Optimal design of curing process for manufacturing a high pressure hydrogen vessel (type 4)
A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous resin. During a curing process, strength degradation occurs due to residual stress, so it is recommended to cure for a long time, but a fast...
Saved in:
Published in | Journal of mechanical science and technology Vol. 37; no. 7; pp. 3495 - 3505 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society of Mechanical Engineers
01.07.2023
Springer Nature B.V 대한기계학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-494X 1976-3824 |
DOI | 10.1007/s12206-023-0614-3 |
Cover
Abstract | A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous resin. During a curing process, strength degradation occurs due to residual stress, so it is recommended to cure for a long time, but a fast curing process has been required for high productivity. In this study, to solve these problems, the optimal design of curing process was performed for a hydrogen vehicle pressure vessel (type 4) made of carbon fiber (T700/epoxy) through FEA (finite element analysis). Autocatalytic kinetic model equation was derived through dynamic and isothermal DSC (differential scanning calorimeter) experiments by varying curing temperature. Thermal-static structural coupled analysis of composite curing process was conducted using ACCS (ANSYS composite cure simulation) program. The input parameters affecting curing process were assigned; curing temperature (T), heating rate to reach target curing temperature (H), dwell time to maintain the target temperature (D) and cooling time (C). Output parameters affecting delamination and process time were assigned;
σ
z
,
τ
xz
and total time (TT). 71 sampling points were generated, and design of experiments were conducted. Goodness of fit of response surface was generated to check its reliability. The optimum model, which satisfies the objective function, was suggested using MOGA algorithm. The thermal-static structural coupled analysis of final model was performed to verify the optimal design. |
---|---|
AbstractList | A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous resin. During a curing process, strength degradation occurs due to residual stress, so it is recommended to cure for a long time, but a fast curing process has been required for high productivity. In this study, to solve these problems, the optimal design of curing process was performed for a hydrogen vehicle pressure vessel (type 4) made of carbon fiber (T700/epoxy) through FEA (finite element analysis). Autocatalytic kinetic model equation was derived through dynamic and isothermal DSC (differential scanning calorimeter) experiments by varying curing temperature. Thermal-static structural coupled analysis of composite curing process was conducted using ACCS (ANSYS composite cure simulation) program. The input parameters affecting curing process were assigned; curing temperature (T), heating rate to reach target curing temperature (H), dwell time to maintain the target temperature (D) and cooling time (C). Output parameters affecting delamination and process time were assigned;
σ
z
,
τ
xz
and total time (TT). 71 sampling points were generated, and design of experiments were conducted. Goodness of fit of response surface was generated to check its reliability. The optimum model, which satisfies the objective function, was suggested using MOGA algorithm. The thermal-static structural coupled analysis of final model was performed to verify the optimal design. A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous resin. During a curing process, strength degradation occurs due to residual stress, so it is recommended to cure for a long time, but a fast curing process has been required for high productivity. In this study, to solve these problems, the optimal design of curing process was performed for a hydrogen vehicle pressure vessel (type 4) made of carbon fiber (T700/epoxy) through FEA (finite element analysis). Autocatalytic kinetic model equation was derived through dynamic and isothermal DSC (differential scanning calorimeter) experiments by varying curing temperature. Thermal-static structural coupled analysis of composite curing process was conducted using ACCS (ANSYS composite cure simulation) program. The input parameters affecting curing process were assigned; curing temperature (T), heating rate to reach target curing temperature (H), dwell time to maintain the target temperature (D) and cooling time (C). Output parameters affecting delamination and process time were assigned; σz, τxz and total time (TT). 71 sampling points were generated, and design of experiments were conducted. Goodness of fit of response surface was generated to check its reliability. The optimum model, which satisfies the objective function, was suggested using MOGA algorithm. The thermal-static structural coupled analysis of final model was performed to verify the optimal design. A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous resin. During a curing process, strength degradation occurs due to residual stress, so it is recommended to cure for a long time, but a fast curing process has been required for high productivity. In this study, to solve these problems, the optimal design of curing process was performed for a hydrogen vehicle pressure vessel (type 4) made of carbon fiber (T700/epoxy) through FEA (finite element analysis). Autocatalytic kinetic model equation was derived through dynamic and isothermal DSC (differential scanning calorimeter) experiments by varying curing temperature. Thermal-static structural coupled analysis of composite curing process was conducted using ACCS (ANSYS composite cure simulation) program. The input parameters affecting curing process were assigned; curing temperature (T), heating rate to reach target curing temperature (H), dwell time to maintain the target temperature (D) and cooling time (C). Output parameters affecting delamination and process time were assigned; σ z , τ xz and total time (TT). 71 sampling points were generated, and design of experiments were conducted. Goodness of fit of response surface was generated to check its reliability. The optimum model, which satisfies the objective function, was suggested using MOGA algorithm. The thermal-static structural coupled analysis of final model was performed to verify the optimal design. KCI Citation Count: 0 |
Author | Qi, Haonan Kim, Chul Kang, Yeontae Park, Gunyoung Kwak, Hyoseo |
Author_xml | – sequence: 1 givenname: Yeontae surname: Kang fullname: Kang, Yeontae organization: School of Mechanical Engineering, Pusan National University – sequence: 2 givenname: Gunyoung surname: Park fullname: Park, Gunyoung organization: Research Institute of Mechanical Technology, Pusan National University – sequence: 3 givenname: Hyoseo surname: Kwak fullname: Kwak, Hyoseo organization: Mechanical Engineering Major, Dong-Eui University – sequence: 4 givenname: Haonan surname: Qi fullname: Qi, Haonan organization: School of Mechanical Engineering, Pusan National University – sequence: 5 givenname: Chul surname: Kim fullname: Kim, Chul email: chulki@pusan.ac.kr organization: School of Mechanical Engineering, Pusan National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002979191$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kMtKBDEQRYMo-PwAdwE3KrTmNUn3UsQXCIIoCC5CTSbpiY5Jm3QL8_dmbEEQdFVF1b3FrbON1kMMFqF9Sk4oIeo0U8aIrAjjFZFUVHwNbdFGyYrXTKyXXvG6Eo142kTbOb8QIpmgdAs933W9f4MFntns24Cjw2ZIPrS4S9HYnLGLCb9BGByYftwAnvt2XgRlPSSL58tZiq0N-KMM7AIf9svOYnG0izYcLLLd-6476PHy4uH8urq9u7o5P7utDJ_QvlKWCmOAAMwaXpPalNzCSW6nhgg341xNpxKgaRTn4AAmqpZKUqDSlK8mDd9Bx-PdkJx-NV5H8F-1jfo16bP7hxtNCVNsQmgRH4zi8t_7YHOvX-KQQsmnWc0VL8xqUVR0VJkUc07W6S4VTGlZDukVcD0C1wW4XgHXvHjUL4_xPfQ-hj6BX_zrZKMzdyvANv1k-tv0CQPxlZU |
CitedBy_id | crossref_primary_10_1007_s12206_024_0820_7 crossref_primary_10_1016_j_est_2024_113459 |
Cites_doi | 10.1016/j.compstruct.2022.115410 10.1016/j.ijhydene.2019.02.208 10.1115/1.2777169 10.1007/978-94-017-2233-9_19 10.1016/j.combustflame.2018.09.013 10.3390/app9112296 10.3390/polym15040982 10.1016/j.compstruct.2004.02.003 10.1016/j.ijhydene.2016.03.178 10.1177/09673911211028413 10.1177/0021998302036020870 10.1007/s12239-021-0064-9 10.1007/s10443-018-9724-y 10.1016/j.applthermaleng.2021.116840 10.1007/s12541-016-0195-5 10.1016/j.compstruct.2020.112912 10.1016/j.proeng.2011.08.745 10.1016/j.apples.2021.100061 10.1177/002199839202601605 10.1002/(SICI)1097-0126(199610)41:2<183::AID-PI621>3.0.CO;2-F 10.1016/j.engfracmech.2020.106937 10.1007/s12206-021-0723-9 10.1016/j.compositesa.2010.05.015 10.1177/002199838702100304 10.3390/polym14061100 |
ContentType | Journal Article |
Copyright | The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023 The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023. |
Copyright_xml | – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023 – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023. |
DBID | AAYXX CITATION 7TB 8FD FR3 ACYCR |
DOI | 10.1007/s12206-023-0614-3 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Korean Citation Index |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3824 |
EndPage | 3505 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10272501 10_1007_s12206_023_0614_3 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .UV .VR 06D 0R~ 0VY 1N0 2.D 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 6NX 8FE 8FG 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LLZTM M7S MA- MK~ ML~ MZR NDZJH NF0 NPVJJ NQJWS O9- P9P PF0 PT4 PTHSS Q2X QOS R89 R9I RHV ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TDB TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8R Z8T Z8W ZMTXR ZZE ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7TB 8FD ABRTQ FR3 AABYN AAFGU AAYFA ABFGW ABKAG ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADMVV ADOXG AEEQQ AEFTE AEKVL AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC UNUBA |
ID | FETCH-LOGICAL-c351t-7e14cca0aad93808c1974f63ebc04fd337bb6aa99733afaa5786761a16c173593 |
IEDL.DBID | U2A |
ISSN | 1738-494X |
IngestDate | Thu Feb 22 06:32:29 EST 2024 Fri Jul 25 12:16:32 EDT 2025 Tue Jul 01 04:23:38 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 Fri Feb 21 02:42:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Type 4 vessel Curing process DSC experiment Response surface method Kinetic model equation Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-7e14cca0aad93808c1974f63ebc04fd337bb6aa99733afaa5786761a16c173593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2837397684 |
PQPubID | 326249 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10272501 proquest_journals_2837397684 crossref_primary_10_1007_s12206_023_0614_3 crossref_citationtrail_10_1007_s12206_023_0614_3 springer_journals_10_1007_s12206_023_0614_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Journal of mechanical science and technology |
PublicationTitleAbbrev | J Mech Sci Technol |
PublicationYear | 2023 |
Publisher | Korean Society of Mechanical Engineers Springer Nature B.V 대한기계학회 |
Publisher_xml | – name: Korean Society of Mechanical Engineers – name: Springer Nature B.V – name: 대한기계학회 |
References | Li, Bai, Zhang, Song, Jiang, Grouset, Zhang (CR1) 2019; 44 Barthélémy, Weber, Barbier (CR3) 2017; 42 Pipes, Pagano (CR26) 1994 Ebrahimnezhad-Khaljiri, Eslami-Farsani (CR7) 2020; 230 Izato, Miyake (CR19) 2018; 198 Zu, Koussios, Beukers (CR11) 2010; 41 Kim, Kang, Hong, Kim (CR16) 2005; 67 Park, Kim, Kang, Hong, Kim (CR27) 2002; 36 Muliana (CR6) 2021; 7 Dusi, Lee, Ciriscioli, Springer (CR22) 1987; 21 Manoharan, Hosseini, Butler, Alzhahrani, Fou Senior, Ashuri, Krohn (CR2) 2019; 9 Delbariani-Nejad, Farrokhabadi, Fotouhi (CR23) 2022; 288 Zhou, Li, Cheng, Zhang (CR10) 2019; 26 Bilyeu, Brostow, Menard (CR17) 2001; 23 Karkanas, Panagiotis, Partridge, Attwood (CR18) 1996; 41 CR28 Park, Jang, Kim (CR13) 2021; 35 Liang, Liu, Qin, Zhao, Li, Emmanuel, Feng (CR9) 2023; 15 Nair, Kumar (CR15) 2016; 3 Cho, Kim, Lee, Lee, Lee, Lyu (CR12) 2016; 17 Musthak, Madar Valli, Narayana Rao (CR14) 2016; 6 Yusoff, Ngadiman, Zain (CR30) 2011; 15 Baghad, Mabrouk, Vaudreuil, Nouneh (CR4) 2021; 29 Mittelstedt, Becker (CR25) 2007; 60 White, Hahn (CR20) 1992; 26 Lee, Lacy, Pittman (CR21) 2021; 255 Man, Karin, Lin, Larpsuriyakul, Ohtake (CR8) 2021; 22 Daniel, Ishai (CR24) 2006 Mieczkowski, Furmański, Łapka (CR29) 2021; 191 Cruz-Cruz, Ramírez-Herrera, Martínez-Romero, Castillo-Márquez, Jiménez-Cedeño, Olvera-Trejo, Elías-Zúñiga (CR5) 2022; 14 A Baghad (614_CR4) 2021; 29 I Cruz-Cruz (614_CR5) 2022; 14 J Lee (614_CR21) 2021; 255 Y-I Izato (614_CR19) 2018; 198 L Zu (614_CR11) 2010; 41 B Bilyeu (614_CR17) 2001; 23 Karkanas (614_CR18) 1996; 41 M Li (614_CR1) 2019; 44 M Musthak (614_CR14) 2016; 6 T C Man (614_CR8) 2021; 22 Y Manoharan (614_CR2) 2019; 9 H Ebrahimnezhad-Khaljiri (614_CR7) 2020; 230 G Park (614_CR13) 2021; 35 J Zhou (614_CR10) 2019; 26 H Barthélémy (614_CR3) 2017; 42 A Delbariani-Nejad (614_CR23) 2022; 288 M R Dusi (614_CR22) 1987; 21 K-S Park (614_CR27) 2002; 36 J Liang (614_CR9) 2023; 15 R B Pipes (614_CR26) 1994 A H Muliana (614_CR6) 2021; 7 M Mieczkowski (614_CR29) 2021; 191 Y Yusoff (614_CR30) 2011; 15 R P Nair (614_CR15) 2016; 3 I M Daniel (614_CR24) 2006 614_CR28 C-U Kim (614_CR16) 2005; 67 C Mittelstedt (614_CR25) 2007; 60 S-M Cho (614_CR12) 2016; 17 S R White (614_CR20) 1992; 26 |
References_xml | – volume: 288 start-page: 115410 year: 2022 ident: CR23 article-title: Finite element reliability analysis of edge delamination onset due to interlaminar stresses in composite laminates publication-title: Composite Structures doi: 10.1016/j.compstruct.2022.115410 – volume: 44 start-page: 10677 issue: 21 year: 2019 end-page: 10693 ident: CR1 article-title: Review on the research of hydrogen storage system fast refueling in fuel cell vehicle publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.208 – volume: 60 start-page: 217 issue: 5 year: 2007 end-page: 245 ident: CR25 article-title: Free-edge effects in composite laminates publication-title: Applied Mechanics Reviews doi: 10.1115/1.2777169 – start-page: 234 year: 1994 end-page: 245 ident: CR26 article-title: Interlaminar stresses in composite laminates under uniform axial extension publication-title: Mechanics of Composite Materials doi: 10.1007/978-94-017-2233-9_19 – volume: 198 start-page: 222 year: 2018 end-page: 229 ident: CR19 article-title: Detailed kinetic model for ammonium dinitramide decomposition publication-title: Combustion and Flame doi: 10.1016/j.combustflame.2018.09.013 – volume: 9 start-page: 2296 issue: 11 year: 2019 ident: CR2 article-title: Hydrogen fuel cell vehicles; current status and future prospect publication-title: Applied Sciences doi: 10.3390/app9112296 – volume: 15 start-page: 982 issue: 4 year: 2023 ident: CR9 article-title: Experimental study of curing temperature effect on mechanical performance of carbon fiber composites with application to filament winding pressure vessel design publication-title: Polymers doi: 10.3390/polym15040982 – volume: 67 start-page: 443 issue: 4 year: 2005 end-page: 452 ident: CR16 article-title: Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm publication-title: Composite Structures doi: 10.1016/j.compstruct.2004.02.003 – volume: 42 start-page: 7254 issue: 11 year: 2017 end-page: 7262 ident: CR3 article-title: Hydrogen storage: recent improvements and industrial perspectives publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.178 – volume: 29 start-page: S903 issue: 9 year: 2021 end-page: S913 ident: CR4 article-title: Cure kinetics and autoclave-pressure dependence on physical and mechanical properties of woven carbon/epoxy 8552S/AS4 composite laminates publication-title: Polymers and Polymer Composites doi: 10.1177/09673911211028413 – volume: 36 start-page: 2373 issue: 20 year: 2002 end-page: 2388 ident: CR27 article-title: Structural analysis and strain monitoring of the filament wound motor case publication-title: Journal of Composite Materials doi: 10.1177/0021998302036020870 – volume: 22 start-page: 687 issue: 3 year: 2021 end-page: 700 ident: CR8 article-title: A study on curing temperature and fracture mechanism of carbon and glass fiber reinforced polymers using an electron microscopy publication-title: International Journal of Automotive Technology doi: 10.1007/s12239-021-0064-9 – volume: 26 start-page: 533 year: 2019 end-page: 552 ident: CR10 article-title: Indirect microwave curing process design for manufacturing thick multidirectional carbon fiber reinforced thermoset composite materials publication-title: Applied Composite Materials doi: 10.1007/s10443-018-9724-y – start-page: 1994 year: 2006 ident: CR24 publication-title: Engineering Mechanics of Composite Materials – volume: 191 start-page: 116840 year: 2021 ident: CR29 article-title: Optimization of a microchannel heat sink using entropy minimization and genetic aggregation algorithm publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2021.116840 – volume: 6 start-page: 79 issue: 3 year: 2016 end-page: 87 ident: CR14 article-title: Prediction of transverse directional strains and stresses of filament wound composite pressure vessel by using higher order shear deformation theories publication-title: International Journal of Composite Materials – volume: 17 start-page: 1685 issue: 12 year: 2016 end-page: 1691 ident: CR12 article-title: A study on cycling life and failure mode of type 3 cylinder treated with autofrettage pressure publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-016-0195-5 – volume: 255 start-page: 112912 year: 2021 ident: CR21 article-title: Coupled thermal electrical and mechanical lightning damage predictions to carbon/epoxy composites during arc channel shape expansion publication-title: Composite Structures doi: 10.1016/j.compstruct.2020.112912 – volume: 15 start-page: 3978 year: 2011 end-page: 3983 ident: CR30 article-title: Overview of NSGA-II for optimizing machining process parameters publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.08.745 – volume: 7 start-page: 100061 year: 2021 ident: CR6 article-title: Spatial and temporal changes in physical properties of epoxy during curing and their effects on the residual stresses and properties of cured epoxy and composites publication-title: Applications in Engineering Science doi: 10.1016/j.apples.2021.100061 – volume: 26 start-page: 2423 issue: 16 year: 1992 end-page: 2453 ident: CR20 article-title: Process modeling of composite materials: residual stress development during cure, part II. experimental validation publication-title: Journal of Composite Materials doi: 10.1177/002199839202601605 – volume: 41 start-page: 183 issue: 2 year: 1996 end-page: 191 ident: CR18 article-title: Modelling the cure of a commercial epoxy resin for applications in resin transfer moulding publication-title: Polymer International doi: 10.1002/(SICI)1097-0126(199610)41:2<183::AID-PI621>3.0.CO;2-F – volume: 230 start-page: 106937 year: 2020 ident: CR7 article-title: The tensile properties and interlaminar shear strength of microcapsules-glass fibers/epoxy self-healable composites publication-title: Engineering Fracture Mechanics doi: 10.1016/j.engfracmech.2020.106937 – volume: 3 start-page: 208 issue: 1 year: 2016 end-page: 213 ident: CR15 article-title: A new concept in the design for filament wound composite pressure vessel publication-title: International Journal of Engineering Research and Science and Technology – volume: 35 start-page: 3507 issue: 8 year: 2021 end-page: 3517 ident: CR13 article-title: Design of composite layer and liner for structure safety of hydrogen pressure vessel (type 4) publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-021-0723-9 – ident: CR28 – volume: 41 start-page: 1312 issue: 9 year: 2010 end-page: 1320 ident: CR11 article-title: Design of filament-wound domes based on continuum theory and non-geodesic roving trajectories publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2010.05.015 – volume: 21 start-page: 243 issue: 3 year: 1987 end-page: 261 ident: CR22 article-title: Cure kinetics and viscosity of fiberite 976 resin publication-title: Journal of Composite Materials doi: 10.1177/002199838702100304 – volume: 14 start-page: 1100 issue: 6 year: 2022 ident: CR5 article-title: Influence of epoxy resin curing kinetics on the mechanical properties of carbon fiber composites publication-title: Polymers doi: 10.3390/polym14061100 – volume: 23 start-page: 189 issue: 4–6 year: 2001 end-page: 204 ident: CR17 article-title: Epoxy thermosets and their applications. III. Kinetic equations and models publication-title: Journal of Materials Education – volume: 60 start-page: 217 issue: 5 year: 2007 ident: 614_CR25 publication-title: Applied Mechanics Reviews doi: 10.1115/1.2777169 – volume: 14 start-page: 1100 issue: 6 year: 2022 ident: 614_CR5 publication-title: Polymers doi: 10.3390/polym14061100 – volume: 288 start-page: 115410 year: 2022 ident: 614_CR23 publication-title: Composite Structures doi: 10.1016/j.compstruct.2022.115410 – start-page: 234 volume-title: Mechanics of Composite Materials year: 1994 ident: 614_CR26 doi: 10.1007/978-94-017-2233-9_19 – volume: 26 start-page: 533 year: 2019 ident: 614_CR10 publication-title: Applied Composite Materials doi: 10.1007/s10443-018-9724-y – volume: 230 start-page: 106937 year: 2020 ident: 614_CR7 publication-title: Engineering Fracture Mechanics doi: 10.1016/j.engfracmech.2020.106937 – volume: 15 start-page: 3978 year: 2011 ident: 614_CR30 publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.08.745 – volume: 26 start-page: 2423 issue: 16 year: 1992 ident: 614_CR20 publication-title: Journal of Composite Materials doi: 10.1177/002199839202601605 – volume: 255 start-page: 112912 year: 2021 ident: 614_CR21 publication-title: Composite Structures doi: 10.1016/j.compstruct.2020.112912 – volume: 15 start-page: 982 issue: 4 year: 2023 ident: 614_CR9 publication-title: Polymers doi: 10.3390/polym15040982 – volume: 29 start-page: S903 issue: 9 year: 2021 ident: 614_CR4 publication-title: Polymers and Polymer Composites doi: 10.1177/09673911211028413 – volume: 21 start-page: 243 issue: 3 year: 1987 ident: 614_CR22 publication-title: Journal of Composite Materials doi: 10.1177/002199838702100304 – volume: 3 start-page: 208 issue: 1 year: 2016 ident: 614_CR15 publication-title: International Journal of Engineering Research and Science and Technology – ident: 614_CR28 – volume: 23 start-page: 189 issue: 4–6 year: 2001 ident: 614_CR17 publication-title: Journal of Materials Education – volume: 191 start-page: 116840 year: 2021 ident: 614_CR29 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2021.116840 – volume: 22 start-page: 687 issue: 3 year: 2021 ident: 614_CR8 publication-title: International Journal of Automotive Technology doi: 10.1007/s12239-021-0064-9 – volume: 44 start-page: 10677 issue: 21 year: 2019 ident: 614_CR1 publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.208 – volume: 198 start-page: 222 year: 2018 ident: 614_CR19 publication-title: Combustion and Flame doi: 10.1016/j.combustflame.2018.09.013 – volume: 42 start-page: 7254 issue: 11 year: 2017 ident: 614_CR3 publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.178 – volume: 6 start-page: 79 issue: 3 year: 2016 ident: 614_CR14 publication-title: International Journal of Composite Materials – volume: 36 start-page: 2373 issue: 20 year: 2002 ident: 614_CR27 publication-title: Journal of Composite Materials doi: 10.1177/0021998302036020870 – volume: 41 start-page: 1312 issue: 9 year: 2010 ident: 614_CR11 publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2010.05.015 – volume: 9 start-page: 2296 issue: 11 year: 2019 ident: 614_CR2 publication-title: Applied Sciences doi: 10.3390/app9112296 – volume: 7 start-page: 100061 year: 2021 ident: 614_CR6 publication-title: Applications in Engineering Science doi: 10.1016/j.apples.2021.100061 – start-page: 1994 volume-title: Engineering Mechanics of Composite Materials year: 2006 ident: 614_CR24 – volume: 41 start-page: 183 issue: 2 year: 1996 ident: 614_CR18 publication-title: Polymer International doi: 10.1002/(SICI)1097-0126(199610)41:2<183::AID-PI621>3.0.CO;2-F – volume: 17 start-page: 1685 issue: 12 year: 2016 ident: 614_CR12 publication-title: International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-016-0195-5 – volume: 67 start-page: 443 issue: 4 year: 2005 ident: 614_CR16 publication-title: Composite Structures doi: 10.1016/j.compstruct.2004.02.003 – volume: 35 start-page: 3507 issue: 8 year: 2021 ident: 614_CR13 publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-021-0723-9 |
SSID | ssj0062411 |
Score | 2.3229253 |
Snippet | A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3495 |
SubjectTerms | Algorithms CAD Carbon fiber reinforced plastics Carbon fibers Composite materials Computer aided design Control Curing Design of experiments Design optimization Dwell time Dynamical Systems Engineering Fiber composites Finite element method Goodness of fit Heating rate Hydrogen Industrial and Production Engineering Mathematical models Mechanical Engineering Optimization Original Article Pressure vessels Process parameters Residual stress Vibration 기계공학 |
Title | Optimal design of curing process for manufacturing a high pressure hydrogen vessel (type 4) |
URI | https://link.springer.com/article/10.1007/s12206-023-0614-3 https://www.proquest.com/docview/2837397684 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002979191 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Mechanical Science and Technology, 2023, 37(7), , pp.3495-3505 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPnF9EdCDDwptk6btcRXXF-rFhRUPIU0TFbW7dHcF_72TbOuqqOAplE5amMkk3yQzXwB2DE8QhGTUkyzCACU06HMqST0eS5OlKgi149K7vOKnbXbeiTpVHXe_znavjyTdTD0udgtDG_2G7jYC5tFJmI4wdLfe2A6b9fTLcUlyUVaMnsxS1qmPMn_6xJfFaLIozRec-e1o1K04rXmYq6AiaY5suwATuliE2U8Egktwd40e_4JCuUvEIF1D3Pb5PemNCgAIYlLyIouhLWAYvZHEUhQTlwA7LDV5eMvLLg4j8mppxJ_Jrt2VJWxvGdqt45ujU6-6LsFTNAoGXqwDhvbwpcxTmviJCjBWMJzqTPnM5JTGWcalTNOYUmmkRF_lMQ9kwBUqK0rpCkwV3UKvAkmiPEdZRD-Gs0iniWIylvjMfZprmjTAr_UmVMUlbq-0eBZjFmSraoGqFlbVgjZg_6NLb0Sk8ZfwNhpDPKlHYemvbXvfFU-lQJB_hn3CGJFb0ICN2lii8ry-sGw-FmMlrAEHtQHHr3_95dq_pNdhJnTDyObtbsDUoBzqTUQng2wLpputw8Mr257cXhxvudH5Drkn2-U |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-wwEB68PKgP4hX3HC8BffBCoW3SNH0UUdb7iwsLPoQ0TVZRu1J3D5x_7yTbuioq-FRKJi3MZJIvycw3ADuWCwQhOQ0US3CDElv0OS2ygKfK5pmOYuO59C6veLvDzrpJt87jfmmi3ZsrST9Tj5Pd4tjtfmNfjYAFdBKmEQsIV7agEx820y_HJcnvslL0ZJaxbnOV-dUnPixGk2VlP-DMT1ejfsU5WYD5GiqSw5FtF2HClEsw945AcBlur9Hjn1Co8IEYpG-JPz7vkedRAgBBTEqeVDl0CQyjFkUcRTHxAbDDypC7_0XVx2FE_jka8Uey605lCdtbgc7J8c1RO6jLJQSaJtEgSE3E0B6hUkVGRSh0hHsFy6nJdchsQWma51ypLEspVVYp9FWe8khFXKOykoyuwlTZL80aEJEUBcoi-rGcJSYTmqlU4TsPaWGoaEHY6E3qmkvclbR4lGMWZKdqiaqWTtWStmD_rcvziEjjJ-FtNIZ80PfS0V-7Z68vHyqJIP8U-8QpIreoBeuNsWTteS_Ssfk4jCVYCw4aA46bv_3ln19Jb8FM--byQl6cXp3_hdnYDykXw7sOU4NqaDYQqQzyTT8yXwF1HdvI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54AXEflvWGszu7BvTBXSm2TZq2j8Oug-Nl9MGBAR9CmiYqameoMwv77_ckbR0VFXwqJUkL55J8Jzn5DsCO4QmCkIx6kkUYoIQGfU4lqcdjabJUBaF2XHqnfX44YEfDaFjXOX1ost2bI8nqToNlaSom--Pc7M8uvoWhjYRDV5mAeXQeFnE2DqyhD8JOMxVzXJ5cxBWjV7OUDZtjzdc-8Wxhmi9K8wxzvjgmdatP9wt8rmEj6VR6XoE5XazCpydkgmtweYbef4-dcpeUQUaGuK30KzKuLgMQxKfkXhZTe5mhapHE0hUTlww7LTW5_peXIzQp8tdSit-RXbtDS9jPdRh0Dy5-H3p16QRP0SiYeLEOGOrGlzJPaeInKsC4wXCqM-Uzk1MaZxmXMk1jSqWREv2WxzyQAVcorCilG7BQjAq9CSSJ8hz7IhIynEU6TRSTscR37tNc06QFfiM3oWpecVve4k7MGJGtqAWKWlhRC9qCX49DxhWpxnudt1EZ4lbdCEuFbZ9XI3FbCgT8PRwTxojigha0G2WJ2gsfhGX2sXgrYS3YaxQ4a37zl18_1HsLls7_dMVJr3_8DZZDZ1E2nbcNC5Nyqr8jaJlkP5xh_gdgl-AE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+curing+process+for+manufacturing+a+high+pressure+hydrogen+vessel+%28type+4%29&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Yeontae+Kang&rft.au=%EB%B0%95%EA%B1%B4%EC%98%81&rft.au=%EA%B3%BD%ED%9A%A8%EC%84%9C&rft.au=Haonan+Qi&rft.date=2023-07-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%B0%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=1738-494X&rft.eissn=1976-3824&rft.spage=3495&rft.epage=3505&rft_id=info:doi/10.1007%2Fs12206-023-0614-3&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10272501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon |