCD9HsdDgdjFybIMOVQeiXMJKRjMUJDQNFtaCJlgzkV6ZUECompOaeCKSvvIAKrj0lfV-GKmPGTynicciCR-gghz96jDAPiKJhxgItBFVxHItMRczXIuaUSBY76KhtOxBY8sLYhqVJGBMaMwe9aRozldZa3mQ4WaaNKXYHgoNetmUva0OVvaWeN5ik0N-ZTSye62KzTv3IJBCIyO9LgOAKje2hg15YMFP7za5TdXXx_ct1qg21PeNrdfTHap6g292H8BQdlKuNfgZCtBTH6PDtcPLh_Lji4k_Wk4iF |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+beta+-effect+and+a+Uniform+Current+on+Tropical+Cyclone+Intensity&rft.jtitle=Advances+in+atmospheric+sciences&rft.au=Duan%2C+Y&rft.au=Wu%2C+R.&rft.au=Yu%2C+H.&rft.au=Liang%2C+X&rft.date=2004-01-01&rft.issn=0256-1530&rft.volume=21&rft.issue=1&rft.spage=75&rft.epage=86&rft_id=info:doi/10.1007%2FBF02915681&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84334X%2F84334X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdqkxjz-e%2Fdqkxjz-e.jpg |