Optimal design of curing process for manufacturing a high pressure hydrogen vessel (type 4)

A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous resin. During a curing process, strength degradation occurs due to residual stress, so it is recommended to cure for a long time, but a fast...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanical science and technology Vol. 37; no. 7; pp. 3495 - 3505
Main Authors Kang, Yeontae, Park, Gunyoung, Kwak, Hyoseo, Qi, Haonan, Kim, Chul
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Mechanical Engineers 01.07.2023
Springer Nature B.V
대한기계학회
Subjects
Online AccessGet full text
ISSN1738-494X
1976-3824
DOI10.1007/s12206-023-0614-3

Cover

Abstract A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous resin. During a curing process, strength degradation occurs due to residual stress, so it is recommended to cure for a long time, but a fast curing process has been required for high productivity. In this study, to solve these problems, the optimal design of curing process was performed for a hydrogen vehicle pressure vessel (type 4) made of carbon fiber (T700/epoxy) through FEA (finite element analysis). Autocatalytic kinetic model equation was derived through dynamic and isothermal DSC (differential scanning calorimeter) experiments by varying curing temperature. Thermal-static structural coupled analysis of composite curing process was conducted using ACCS (ANSYS composite cure simulation) program. The input parameters affecting curing process were assigned; curing temperature (T), heating rate to reach target curing temperature (H), dwell time to maintain the target temperature (D) and cooling time (C). Output parameters affecting delamination and process time were assigned; σ z , τ xz and total time (TT). 71 sampling points were generated, and design of experiments were conducted. Goodness of fit of response surface was generated to check its reliability. The optimum model, which satisfies the objective function, was suggested using MOGA algorithm. The thermal-static structural coupled analysis of final model was performed to verify the optimal design.
AbstractList A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous resin. During a curing process, strength degradation occurs due to residual stress, so it is recommended to cure for a long time, but a fast curing process has been required for high productivity. In this study, to solve these problems, the optimal design of curing process was performed for a hydrogen vehicle pressure vessel (type 4) made of carbon fiber (T700/epoxy) through FEA (finite element analysis). Autocatalytic kinetic model equation was derived through dynamic and isothermal DSC (differential scanning calorimeter) experiments by varying curing temperature. Thermal-static structural coupled analysis of composite curing process was conducted using ACCS (ANSYS composite cure simulation) program. The input parameters affecting curing process were assigned; curing temperature (T), heating rate to reach target curing temperature (H), dwell time to maintain the target temperature (D) and cooling time (C). Output parameters affecting delamination and process time were assigned; σ z , τ xz and total time (TT). 71 sampling points were generated, and design of experiments were conducted. Goodness of fit of response surface was generated to check its reliability. The optimum model, which satisfies the objective function, was suggested using MOGA algorithm. The thermal-static structural coupled analysis of final model was performed to verify the optimal design.
A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous resin. During a curing process, strength degradation occurs due to residual stress, so it is recommended to cure for a long time, but a fast curing process has been required for high productivity. In this study, to solve these problems, the optimal design of curing process was performed for a hydrogen vehicle pressure vessel (type 4) made of carbon fiber (T700/epoxy) through FEA (finite element analysis). Autocatalytic kinetic model equation was derived through dynamic and isothermal DSC (differential scanning calorimeter) experiments by varying curing temperature. Thermal-static structural coupled analysis of composite curing process was conducted using ACCS (ANSYS composite cure simulation) program. The input parameters affecting curing process were assigned; curing temperature (T), heating rate to reach target curing temperature (H), dwell time to maintain the target temperature (D) and cooling time (C). Output parameters affecting delamination and process time were assigned; σz, τxz and total time (TT). 71 sampling points were generated, and design of experiments were conducted. Goodness of fit of response surface was generated to check its reliability. The optimum model, which satisfies the objective function, was suggested using MOGA algorithm. The thermal-static structural coupled analysis of final model was performed to verify the optimal design.
A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous resin. During a curing process, strength degradation occurs due to residual stress, so it is recommended to cure for a long time, but a fast curing process has been required for high productivity. In this study, to solve these problems, the optimal design of curing process was performed for a hydrogen vehicle pressure vessel (type 4) made of carbon fiber (T700/epoxy) through FEA (finite element analysis). Autocatalytic kinetic model equation was derived through dynamic and isothermal DSC (differential scanning calorimeter) experiments by varying curing temperature. Thermal-static structural coupled analysis of composite curing process was conducted using ACCS (ANSYS composite cure simulation) program. The input parameters affecting curing process were assigned; curing temperature (T), heating rate to reach target curing temperature (H), dwell time to maintain the target temperature (D) and cooling time (C). Output parameters affecting delamination and process time were assigned; σ z , τ xz and total time (TT). 71 sampling points were generated, and design of experiments were conducted. Goodness of fit of response surface was generated to check its reliability. The optimum model, which satisfies the objective function, was suggested using MOGA algorithm. The thermal-static structural coupled analysis of final model was performed to verify the optimal design. KCI Citation Count: 0
Author Qi, Haonan
Kim, Chul
Kang, Yeontae
Park, Gunyoung
Kwak, Hyoseo
Author_xml – sequence: 1
  givenname: Yeontae
  surname: Kang
  fullname: Kang, Yeontae
  organization: School of Mechanical Engineering, Pusan National University
– sequence: 2
  givenname: Gunyoung
  surname: Park
  fullname: Park, Gunyoung
  organization: Research Institute of Mechanical Technology, Pusan National University
– sequence: 3
  givenname: Hyoseo
  surname: Kwak
  fullname: Kwak, Hyoseo
  organization: Mechanical Engineering Major, Dong-Eui University
– sequence: 4
  givenname: Haonan
  surname: Qi
  fullname: Qi, Haonan
  organization: School of Mechanical Engineering, Pusan National University
– sequence: 5
  givenname: Chul
  surname: Kim
  fullname: Kim, Chul
  email: chulki@pusan.ac.kr
  organization: School of Mechanical Engineering, Pusan National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002979191$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMtKBDEQRYMo-PwAdwE3KrTmNUn3UsQXCIIoCC5CTSbpiY5Jm3QL8_dmbEEQdFVF1b3FrbON1kMMFqF9Sk4oIeo0U8aIrAjjFZFUVHwNbdFGyYrXTKyXXvG6Eo142kTbOb8QIpmgdAs933W9f4MFntns24Cjw2ZIPrS4S9HYnLGLCb9BGByYftwAnvt2XgRlPSSL58tZiq0N-KMM7AIf9svOYnG0izYcLLLd-6476PHy4uH8urq9u7o5P7utDJ_QvlKWCmOAAMwaXpPalNzCSW6nhgg341xNpxKgaRTn4AAmqpZKUqDSlK8mDd9Bx-PdkJx-NV5H8F-1jfo16bP7hxtNCVNsQmgRH4zi8t_7YHOvX-KQQsmnWc0VL8xqUVR0VJkUc07W6S4VTGlZDukVcD0C1wW4XgHXvHjUL4_xPfQ-hj6BX_zrZKMzdyvANv1k-tv0CQPxlZU
CitedBy_id crossref_primary_10_1007_s12206_024_0820_7
crossref_primary_10_1016_j_est_2024_113459
Cites_doi 10.1016/j.compstruct.2022.115410
10.1016/j.ijhydene.2019.02.208
10.1115/1.2777169
10.1007/978-94-017-2233-9_19
10.1016/j.combustflame.2018.09.013
10.3390/app9112296
10.3390/polym15040982
10.1016/j.compstruct.2004.02.003
10.1016/j.ijhydene.2016.03.178
10.1177/09673911211028413
10.1177/0021998302036020870
10.1007/s12239-021-0064-9
10.1007/s10443-018-9724-y
10.1016/j.applthermaleng.2021.116840
10.1007/s12541-016-0195-5
10.1016/j.compstruct.2020.112912
10.1016/j.proeng.2011.08.745
10.1016/j.apples.2021.100061
10.1177/002199839202601605
10.1002/(SICI)1097-0126(199610)41:2<183::AID-PI621>3.0.CO;2-F
10.1016/j.engfracmech.2020.106937
10.1007/s12206-021-0723-9
10.1016/j.compositesa.2010.05.015
10.1177/002199838702100304
10.3390/polym14061100
ContentType Journal Article
Copyright The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023
The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023.
Copyright_xml – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023
– notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2023.
DBID AAYXX
CITATION
7TB
8FD
FR3
ACYCR
DOI 10.1007/s12206-023-0614-3
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3824
EndPage 3505
ExternalDocumentID oai_kci_go_kr_ARTI_10272501
10_1007_s12206_023_0614_3
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
6NX
8FE
8FG
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LLZTM
M7S
MA-
MK~
ML~
MZR
NDZJH
NF0
NPVJJ
NQJWS
O9-
P9P
PF0
PT4
PTHSS
Q2X
QOS
R89
R9I
RHV
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TDB
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8R
Z8T
Z8W
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7TB
8FD
ABRTQ
FR3
AABYN
AAFGU
AAYFA
ABFGW
ABKAG
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADMVV
ADOXG
AEEQQ
AEFTE
AEKVL
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
UNUBA
ID FETCH-LOGICAL-c351t-7e14cca0aad93808c1974f63ebc04fd337bb6aa99733afaa5786761a16c173593
IEDL.DBID U2A
ISSN 1738-494X
IngestDate Thu Feb 22 06:32:29 EST 2024
Fri Jul 25 12:16:32 EDT 2025
Tue Jul 01 04:23:38 EDT 2025
Thu Apr 24 22:51:20 EDT 2025
Fri Feb 21 02:42:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Type 4 vessel
Curing process
DSC experiment
Response surface method
Kinetic model equation
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-7e14cca0aad93808c1974f63ebc04fd337bb6aa99733afaa5786761a16c173593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2837397684
PQPubID 326249
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10272501
proquest_journals_2837397684
crossref_primary_10_1007_s12206_023_0614_3
crossref_citationtrail_10_1007_s12206_023_0614_3
springer_journals_10_1007_s12206_023_0614_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Journal of mechanical science and technology
PublicationTitleAbbrev J Mech Sci Technol
PublicationYear 2023
Publisher Korean Society of Mechanical Engineers
Springer Nature B.V
대한기계학회
Publisher_xml – name: Korean Society of Mechanical Engineers
– name: Springer Nature B.V
– name: 대한기계학회
References Li, Bai, Zhang, Song, Jiang, Grouset, Zhang (CR1) 2019; 44
Barthélémy, Weber, Barbier (CR3) 2017; 42
Pipes, Pagano (CR26) 1994
Ebrahimnezhad-Khaljiri, Eslami-Farsani (CR7) 2020; 230
Izato, Miyake (CR19) 2018; 198
Zu, Koussios, Beukers (CR11) 2010; 41
Kim, Kang, Hong, Kim (CR16) 2005; 67
Park, Kim, Kang, Hong, Kim (CR27) 2002; 36
Muliana (CR6) 2021; 7
Dusi, Lee, Ciriscioli, Springer (CR22) 1987; 21
Manoharan, Hosseini, Butler, Alzhahrani, Fou Senior, Ashuri, Krohn (CR2) 2019; 9
Delbariani-Nejad, Farrokhabadi, Fotouhi (CR23) 2022; 288
Zhou, Li, Cheng, Zhang (CR10) 2019; 26
Bilyeu, Brostow, Menard (CR17) 2001; 23
Karkanas, Panagiotis, Partridge, Attwood (CR18) 1996; 41
CR28
Park, Jang, Kim (CR13) 2021; 35
Liang, Liu, Qin, Zhao, Li, Emmanuel, Feng (CR9) 2023; 15
Nair, Kumar (CR15) 2016; 3
Cho, Kim, Lee, Lee, Lee, Lyu (CR12) 2016; 17
Musthak, Madar Valli, Narayana Rao (CR14) 2016; 6
Yusoff, Ngadiman, Zain (CR30) 2011; 15
Baghad, Mabrouk, Vaudreuil, Nouneh (CR4) 2021; 29
Mittelstedt, Becker (CR25) 2007; 60
White, Hahn (CR20) 1992; 26
Lee, Lacy, Pittman (CR21) 2021; 255
Man, Karin, Lin, Larpsuriyakul, Ohtake (CR8) 2021; 22
Daniel, Ishai (CR24) 2006
Mieczkowski, Furmański, Łapka (CR29) 2021; 191
Cruz-Cruz, Ramírez-Herrera, Martínez-Romero, Castillo-Márquez, Jiménez-Cedeño, Olvera-Trejo, Elías-Zúñiga (CR5) 2022; 14
A Baghad (614_CR4) 2021; 29
I Cruz-Cruz (614_CR5) 2022; 14
J Lee (614_CR21) 2021; 255
Y-I Izato (614_CR19) 2018; 198
L Zu (614_CR11) 2010; 41
B Bilyeu (614_CR17) 2001; 23
Karkanas (614_CR18) 1996; 41
M Li (614_CR1) 2019; 44
M Musthak (614_CR14) 2016; 6
T C Man (614_CR8) 2021; 22
Y Manoharan (614_CR2) 2019; 9
H Ebrahimnezhad-Khaljiri (614_CR7) 2020; 230
G Park (614_CR13) 2021; 35
J Zhou (614_CR10) 2019; 26
H Barthélémy (614_CR3) 2017; 42
A Delbariani-Nejad (614_CR23) 2022; 288
M R Dusi (614_CR22) 1987; 21
K-S Park (614_CR27) 2002; 36
J Liang (614_CR9) 2023; 15
R B Pipes (614_CR26) 1994
A H Muliana (614_CR6) 2021; 7
M Mieczkowski (614_CR29) 2021; 191
Y Yusoff (614_CR30) 2011; 15
R P Nair (614_CR15) 2016; 3
I M Daniel (614_CR24) 2006
614_CR28
C-U Kim (614_CR16) 2005; 67
C Mittelstedt (614_CR25) 2007; 60
S-M Cho (614_CR12) 2016; 17
S R White (614_CR20) 1992; 26
References_xml – volume: 288
  start-page: 115410
  year: 2022
  ident: CR23
  article-title: Finite element reliability analysis of edge delamination onset due to interlaminar stresses in composite laminates
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2022.115410
– volume: 44
  start-page: 10677
  issue: 21
  year: 2019
  end-page: 10693
  ident: CR1
  article-title: Review on the research of hydrogen storage system fast refueling in fuel cell vehicle
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.02.208
– volume: 60
  start-page: 217
  issue: 5
  year: 2007
  end-page: 245
  ident: CR25
  article-title: Free-edge effects in composite laminates
  publication-title: Applied Mechanics Reviews
  doi: 10.1115/1.2777169
– start-page: 234
  year: 1994
  end-page: 245
  ident: CR26
  article-title: Interlaminar stresses in composite laminates under uniform axial extension
  publication-title: Mechanics of Composite Materials
  doi: 10.1007/978-94-017-2233-9_19
– volume: 198
  start-page: 222
  year: 2018
  end-page: 229
  ident: CR19
  article-title: Detailed kinetic model for ammonium dinitramide decomposition
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2018.09.013
– volume: 9
  start-page: 2296
  issue: 11
  year: 2019
  ident: CR2
  article-title: Hydrogen fuel cell vehicles; current status and future prospect
  publication-title: Applied Sciences
  doi: 10.3390/app9112296
– volume: 15
  start-page: 982
  issue: 4
  year: 2023
  ident: CR9
  article-title: Experimental study of curing temperature effect on mechanical performance of carbon fiber composites with application to filament winding pressure vessel design
  publication-title: Polymers
  doi: 10.3390/polym15040982
– volume: 67
  start-page: 443
  issue: 4
  year: 2005
  end-page: 452
  ident: CR16
  article-title: Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2004.02.003
– volume: 42
  start-page: 7254
  issue: 11
  year: 2017
  end-page: 7262
  ident: CR3
  article-title: Hydrogen storage: recent improvements and industrial perspectives
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.178
– volume: 29
  start-page: S903
  issue: 9
  year: 2021
  end-page: S913
  ident: CR4
  article-title: Cure kinetics and autoclave-pressure dependence on physical and mechanical properties of woven carbon/epoxy 8552S/AS4 composite laminates
  publication-title: Polymers and Polymer Composites
  doi: 10.1177/09673911211028413
– volume: 36
  start-page: 2373
  issue: 20
  year: 2002
  end-page: 2388
  ident: CR27
  article-title: Structural analysis and strain monitoring of the filament wound motor case
  publication-title: Journal of Composite Materials
  doi: 10.1177/0021998302036020870
– volume: 22
  start-page: 687
  issue: 3
  year: 2021
  end-page: 700
  ident: CR8
  article-title: A study on curing temperature and fracture mechanism of carbon and glass fiber reinforced polymers using an electron microscopy
  publication-title: International Journal of Automotive Technology
  doi: 10.1007/s12239-021-0064-9
– volume: 26
  start-page: 533
  year: 2019
  end-page: 552
  ident: CR10
  article-title: Indirect microwave curing process design for manufacturing thick multidirectional carbon fiber reinforced thermoset composite materials
  publication-title: Applied Composite Materials
  doi: 10.1007/s10443-018-9724-y
– start-page: 1994
  year: 2006
  ident: CR24
  publication-title: Engineering Mechanics of Composite Materials
– volume: 191
  start-page: 116840
  year: 2021
  ident: CR29
  article-title: Optimization of a microchannel heat sink using entropy minimization and genetic aggregation algorithm
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2021.116840
– volume: 6
  start-page: 79
  issue: 3
  year: 2016
  end-page: 87
  ident: CR14
  article-title: Prediction of transverse directional strains and stresses of filament wound composite pressure vessel by using higher order shear deformation theories
  publication-title: International Journal of Composite Materials
– volume: 17
  start-page: 1685
  issue: 12
  year: 2016
  end-page: 1691
  ident: CR12
  article-title: A study on cycling life and failure mode of type 3 cylinder treated with autofrettage pressure
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-016-0195-5
– volume: 255
  start-page: 112912
  year: 2021
  ident: CR21
  article-title: Coupled thermal electrical and mechanical lightning damage predictions to carbon/epoxy composites during arc channel shape expansion
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2020.112912
– volume: 15
  start-page: 3978
  year: 2011
  end-page: 3983
  ident: CR30
  article-title: Overview of NSGA-II for optimizing machining process parameters
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.08.745
– volume: 7
  start-page: 100061
  year: 2021
  ident: CR6
  article-title: Spatial and temporal changes in physical properties of epoxy during curing and their effects on the residual stresses and properties of cured epoxy and composites
  publication-title: Applications in Engineering Science
  doi: 10.1016/j.apples.2021.100061
– volume: 26
  start-page: 2423
  issue: 16
  year: 1992
  end-page: 2453
  ident: CR20
  article-title: Process modeling of composite materials: residual stress development during cure, part II. experimental validation
  publication-title: Journal of Composite Materials
  doi: 10.1177/002199839202601605
– volume: 41
  start-page: 183
  issue: 2
  year: 1996
  end-page: 191
  ident: CR18
  article-title: Modelling the cure of a commercial epoxy resin for applications in resin transfer moulding
  publication-title: Polymer International
  doi: 10.1002/(SICI)1097-0126(199610)41:2<183::AID-PI621>3.0.CO;2-F
– volume: 230
  start-page: 106937
  year: 2020
  ident: CR7
  article-title: The tensile properties and interlaminar shear strength of microcapsules-glass fibers/epoxy self-healable composites
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2020.106937
– volume: 3
  start-page: 208
  issue: 1
  year: 2016
  end-page: 213
  ident: CR15
  article-title: A new concept in the design for filament wound composite pressure vessel
  publication-title: International Journal of Engineering Research and Science and Technology
– volume: 35
  start-page: 3507
  issue: 8
  year: 2021
  end-page: 3517
  ident: CR13
  article-title: Design of composite layer and liner for structure safety of hydrogen pressure vessel (type 4)
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-021-0723-9
– ident: CR28
– volume: 41
  start-page: 1312
  issue: 9
  year: 2010
  end-page: 1320
  ident: CR11
  article-title: Design of filament-wound domes based on continuum theory and non-geodesic roving trajectories
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2010.05.015
– volume: 21
  start-page: 243
  issue: 3
  year: 1987
  end-page: 261
  ident: CR22
  article-title: Cure kinetics and viscosity of fiberite 976 resin
  publication-title: Journal of Composite Materials
  doi: 10.1177/002199838702100304
– volume: 14
  start-page: 1100
  issue: 6
  year: 2022
  ident: CR5
  article-title: Influence of epoxy resin curing kinetics on the mechanical properties of carbon fiber composites
  publication-title: Polymers
  doi: 10.3390/polym14061100
– volume: 23
  start-page: 189
  issue: 4–6
  year: 2001
  end-page: 204
  ident: CR17
  article-title: Epoxy thermosets and their applications. III. Kinetic equations and models
  publication-title: Journal of Materials Education
– volume: 60
  start-page: 217
  issue: 5
  year: 2007
  ident: 614_CR25
  publication-title: Applied Mechanics Reviews
  doi: 10.1115/1.2777169
– volume: 14
  start-page: 1100
  issue: 6
  year: 2022
  ident: 614_CR5
  publication-title: Polymers
  doi: 10.3390/polym14061100
– volume: 288
  start-page: 115410
  year: 2022
  ident: 614_CR23
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2022.115410
– start-page: 234
  volume-title: Mechanics of Composite Materials
  year: 1994
  ident: 614_CR26
  doi: 10.1007/978-94-017-2233-9_19
– volume: 26
  start-page: 533
  year: 2019
  ident: 614_CR10
  publication-title: Applied Composite Materials
  doi: 10.1007/s10443-018-9724-y
– volume: 230
  start-page: 106937
  year: 2020
  ident: 614_CR7
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2020.106937
– volume: 15
  start-page: 3978
  year: 2011
  ident: 614_CR30
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.08.745
– volume: 26
  start-page: 2423
  issue: 16
  year: 1992
  ident: 614_CR20
  publication-title: Journal of Composite Materials
  doi: 10.1177/002199839202601605
– volume: 255
  start-page: 112912
  year: 2021
  ident: 614_CR21
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2020.112912
– volume: 15
  start-page: 982
  issue: 4
  year: 2023
  ident: 614_CR9
  publication-title: Polymers
  doi: 10.3390/polym15040982
– volume: 29
  start-page: S903
  issue: 9
  year: 2021
  ident: 614_CR4
  publication-title: Polymers and Polymer Composites
  doi: 10.1177/09673911211028413
– volume: 21
  start-page: 243
  issue: 3
  year: 1987
  ident: 614_CR22
  publication-title: Journal of Composite Materials
  doi: 10.1177/002199838702100304
– volume: 3
  start-page: 208
  issue: 1
  year: 2016
  ident: 614_CR15
  publication-title: International Journal of Engineering Research and Science and Technology
– ident: 614_CR28
– volume: 23
  start-page: 189
  issue: 4–6
  year: 2001
  ident: 614_CR17
  publication-title: Journal of Materials Education
– volume: 191
  start-page: 116840
  year: 2021
  ident: 614_CR29
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2021.116840
– volume: 22
  start-page: 687
  issue: 3
  year: 2021
  ident: 614_CR8
  publication-title: International Journal of Automotive Technology
  doi: 10.1007/s12239-021-0064-9
– volume: 44
  start-page: 10677
  issue: 21
  year: 2019
  ident: 614_CR1
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.02.208
– volume: 198
  start-page: 222
  year: 2018
  ident: 614_CR19
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2018.09.013
– volume: 42
  start-page: 7254
  issue: 11
  year: 2017
  ident: 614_CR3
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.178
– volume: 6
  start-page: 79
  issue: 3
  year: 2016
  ident: 614_CR14
  publication-title: International Journal of Composite Materials
– volume: 36
  start-page: 2373
  issue: 20
  year: 2002
  ident: 614_CR27
  publication-title: Journal of Composite Materials
  doi: 10.1177/0021998302036020870
– volume: 41
  start-page: 1312
  issue: 9
  year: 2010
  ident: 614_CR11
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2010.05.015
– volume: 9
  start-page: 2296
  issue: 11
  year: 2019
  ident: 614_CR2
  publication-title: Applied Sciences
  doi: 10.3390/app9112296
– volume: 7
  start-page: 100061
  year: 2021
  ident: 614_CR6
  publication-title: Applications in Engineering Science
  doi: 10.1016/j.apples.2021.100061
– start-page: 1994
  volume-title: Engineering Mechanics of Composite Materials
  year: 2006
  ident: 614_CR24
– volume: 41
  start-page: 183
  issue: 2
  year: 1996
  ident: 614_CR18
  publication-title: Polymer International
  doi: 10.1002/(SICI)1097-0126(199610)41:2<183::AID-PI621>3.0.CO;2-F
– volume: 17
  start-page: 1685
  issue: 12
  year: 2016
  ident: 614_CR12
  publication-title: International Journal of Precision Engineering and Manufacturing
  doi: 10.1007/s12541-016-0195-5
– volume: 67
  start-page: 443
  issue: 4
  year: 2005
  ident: 614_CR16
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2004.02.003
– volume: 35
  start-page: 3507
  issue: 8
  year: 2021
  ident: 614_CR13
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-021-0723-9
SSID ssj0062411
Score 2.3229253
Snippet A type 4 pressure vessel is reinforced by a carbon fiber composite material on a polymer liner and is manufactured through a curing process hardening a viscous...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3495
SubjectTerms Algorithms
CAD
Carbon fiber reinforced plastics
Carbon fibers
Composite materials
Computer aided design
Control
Curing
Design of experiments
Design optimization
Dwell time
Dynamical Systems
Engineering
Fiber composites
Finite element method
Goodness of fit
Heating rate
Hydrogen
Industrial and Production Engineering
Mathematical models
Mechanical Engineering
Optimization
Original Article
Pressure vessels
Process parameters
Residual stress
Vibration
기계공학
Title Optimal design of curing process for manufacturing a high pressure hydrogen vessel (type 4)
URI https://link.springer.com/article/10.1007/s12206-023-0614-3
https://www.proquest.com/docview/2837397684
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002979191
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Mechanical Science and Technology, 2023, 37(7), , pp.3495-3505
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPnF9EdCDDwptk6btcRXXF-rFhRUPIU0TFbW7dHcF_72TbOuqqOAplE5amMkk3yQzXwB2DE8QhGTUkyzCACU06HMqST0eS5OlKgi149K7vOKnbXbeiTpVHXe_znavjyTdTD0udgtDG_2G7jYC5tFJmI4wdLfe2A6b9fTLcUlyUVaMnsxS1qmPMn_6xJfFaLIozRec-e1o1K04rXmYq6AiaY5suwATuliE2U8Egktwd40e_4JCuUvEIF1D3Pb5PemNCgAIYlLyIouhLWAYvZHEUhQTlwA7LDV5eMvLLg4j8mppxJ_Jrt2VJWxvGdqt45ujU6-6LsFTNAoGXqwDhvbwpcxTmviJCjBWMJzqTPnM5JTGWcalTNOYUmmkRF_lMQ9kwBUqK0rpCkwV3UKvAkmiPEdZRD-Gs0iniWIylvjMfZprmjTAr_UmVMUlbq-0eBZjFmSraoGqFlbVgjZg_6NLb0Sk8ZfwNhpDPKlHYemvbXvfFU-lQJB_hn3CGJFb0ICN2lii8ry-sGw-FmMlrAEHtQHHr3_95dq_pNdhJnTDyObtbsDUoBzqTUQng2wLpputw8Mr257cXhxvudH5Drkn2-U
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-wwEB68PKgP4hX3HC8BffBCoW3SNH0UUdb7iwsLPoQ0TVZRu1J3D5x_7yTbuioq-FRKJi3MZJIvycw3ADuWCwQhOQ0US3CDElv0OS2ygKfK5pmOYuO59C6veLvDzrpJt87jfmmi3ZsrST9Tj5Pd4tjtfmNfjYAFdBKmEQsIV7agEx820y_HJcnvslL0ZJaxbnOV-dUnPixGk2VlP-DMT1ejfsU5WYD5GiqSw5FtF2HClEsw945AcBlur9Hjn1Co8IEYpG-JPz7vkedRAgBBTEqeVDl0CQyjFkUcRTHxAbDDypC7_0XVx2FE_jka8Uey605lCdtbgc7J8c1RO6jLJQSaJtEgSE3E0B6hUkVGRSh0hHsFy6nJdchsQWma51ypLEspVVYp9FWe8khFXKOykoyuwlTZL80aEJEUBcoi-rGcJSYTmqlU4TsPaWGoaEHY6E3qmkvclbR4lGMWZKdqiaqWTtWStmD_rcvziEjjJ-FtNIZ80PfS0V-7Z68vHyqJIP8U-8QpIreoBeuNsWTteS_Ssfk4jCVYCw4aA46bv_3ln19Jb8FM--byQl6cXp3_hdnYDykXw7sOU4NqaDYQqQzyTT8yXwF1HdvI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54AXEflvWGszu7BvTBXSm2TZq2j8Oug-Nl9MGBAR9CmiYqameoMwv77_ckbR0VFXwqJUkL55J8Jzn5DsCO4QmCkIx6kkUYoIQGfU4lqcdjabJUBaF2XHqnfX44YEfDaFjXOX1ost2bI8nqToNlaSom--Pc7M8uvoWhjYRDV5mAeXQeFnE2DqyhD8JOMxVzXJ5cxBWjV7OUDZtjzdc-8Wxhmi9K8wxzvjgmdatP9wt8rmEj6VR6XoE5XazCpydkgmtweYbef4-dcpeUQUaGuK30KzKuLgMQxKfkXhZTe5mhapHE0hUTlww7LTW5_peXIzQp8tdSit-RXbtDS9jPdRh0Dy5-H3p16QRP0SiYeLEOGOrGlzJPaeInKsC4wXCqM-Uzk1MaZxmXMk1jSqWREv2WxzyQAVcorCilG7BQjAq9CSSJ8hz7IhIynEU6TRSTscR37tNc06QFfiM3oWpecVve4k7MGJGtqAWKWlhRC9qCX49DxhWpxnudt1EZ4lbdCEuFbZ9XI3FbCgT8PRwTxojigha0G2WJ2gsfhGX2sXgrYS3YaxQ4a37zl18_1HsLls7_dMVJr3_8DZZDZ1E2nbcNC5Nyqr8jaJlkP5xh_gdgl-AE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+curing+process+for+manufacturing+a+high+pressure+hydrogen+vessel+%28type+4%29&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Yeontae+Kang&rft.au=%EB%B0%95%EA%B1%B4%EC%98%81&rft.au=%EA%B3%BD%ED%9A%A8%EC%84%9C&rft.au=Haonan+Qi&rft.date=2023-07-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%B0%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=1738-494X&rft.eissn=1976-3824&rft.spage=3495&rft.epage=3505&rft_id=info:doi/10.1007%2Fs12206-023-0614-3&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10272501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon