Multistability of Almost Periodic Solution for Memristive Cohen-Grossberg Neural Networks With Mixed Delays
This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 6; pp. 1914 - 1926 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is shown that the MCGNNs with <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-neuron have <inline-formula> <tex-math notation="LaTeX">(K+1)^{n} </tex-math></inline-formula> locally exponentially stable almost periodic solutions, where nature number <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> depends on the geometrical structure of the considered activation function. Compared with the previous related works, the number of almost periodic state solutions of the MCGNNs is extensively increased. The obtained conclusions in this paper are also capable of studying the multistability of equilibrium points or periodic solutions of the MCGNNs. Moreover, the enlarged attraction basins of attractors are estimated based on original partition. Some comparisons and convincing numerical examples are provided to substantiate the superiority and efficiency of obtained results. |
---|---|
AbstractList | This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is shown that the MCGNNs with n-neuron have (K+1)ⁿ locally exponentially stable almost periodic solutions, where nature number K depends on the geometrical structure of the considered activation function. Compared with the previous related works, the number of almost periodic state solutions of the MCGNNs is extensively increased. The obtained conclusions in this paper are also capable of studying the multistability of equilibrium points or periodic solutions of the MCGNNs. Moreover, the enlarged attraction basins of attractors are estimated based on original partition. Some comparisons and convincing numerical examples are provided to substantiate the superiority and efficiency of obtained results. This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen–Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is shown that the MCGNNs with [Formula Omitted]-neuron have [Formula Omitted] locally exponentially stable almost periodic solutions, where nature number [Formula Omitted] depends on the geometrical structure of the considered activation function. Compared with the previous related works, the number of almost periodic state solutions of the MCGNNs is extensively increased. The obtained conclusions in this paper are also capable of studying the multistability of equilibrium points or periodic solutions of the MCGNNs. Moreover, the enlarged attraction basins of attractors are estimated based on original partition. Some comparisons and convincing numerical examples are provided to substantiate the superiority and efficiency of obtained results. This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is shown that the MCGNNs with <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-neuron have <inline-formula> <tex-math notation="LaTeX">(K+1)^{n} </tex-math></inline-formula> locally exponentially stable almost periodic solutions, where nature number <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> depends on the geometrical structure of the considered activation function. Compared with the previous related works, the number of almost periodic state solutions of the MCGNNs is extensively increased. The obtained conclusions in this paper are also capable of studying the multistability of equilibrium points or periodic solutions of the MCGNNs. Moreover, the enlarged attraction basins of attractors are estimated based on original partition. Some comparisons and convincing numerical examples are provided to substantiate the superiority and efficiency of obtained results. |
Author | Feng, Jiqiang Ma, Qiang Qin, Sitian Xu, Chen |
Author_xml | – sequence: 1 givenname: Sitian orcidid: 0000-0002-4543-4940 surname: Qin fullname: Qin, Sitian email: qinsitian@hitwh.edu.cn organization: Department of Mathematics, Harbin Institute of Technology, Weihai, China – sequence: 2 givenname: Qiang orcidid: 0000-0003-0791-1731 surname: Ma fullname: Ma, Qiang email: maqianghitwh@163.com organization: Department of Mathematics, Harbin Institute of Technology, Weihai, China – sequence: 3 givenname: Jiqiang surname: Feng fullname: Feng, Jiqiang email: fengjq@szu.edu.cn organization: Shenzhen Key Laboratory of Advanced Machine Learning and Application, College of Mathematics and Statistics, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Chen orcidid: 0000-0002-7607-7763 surname: Xu fullname: Xu, Chen email: xuchen_szu@szu.edu.cn organization: Shenzhen Key Laboratory of Advanced Machine Learning and Application, College of Mathematics and Statistics, Shenzhen University, Shenzhen, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31395559$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1v1DAQhi1UREvpHwAJWeLCJYs_E_tYLVCQdhekFsHNspMJdZvExXaA_fd42WUPzOUdaZ4Zzcz7FJ1MYQKEnlOyoJToNzebzep6wQjVC6ZZI0n9CJ0xWrOKcaVOjnnz7RRdpHRHStRE1kI_Qaecci2l1Gfofj0P2adsnR983uLQ48thDCnjzxB96HyLr8MwZx8m3IeI1zDGgvufgJfhFqbqKoaUHMTveANztEOR_CvE-4S_-nyL1_43dPgtDHabnqHHvR0SXBz0HH15_-5m-aFafbr6uLxcVS2XNFeKOUJ7K6lou9rxzgrGiWotdVILLbiljeqdorwlonaSMdfJnijX1UKQzil-jl7v5z7E8GOGlM3oUwvDYCcIczKMNYTQ8gxW0Ff_oXdhjlPZzjBBNG80V6RQbE-1u2Mj9OYh-tHGraHE7Nwwf90wOzfMwY3S9PIwenYjdMeWf78vwIs94AHgWFaNUkIS_gfYMJAB |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_cam_2022_114764 crossref_primary_10_1109_TNNLS_2021_3082560 crossref_primary_10_1016_j_neucom_2020_03_005 crossref_primary_10_1002_mma_9772 crossref_primary_10_1016_j_neunet_2021_08_029 crossref_primary_10_1016_j_cnsns_2022_107075 crossref_primary_10_1109_TSMC_2024_3371164 crossref_primary_10_1007_s11431_022_2311_1 crossref_primary_10_1007_s00521_024_09736_5 crossref_primary_10_1109_TNNLS_2020_3041364 crossref_primary_10_1109_TNNLS_2021_3105519 crossref_primary_10_1109_TSMC_2023_3271396 crossref_primary_10_1016_j_neunet_2021_07_029 crossref_primary_10_1016_j_neunet_2024_106498 crossref_primary_10_1016_j_neucom_2022_03_059 crossref_primary_10_1016_j_amc_2022_127461 crossref_primary_10_1109_TNNLS_2022_3233719 crossref_primary_10_1016_j_neunet_2021_04_035 crossref_primary_10_3390_math10091440 crossref_primary_10_1007_s11063_022_10911_9 crossref_primary_10_1016_j_neucom_2023_126499 crossref_primary_10_1016_j_neunet_2022_12_013 crossref_primary_10_1016_j_neucom_2024_127382 crossref_primary_10_1016_j_neunet_2024_106501 crossref_primary_10_3390_mi13050726 |
Cites_doi | 10.1016/j.ins.2012.07.040 10.1016/j.neucom.2018.03.006 10.1007/s00521-012-0954-x 10.1016/j.physleta.2005.05.017 10.1016/j.neunet.2015.01.007 10.1016/j.neucom.2016.07.065 10.1016/j.neunet.2009.11.010 10.1142/S0218001417500227 10.1016/j.neunet.2014.12.002 10.1016/j.neunet.2016.03.010 10.1038/nature06932 10.1162/neco.2008.03-07-492 10.1109/TNN.2009.2027121 10.1109/TNNLS.2016.2561298 10.1137/050632440 10.1162/NECO_a_00895 10.1016/S0893-6080(99)00074-X 10.1016/j.neucom.2015.06.080 10.1109/TNNLS.2018.2801297 10.1162/neco.2007.19.12.3392 10.1016/j.neunet.2013.10.001 10.1109/3477.704294 10.1016/j.neunet.2017.12.006 10.1109/NANO.2017.8117459 10.1016/j.neucom.2013.07.010 10.1016/S0893-6080(05)80076-0 10.1007/s11071-016-2667-7 10.1109/TNNLS.2012.2210732 10.1109/TCYB.2015.2413212 10.1109/TCT.1971.1083337 10.1137/1.9781611971262 10.1016/j.cnsns.2014.02.016 10.1109/TSMC.2015.2461191 10.1016/j.physd.2008.01.012 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2019.2927506 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 1926 |
ExternalDocumentID | 10_1109_TNNLS_2019_2927506 31395559 8788450 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Science Foundation of China grantid: 61773136; 11871178; 61872429 funderid: 10.13039/501100001809 – fundername: Science and Technology Program of Shenzhen, China grantid: JCYJ20170818091621856 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RIG RNS NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-82b01fa514cd6b3da42308ca1b594943a178fb813c046b522bd5f08bd6440db83 |
IEDL.DBID | RIE |
ISSN | 2162-237X |
IngestDate | Wed Jul 24 14:17:46 EDT 2024 Thu Oct 10 17:35:18 EDT 2024 Fri Aug 23 00:57:12 EDT 2024 Sat Sep 28 08:39:22 EDT 2024 Wed Jun 26 19:28:59 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-82b01fa514cd6b3da42308ca1b594943a178fb813c046b522bd5f08bd6440db83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7607-7763 0000-0003-0791-1731 0000-0002-4543-4940 |
PMID | 31395559 |
PQID | 2409379380 |
PQPubID | 85436 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2270016052 crossref_primary_10_1109_TNNLS_2019_2927506 pubmed_primary_31395559 proquest_journals_2409379380 ieee_primary_8788450 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref31 ref30 ref33 ref32 ref10 liu (ref11) 2018; 29 ref2 ref1 ref17 ref16 ref19 ref18 berman (ref36) 1994; 9 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 kohonen (ref14) 2012; 8 |
References_xml | – ident: ref2 doi: 10.1016/j.ins.2012.07.040 – ident: ref32 doi: 10.1016/j.neucom.2018.03.006 – ident: ref34 doi: 10.1007/s00521-012-0954-x – volume: 8 year: 2012 ident: ref14 publication-title: Self-Organization and Associative Memory contributor: fullname: kohonen – ident: ref18 doi: 10.1016/j.physleta.2005.05.017 – ident: ref22 doi: 10.1016/j.neunet.2015.01.007 – ident: ref16 doi: 10.1016/j.neucom.2016.07.065 – ident: ref17 doi: 10.1016/j.neunet.2009.11.010 – ident: ref29 doi: 10.1142/S0218001417500227 – ident: ref28 doi: 10.1016/j.neunet.2014.12.002 – ident: ref8 doi: 10.1016/j.neunet.2016.03.010 – ident: ref27 doi: 10.1038/nature06932 – ident: ref20 doi: 10.1162/neco.2008.03-07-492 – ident: ref25 doi: 10.1109/TNN.2009.2027121 – ident: ref30 doi: 10.1109/TNNLS.2016.2561298 – ident: ref19 doi: 10.1137/050632440 – ident: ref6 doi: 10.1162/NECO_a_00895 – ident: ref23 doi: 10.1016/S0893-6080(99)00074-X – ident: ref5 doi: 10.1016/j.neucom.2015.06.080 – ident: ref12 doi: 10.1109/TNNLS.2018.2801297 – ident: ref1 doi: 10.1162/neco.2007.19.12.3392 – ident: ref31 doi: 10.1016/j.neunet.2013.10.001 – ident: ref13 doi: 10.1109/3477.704294 – ident: ref10 doi: 10.1016/j.neunet.2017.12.006 – ident: ref15 doi: 10.1109/NANO.2017.8117459 – ident: ref3 doi: 10.1016/j.neucom.2013.07.010 – ident: ref24 doi: 10.1016/S0893-6080(05)80076-0 – ident: ref35 doi: 10.1007/s11071-016-2667-7 – ident: ref21 doi: 10.1109/TNNLS.2012.2210732 – ident: ref7 doi: 10.1109/TCYB.2015.2413212 – ident: ref26 doi: 10.1109/TCT.1971.1083337 – volume: 29 start-page: 3000 year: 2018 ident: ref11 article-title: Multistability of recurrent neural networks with nonmonotonic activation functions and unbounded time-varying delays publication-title: IEEE Trans Neural Netw Learn Syst contributor: fullname: liu – volume: 9 year: 1994 ident: ref36 publication-title: Nonnegative Matrices in Dynamic Systems doi: 10.1137/1.9781611971262 contributor: fullname: berman – ident: ref4 doi: 10.1016/j.cnsns.2014.02.016 – ident: ref9 doi: 10.1109/TSMC.2015.2461191 – ident: ref33 doi: 10.1016/j.physd.2008.01.012 |
SSID | ssj0000605649 |
Score | 2.5007653 |
Snippet | This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both... This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen–Grossberg neural networks (MCGNNs) with both... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1914 |
SubjectTerms | Activation Almost periodic solution Artificial neural networks Delays Learning systems memristive Cohen–Grossberg neural networks (MCGNNs) Memristors mixed delays multistability Neural networks Neurons Stability analysis |
Title | Multistability of Almost Periodic Solution for Memristive Cohen-Grossberg Neural Networks With Mixed Delays |
URI | https://ieeexplore.ieee.org/document/8788450 https://www.ncbi.nlm.nih.gov/pubmed/31395559 https://www.proquest.com/docview/2409379380 https://search.proquest.com/docview/2270016052 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTlxKKX0s0MpIvbVZHNtJ7CNqSxFiV5UAdW-RXxErYIO6WQT8esbOQ6Jqpd4i2bJjz9j-ZjzfGOCTFs7QjOrEyFwnQlCeSOEC9QnPQsq0MlXgDk-m-fGFOJllszX4MnBhvPcx-MyPw2e8y3e1XQVX2YFEe00EA_1FoVTL1Rr8KRRxeR7RLktzljBezHqODFUH59Pp6VkI5FJjpkJK8_zZORQfVvk3xoxnzdEmTPq_bENMrsarxozt4x8JHP93GK_gZQc6yWGrJVuw5hevYbN_0IF063sbriIdF_FijJh9IHVFDq9v6mVDfqKi1m5uSe9GIwh2ycTfxD3izpNI80h-hLGGiDESkn5gl9M2ynxJfs2bSzKZ33tHvvlr_bB8AxdH38-_HifdawyJ5VnaJJIZmlYaAZZ1ueFOIxCj0urUZEoowXVayMrIlFs0uQ3COuOyikrjEHFRZyR_C-uLeuHfAylYxqz1shLaC2epobm2rpCGKStxgxjB51425W2bdKOMxgpVZZRkGSRZdpIcwXaY46FmN70j2OvFWXbrclkifkEdVFxi8f5QjCsqXJPoha9XWCfexaM6sRG8a9VgaJsjYM7QCNv5e5-7sMGCPR69NHuw3vxe-Q8IWhrzMWrrE0v46Og |
link.rule.ids | 315,783,787,799,27937,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXSimPhQJG4gbZOo6T2MeKUhbYREhsxd4ivyJWbTeIzVYtv56x85BAIHGLZMuOPWP7m_F8Y4BXiltNU6oiLTIVcU6TSHDrqU94FlKmpK49d7gos9kZ_7hMlzvwZuTCOOdC8Jmb-s9wl28bs_WusiOB9hr3BvotxNUi79hao0eFIjLPAt5lccYiluTLgSVD5dGiLOdffCiXnDLpk5pnv51E4WmVf6PMcNqc7kEx_GcXZHI-3bZ6an7-kcLxfwdyD-72sJMcd3qyDztufR_2hicdSL_CD-A8EHIRMYaY2RvS1OT44rLZtOQzqmpjV4YMjjSCcJcU7jLsEleOBKJH9N6P1ceMEZ_2A7ssuzjzDfm6ar-RYnXtLDlxF-pm8wDOTt8t3s6i_j2GyCRp3EaCaRrXCiGWsZlOrEIoRoVRsU4llzxRcS5qLeLEoNGtEdhpm9ZUaIuYi1otkoewu27W7jGQnKXMGCdqrhy3hmqaKWNzoZk0AreICbweZFN979JuVMFcobIKkqy8JKtekhM48HM81uyndwKHgzirfmVuKkQwqIUyEVj8cizGNeUvStTaNVusE27jUZ3YBB51ajC2nSBkTtEMe_L3Pl_A7dmimFfzD-Wnp3CHees8-GwOYbf9sXXPEMK0-nnQ3F-fbuw0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistability+of+Almost+Periodic+Solution+for+Memristive+Cohen-Grossberg+Neural+Networks+With+Mixed+Delays&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Qin%2C+Sitian&rft.au=Ma%2C+Qiang&rft.au=Feng%2C+Jiqiang&rft.au=Xu%2C+Chen&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=6&rft.spage=1914&rft.epage=1926&rft_id=info:doi/10.1109%2FTNNLS.2019.2927506&rft.externalDocID=8788450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |