Multistability of Almost Periodic Solution for Memristive Cohen-Grossberg Neural Networks With Mixed Delays

This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 6; pp. 1914 - 1926
Main Authors Qin, Sitian, Ma, Qiang, Feng, Jiqiang, Xu, Chen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is shown that the MCGNNs with <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-neuron have <inline-formula> <tex-math notation="LaTeX">(K+1)^{n} </tex-math></inline-formula> locally exponentially stable almost periodic solutions, where nature number <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> depends on the geometrical structure of the considered activation function. Compared with the previous related works, the number of almost periodic state solutions of the MCGNNs is extensively increased. The obtained conclusions in this paper are also capable of studying the multistability of equilibrium points or periodic solutions of the MCGNNs. Moreover, the enlarged attraction basins of attractors are estimated based on original partition. Some comparisons and convincing numerical examples are provided to substantiate the superiority and efficiency of obtained results.
AbstractList This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is shown that the MCGNNs with n-neuron have (K+1)ⁿ locally exponentially stable almost periodic solutions, where nature number K depends on the geometrical structure of the considered activation function. Compared with the previous related works, the number of almost periodic state solutions of the MCGNNs is extensively increased. The obtained conclusions in this paper are also capable of studying the multistability of equilibrium points or periodic solutions of the MCGNNs. Moreover, the enlarged attraction basins of attractors are estimated based on original partition. Some comparisons and convincing numerical examples are provided to substantiate the superiority and efficiency of obtained results.
This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen–Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is shown that the MCGNNs with [Formula Omitted]-neuron have [Formula Omitted] locally exponentially stable almost periodic solutions, where nature number [Formula Omitted] depends on the geometrical structure of the considered activation function. Compared with the previous related works, the number of almost periodic state solutions of the MCGNNs is extensively increased. The obtained conclusions in this paper are also capable of studying the multistability of equilibrium points or periodic solutions of the MCGNNs. Moreover, the enlarged attraction basins of attractors are estimated based on original partition. Some comparisons and convincing numerical examples are provided to substantiate the superiority and efficiency of obtained results.
This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both distributed delay and discrete delay. The activation function of the considered MCGNNs is generalized to be nonmonotonic and nonpiecewise linear. It is shown that the MCGNNs with <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-neuron have <inline-formula> <tex-math notation="LaTeX">(K+1)^{n} </tex-math></inline-formula> locally exponentially stable almost periodic solutions, where nature number <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> depends on the geometrical structure of the considered activation function. Compared with the previous related works, the number of almost periodic state solutions of the MCGNNs is extensively increased. The obtained conclusions in this paper are also capable of studying the multistability of equilibrium points or periodic solutions of the MCGNNs. Moreover, the enlarged attraction basins of attractors are estimated based on original partition. Some comparisons and convincing numerical examples are provided to substantiate the superiority and efficiency of obtained results.
Author Feng, Jiqiang
Ma, Qiang
Qin, Sitian
Xu, Chen
Author_xml – sequence: 1
  givenname: Sitian
  orcidid: 0000-0002-4543-4940
  surname: Qin
  fullname: Qin, Sitian
  email: qinsitian@hitwh.edu.cn
  organization: Department of Mathematics, Harbin Institute of Technology, Weihai, China
– sequence: 2
  givenname: Qiang
  orcidid: 0000-0003-0791-1731
  surname: Ma
  fullname: Ma, Qiang
  email: maqianghitwh@163.com
  organization: Department of Mathematics, Harbin Institute of Technology, Weihai, China
– sequence: 3
  givenname: Jiqiang
  surname: Feng
  fullname: Feng, Jiqiang
  email: fengjq@szu.edu.cn
  organization: Shenzhen Key Laboratory of Advanced Machine Learning and Application, College of Mathematics and Statistics, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Chen
  orcidid: 0000-0002-7607-7763
  surname: Xu
  fullname: Xu, Chen
  email: xuchen_szu@szu.edu.cn
  organization: Shenzhen Key Laboratory of Advanced Machine Learning and Application, College of Mathematics and Statistics, Shenzhen University, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31395559$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1v1DAQhi1UREvpHwAJWeLCJYs_E_tYLVCQdhekFsHNspMJdZvExXaA_fd42WUPzOUdaZ4Zzcz7FJ1MYQKEnlOyoJToNzebzep6wQjVC6ZZI0n9CJ0xWrOKcaVOjnnz7RRdpHRHStRE1kI_Qaecci2l1Gfofj0P2adsnR983uLQ48thDCnjzxB96HyLr8MwZx8m3IeI1zDGgvufgJfhFqbqKoaUHMTveANztEOR_CvE-4S_-nyL1_43dPgtDHabnqHHvR0SXBz0HH15_-5m-aFafbr6uLxcVS2XNFeKOUJ7K6lou9rxzgrGiWotdVILLbiljeqdorwlonaSMdfJnijX1UKQzil-jl7v5z7E8GOGlM3oUwvDYCcIczKMNYTQ8gxW0Ff_oXdhjlPZzjBBNG80V6RQbE-1u2Mj9OYh-tHGraHE7Nwwf90wOzfMwY3S9PIwenYjdMeWf78vwIs94AHgWFaNUkIS_gfYMJAB
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_cam_2022_114764
crossref_primary_10_1109_TNNLS_2021_3082560
crossref_primary_10_1016_j_neucom_2020_03_005
crossref_primary_10_1002_mma_9772
crossref_primary_10_1016_j_neunet_2021_08_029
crossref_primary_10_1016_j_cnsns_2022_107075
crossref_primary_10_1109_TSMC_2024_3371164
crossref_primary_10_1007_s11431_022_2311_1
crossref_primary_10_1007_s00521_024_09736_5
crossref_primary_10_1109_TNNLS_2020_3041364
crossref_primary_10_1109_TNNLS_2021_3105519
crossref_primary_10_1109_TSMC_2023_3271396
crossref_primary_10_1016_j_neunet_2021_07_029
crossref_primary_10_1016_j_neunet_2024_106498
crossref_primary_10_1016_j_neucom_2022_03_059
crossref_primary_10_1016_j_amc_2022_127461
crossref_primary_10_1109_TNNLS_2022_3233719
crossref_primary_10_1016_j_neunet_2021_04_035
crossref_primary_10_3390_math10091440
crossref_primary_10_1007_s11063_022_10911_9
crossref_primary_10_1016_j_neucom_2023_126499
crossref_primary_10_1016_j_neunet_2022_12_013
crossref_primary_10_1016_j_neucom_2024_127382
crossref_primary_10_1016_j_neunet_2024_106501
crossref_primary_10_3390_mi13050726
Cites_doi 10.1016/j.ins.2012.07.040
10.1016/j.neucom.2018.03.006
10.1007/s00521-012-0954-x
10.1016/j.physleta.2005.05.017
10.1016/j.neunet.2015.01.007
10.1016/j.neucom.2016.07.065
10.1016/j.neunet.2009.11.010
10.1142/S0218001417500227
10.1016/j.neunet.2014.12.002
10.1016/j.neunet.2016.03.010
10.1038/nature06932
10.1162/neco.2008.03-07-492
10.1109/TNN.2009.2027121
10.1109/TNNLS.2016.2561298
10.1137/050632440
10.1162/NECO_a_00895
10.1016/S0893-6080(99)00074-X
10.1016/j.neucom.2015.06.080
10.1109/TNNLS.2018.2801297
10.1162/neco.2007.19.12.3392
10.1016/j.neunet.2013.10.001
10.1109/3477.704294
10.1016/j.neunet.2017.12.006
10.1109/NANO.2017.8117459
10.1016/j.neucom.2013.07.010
10.1016/S0893-6080(05)80076-0
10.1007/s11071-016-2667-7
10.1109/TNNLS.2012.2210732
10.1109/TCYB.2015.2413212
10.1109/TCT.1971.1083337
10.1137/1.9781611971262
10.1016/j.cnsns.2014.02.016
10.1109/TSMC.2015.2461191
10.1016/j.physd.2008.01.012
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2927506
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1926
ExternalDocumentID 10_1109_TNNLS_2019_2927506
31395559
8788450
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 61773136; 11871178; 61872429
  funderid: 10.13039/501100001809
– fundername: Science and Technology Program of Shenzhen, China
  grantid: JCYJ20170818091621856
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RIG
RNS
NPM
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-82b01fa514cd6b3da42308ca1b594943a178fb813c046b522bd5f08bd6440db83
IEDL.DBID RIE
ISSN 2162-237X
IngestDate Wed Jul 24 14:17:46 EDT 2024
Thu Oct 10 17:35:18 EDT 2024
Fri Aug 23 00:57:12 EDT 2024
Sat Sep 28 08:39:22 EDT 2024
Wed Jun 26 19:28:59 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-82b01fa514cd6b3da42308ca1b594943a178fb813c046b522bd5f08bd6440db83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7607-7763
0000-0003-0791-1731
0000-0002-4543-4940
PMID 31395559
PQID 2409379380
PQPubID 85436
PageCount 13
ParticipantIDs proquest_miscellaneous_2270016052
crossref_primary_10_1109_TNNLS_2019_2927506
pubmed_primary_31395559
proquest_journals_2409379380
ieee_primary_8788450
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref31
ref30
ref33
ref32
ref10
liu (ref11) 2018; 29
ref2
ref1
ref17
ref16
ref19
ref18
berman (ref36) 1994; 9
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
kohonen (ref14) 2012; 8
References_xml – ident: ref2
  doi: 10.1016/j.ins.2012.07.040
– ident: ref32
  doi: 10.1016/j.neucom.2018.03.006
– ident: ref34
  doi: 10.1007/s00521-012-0954-x
– volume: 8
  year: 2012
  ident: ref14
  publication-title: Self-Organization and Associative Memory
  contributor:
    fullname: kohonen
– ident: ref18
  doi: 10.1016/j.physleta.2005.05.017
– ident: ref22
  doi: 10.1016/j.neunet.2015.01.007
– ident: ref16
  doi: 10.1016/j.neucom.2016.07.065
– ident: ref17
  doi: 10.1016/j.neunet.2009.11.010
– ident: ref29
  doi: 10.1142/S0218001417500227
– ident: ref28
  doi: 10.1016/j.neunet.2014.12.002
– ident: ref8
  doi: 10.1016/j.neunet.2016.03.010
– ident: ref27
  doi: 10.1038/nature06932
– ident: ref20
  doi: 10.1162/neco.2008.03-07-492
– ident: ref25
  doi: 10.1109/TNN.2009.2027121
– ident: ref30
  doi: 10.1109/TNNLS.2016.2561298
– ident: ref19
  doi: 10.1137/050632440
– ident: ref6
  doi: 10.1162/NECO_a_00895
– ident: ref23
  doi: 10.1016/S0893-6080(99)00074-X
– ident: ref5
  doi: 10.1016/j.neucom.2015.06.080
– ident: ref12
  doi: 10.1109/TNNLS.2018.2801297
– ident: ref1
  doi: 10.1162/neco.2007.19.12.3392
– ident: ref31
  doi: 10.1016/j.neunet.2013.10.001
– ident: ref13
  doi: 10.1109/3477.704294
– ident: ref10
  doi: 10.1016/j.neunet.2017.12.006
– ident: ref15
  doi: 10.1109/NANO.2017.8117459
– ident: ref3
  doi: 10.1016/j.neucom.2013.07.010
– ident: ref24
  doi: 10.1016/S0893-6080(05)80076-0
– ident: ref35
  doi: 10.1007/s11071-016-2667-7
– ident: ref21
  doi: 10.1109/TNNLS.2012.2210732
– ident: ref7
  doi: 10.1109/TCYB.2015.2413212
– ident: ref26
  doi: 10.1109/TCT.1971.1083337
– volume: 29
  start-page: 3000
  year: 2018
  ident: ref11
  article-title: Multistability of recurrent neural networks with nonmonotonic activation functions and unbounded time-varying delays
  publication-title: IEEE Trans Neural Netw Learn Syst
  contributor:
    fullname: liu
– volume: 9
  year: 1994
  ident: ref36
  publication-title: Nonnegative Matrices in Dynamic Systems
  doi: 10.1137/1.9781611971262
  contributor:
    fullname: berman
– ident: ref4
  doi: 10.1016/j.cnsns.2014.02.016
– ident: ref9
  doi: 10.1109/TSMC.2015.2461191
– ident: ref33
  doi: 10.1016/j.physd.2008.01.012
SSID ssj0000605649
Score 2.5007653
Snippet This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen-Grossberg neural networks (MCGNNs) with both...
This paper presents the multistability analysis of almost periodic state solutions for memristive Cohen–Grossberg neural networks (MCGNNs) with both...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1914
SubjectTerms Activation
Almost periodic solution
Artificial neural networks
Delays
Learning systems
memristive Cohen–Grossberg neural networks (MCGNNs)
Memristors
mixed delays
multistability
Neural networks
Neurons
Stability analysis
Title Multistability of Almost Periodic Solution for Memristive Cohen-Grossberg Neural Networks With Mixed Delays
URI https://ieeexplore.ieee.org/document/8788450
https://www.ncbi.nlm.nih.gov/pubmed/31395559
https://www.proquest.com/docview/2409379380
https://search.proquest.com/docview/2270016052
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTlxKKX0s0MpIvbVZHNtJ7CNqSxFiV5UAdW-RXxErYIO6WQT8esbOQ6Jqpd4i2bJjz9j-ZjzfGOCTFs7QjOrEyFwnQlCeSOEC9QnPQsq0MlXgDk-m-fGFOJllszX4MnBhvPcx-MyPw2e8y3e1XQVX2YFEe00EA_1FoVTL1Rr8KRRxeR7RLktzljBezHqODFUH59Pp6VkI5FJjpkJK8_zZORQfVvk3xoxnzdEmTPq_bENMrsarxozt4x8JHP93GK_gZQc6yWGrJVuw5hevYbN_0IF063sbriIdF_FijJh9IHVFDq9v6mVDfqKi1m5uSe9GIwh2ycTfxD3izpNI80h-hLGGiDESkn5gl9M2ynxJfs2bSzKZ33tHvvlr_bB8AxdH38-_HifdawyJ5VnaJJIZmlYaAZZ1ueFOIxCj0urUZEoowXVayMrIlFs0uQ3COuOyikrjEHFRZyR_C-uLeuHfAylYxqz1shLaC2epobm2rpCGKStxgxjB51425W2bdKOMxgpVZZRkGSRZdpIcwXaY46FmN70j2OvFWXbrclkifkEdVFxi8f5QjCsqXJPoha9XWCfexaM6sRG8a9VgaJsjYM7QCNv5e5-7sMGCPR69NHuw3vxe-Q8IWhrzMWrrE0v46Og
link.rule.ids 315,783,787,799,27937,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAXSimPhQJG4gbZOo6T2MeKUhbYREhsxd4ivyJWbTeIzVYtv56x85BAIHGLZMuOPWP7m_F8Y4BXiltNU6oiLTIVcU6TSHDrqU94FlKmpK49d7gos9kZ_7hMlzvwZuTCOOdC8Jmb-s9wl28bs_WusiOB9hr3BvotxNUi79hao0eFIjLPAt5lccYiluTLgSVD5dGiLOdffCiXnDLpk5pnv51E4WmVf6PMcNqc7kEx_GcXZHI-3bZ6an7-kcLxfwdyD-72sJMcd3qyDztufR_2hicdSL_CD-A8EHIRMYaY2RvS1OT44rLZtOQzqmpjV4YMjjSCcJcU7jLsEleOBKJH9N6P1ceMEZ_2A7ssuzjzDfm6ar-RYnXtLDlxF-pm8wDOTt8t3s6i_j2GyCRp3EaCaRrXCiGWsZlOrEIoRoVRsU4llzxRcS5qLeLEoNGtEdhpm9ZUaIuYi1otkoewu27W7jGQnKXMGCdqrhy3hmqaKWNzoZk0AreICbweZFN979JuVMFcobIKkqy8JKtekhM48HM81uyndwKHgzirfmVuKkQwqIUyEVj8cizGNeUvStTaNVusE27jUZ3YBB51ajC2nSBkTtEMe_L3Pl_A7dmimFfzD-Wnp3CHees8-GwOYbf9sXXPEMK0-nnQ3F-fbuw0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistability+of+Almost+Periodic+Solution+for+Memristive+Cohen-Grossberg+Neural+Networks+With+Mixed+Delays&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Qin%2C+Sitian&rft.au=Ma%2C+Qiang&rft.au=Feng%2C+Jiqiang&rft.au=Xu%2C+Chen&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=6&rft.spage=1914&rft.epage=1926&rft_id=info:doi/10.1109%2FTNNLS.2019.2927506&rft.externalDocID=8788450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon