Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries
Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing to the natural abundance, low cost and environmental benignity of sodium resources. However, the low energy density and poor cycling life limi...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 6; pp. 2913 - 2933 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
11.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing to the natural abundance, low cost and environmental benignity of sodium resources. However, the low energy density and poor cycling life limit their commercial applications. The development of high-performance anode materials is one of the key issues for SIBs. Compared with carbonaceous materials, metallic Sn-, Sb- and SnSb alloy-based anodes have developed rapidly due to their high theoretical capacity, high electrical conductivity and safe reaction potential. The major challenge for them is the large volume change during the sodiation/desodiation process, resulting in rapid capacity decay. Numerous efforts have been devoted to solving this problem. This review summarizes recent progress on this cutting-edge topic. A range of Sn-, Sb- and SnSb-based anode materials have been introduced with respect to size control and nanostructure design. It is found that the use of ultra-small nanoparticles, elaborate interface design, heterogeneous element (N, S
etc.
) doping, multi-dimensional integration
etc.
are efficient strategies to enhance the electrochemical performance of these anode materials. The ingenious nanostructures and their synthesis methods reported in this review may provide new insights to the rational design of novel anode materials for practical application in advanced energy storage devices in the near future.
Sodium-ion batteries with metallic Sn- and Sb-based anodes have great potential for application in large-scale green energy storage devices. |
---|---|
AbstractList | Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing to the natural abundance, low cost and environmental benignity of sodium resources. However, the low energy density and poor cycling life limit their commercial applications. The development of high-performance anode materials is one of the key issues for SIBs. Compared with carbonaceous materials, metallic Sn-, Sb- and SnSb alloy-based anodes have developed rapidly due to their high theoretical capacity, high electrical conductivity and safe reaction potential. The major challenge for them is the large volume change during the sodiation/desodiation process, resulting in rapid capacity decay. Numerous efforts have been devoted to solving this problem. This review summarizes recent progress on this cutting-edge topic. A range of Sn-, Sb- and SnSb-based anode materials have been introduced with respect to size control and nanostructure design. It is found that the use of ultra-small nanoparticles, elaborate interface design, heterogeneous element (N, S etc.) doping, multi-dimensional integration etc. are efficient strategies to enhance the electrochemical performance of these anode materials. The ingenious nanostructures and their synthesis methods reported in this review may provide new insights to the rational design of novel anode materials for practical application in advanced energy storage devices in the near future. Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing to the natural abundance, low cost and environmental benignity of sodium resources. However, the low energy density and poor cycling life limit their commercial applications. The development of high-performance anode materials is one of the key issues for SIBs. Compared with carbonaceous materials, metallic Sn-, Sb- and SnSb alloy-based anodes have developed rapidly due to their high theoretical capacity, high electrical conductivity and safe reaction potential. The major challenge for them is the large volume change during the sodiation/desodiation process, resulting in rapid capacity decay. Numerous efforts have been devoted to solving this problem. This review summarizes recent progress on this cutting-edge topic. A range of Sn-, Sb- and SnSb-based anode materials have been introduced with respect to size control and nanostructure design. It is found that the use of ultra-small nanoparticles, elaborate interface design, heterogeneous element (N, S etc. ) doping, multi-dimensional integration etc. are efficient strategies to enhance the electrochemical performance of these anode materials. The ingenious nanostructures and their synthesis methods reported in this review may provide new insights to the rational design of novel anode materials for practical application in advanced energy storage devices in the near future. Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing to the natural abundance, low cost and environmental benignity of sodium resources. However, the low energy density and poor cycling life limit their commercial applications. The development of high-performance anode materials is one of the key issues for SIBs. Compared with carbonaceous materials, metallic Sn-, Sb- and SnSb alloy-based anodes have developed rapidly due to their high theoretical capacity, high electrical conductivity and safe reaction potential. The major challenge for them is the large volume change during the sodiation/desodiation process, resulting in rapid capacity decay. Numerous efforts have been devoted to solving this problem. This review summarizes recent progress on this cutting-edge topic. A range of Sn-, Sb- and SnSb-based anode materials have been introduced with respect to size control and nanostructure design. It is found that the use of ultra-small nanoparticles, elaborate interface design, heterogeneous element (N, S etc. ) doping, multi-dimensional integration etc. are efficient strategies to enhance the electrochemical performance of these anode materials. The ingenious nanostructures and their synthesis methods reported in this review may provide new insights to the rational design of novel anode materials for practical application in advanced energy storage devices in the near future. Sodium-ion batteries with metallic Sn- and Sb-based anodes have great potential for application in large-scale green energy storage devices. |
Author | Yang, Chun Cheng Jing, Wen Tao Jiang, Qing |
AuthorAffiliation | Ministry of Education Jilin University School of Materials Science and Engineering Key Laboratory of Automobile Materials |
AuthorAffiliation_xml | – sequence: 0 name: Jilin University – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: Key Laboratory of Automobile Materials – sequence: 0 name: Ministry of Education |
Author_xml | – sequence: 1 givenname: Wen Tao surname: Jing fullname: Jing, Wen Tao – sequence: 2 givenname: Chun Cheng surname: Yang fullname: Yang, Chun Cheng – sequence: 3 givenname: Qing surname: Jiang fullname: Jiang, Qing |
BookMark | eNpt0c1LwzAUAPAgE5xzF-9CwYsI1XysbXKcwy8YCG6ey0v6Kh1tM5P04H9vdDJhmEsS8nuP915Oyai3PRJyzugNo0LdGhWAsUJyfUTGnGY0LWYqH-3PUp6QqfcbGpekNFdqTJavaLAPydbZd4feJ7ZPOgzQto1JVn2aQF8lK51q8FjFi63QJ7V1ibdVM3RpE72GENA16M_IcQ2tx-nvPiFvD_frxVO6fHl8XsyXqREZC2lRca0RQVE2M8hrbgRkWkgTn6XONUhQqA1IyQA4L4qizhhFXeextyznYkKudnlj1R8D-lB2jTfYttCjHXzJhZRFJmjOIr08oBs7uD5WF1XGleDFLIuK7pRx1nuHdWmaACE2Fxw0bclo-T3hcqHW858J38WQ64OQrWs6cJ__44sddt7s3d93iS-MHIZa |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_178692 crossref_primary_10_1007_s12274_021_3334_y crossref_primary_10_1016_j_ensm_2024_103334 crossref_primary_10_1016_j_xcrp_2022_100891 crossref_primary_10_1002_slct_202302417 crossref_primary_10_1016_j_cej_2024_158461 crossref_primary_10_1016_j_jqsrt_2023_108508 crossref_primary_10_1557_s43581_022_00029_9 crossref_primary_10_1039_D3QI00460K crossref_primary_10_1002_anie_202206770 crossref_primary_10_1002_admi_202101571 crossref_primary_10_1016_j_cej_2021_132359 crossref_primary_10_1016_j_jmst_2021_11_079 crossref_primary_10_1002_adfm_202408296 crossref_primary_10_1088_1361_6528_acb15c crossref_primary_10_1039_D1SE00386K crossref_primary_10_1016_j_nanoms_2021_06_007 crossref_primary_10_1002_advs_202408450 crossref_primary_10_1016_j_cej_2021_133675 crossref_primary_10_1039_D1EE01341F crossref_primary_10_3390_batteries11020054 crossref_primary_10_1002_adfm_202314147 crossref_primary_10_1039_D0TA04349D crossref_primary_10_1016_j_jpowsour_2024_235739 crossref_primary_10_1021_acsami_2c12759 crossref_primary_10_1088_1361_6463_abfdd8 crossref_primary_10_1007_s40843_023_2493_9 crossref_primary_10_1142_S1793292024500292 crossref_primary_10_1016_j_mser_2023_100737 crossref_primary_10_1016_j_ensm_2022_03_010 crossref_primary_10_3390_cryst12050575 crossref_primary_10_1002_cey2_374 crossref_primary_10_1016_j_flatc_2023_100516 crossref_primary_10_1016_j_electacta_2023_143308 crossref_primary_10_1039_D5SE00172B crossref_primary_10_1016_j_cej_2021_134318 crossref_primary_10_1016_j_jallcom_2021_160857 crossref_primary_10_1021_acsami_3c01905 crossref_primary_10_1002_batt_202300022 crossref_primary_10_1016_j_supflu_2022_105720 crossref_primary_10_3390_ma13163453 crossref_primary_10_1039_D3CS00601H crossref_primary_10_1002_aenm_202203187 crossref_primary_10_1016_j_est_2024_113395 crossref_primary_10_1002_ange_202206770 crossref_primary_10_1016_j_jallcom_2021_161658 crossref_primary_10_1002_smll_202006016 crossref_primary_10_1007_s10853_025_10702_2 crossref_primary_10_1016_j_nanoen_2022_107995 crossref_primary_10_1016_j_jpowsour_2020_228872 crossref_primary_10_1016_j_jpowsour_2021_229585 crossref_primary_10_1002_tcr_202200098 crossref_primary_10_1002_anie_202214258 crossref_primary_10_1016_j_jmrt_2023_02_128 crossref_primary_10_1016_j_jmst_2023_05_048 crossref_primary_10_1016_j_nxener_2024_100097 crossref_primary_10_1007_s10854_024_12696_0 crossref_primary_10_1002_slct_202305056 crossref_primary_10_1039_D4NR03503H crossref_primary_10_1002_ange_202214258 crossref_primary_10_1002_cey2_552 crossref_primary_10_1016_j_est_2024_113045 crossref_primary_10_1016_j_jpowsour_2024_235543 crossref_primary_10_1002_chem_202101561 crossref_primary_10_1039_D0TA12063D crossref_primary_10_1016_j_nanoen_2023_108753 crossref_primary_10_1016_j_jpowsour_2021_230826 crossref_primary_10_1002_er_5769 crossref_primary_10_1016_j_chphma_2021_10_003 crossref_primary_10_1002_batt_202300281 crossref_primary_10_3390_ma16062189 crossref_primary_10_1002_adma_202209924 crossref_primary_10_1016_j_est_2024_114422 crossref_primary_10_1016_j_cej_2022_136768 crossref_primary_10_1016_j_jallcom_2021_161913 crossref_primary_10_1149_1945_7111_ac2708 crossref_primary_10_1002_adfm_202400302 crossref_primary_10_1016_j_jallcom_2022_167576 crossref_primary_10_1002_advs_202403530 crossref_primary_10_1016_j_matchemphys_2021_125510 crossref_primary_10_1016_j_jallcom_2022_163772 crossref_primary_10_1039_D0TA11501K crossref_primary_10_1002_cey2_172 crossref_primary_10_1016_j_oceram_2023_100354 crossref_primary_10_1016_j_cej_2022_139805 crossref_primary_10_1002_smll_202107869 crossref_primary_10_1016_j_jallcom_2020_158267 crossref_primary_10_1002_smll_202205681 crossref_primary_10_1016_j_electacta_2020_137379 crossref_primary_10_1007_s11426_022_1416_2 crossref_primary_10_1016_j_jcis_2022_05_090 crossref_primary_10_1016_j_matlet_2020_128989 crossref_primary_10_1039_D1SE00219H crossref_primary_10_1039_D2CS01029A crossref_primary_10_1002_batt_202400551 crossref_primary_10_1016_j_jcis_2024_06_080 crossref_primary_10_3390_surfaces6030016 crossref_primary_10_1016_j_electacta_2021_139071 crossref_primary_10_1016_j_enchem_2022_100095 crossref_primary_10_1021_acsmaterialslett_4c02033 crossref_primary_10_1002_adfm_202400779 crossref_primary_10_1016_j_jmst_2022_10_051 crossref_primary_10_1039_D0MA00024H crossref_primary_10_1149_1945_7111_ad3854 crossref_primary_10_1002_cphc_202400793 crossref_primary_10_1021_acsami_3c18941 crossref_primary_10_3390_nano12152521 crossref_primary_10_1016_j_matlet_2025_138032 |
Cites_doi | 10.1021/acsaem.8b00416 10.1007/s12274-017-1627-y 10.1021/acs.accounts.5b00114 10.1021/acsami.7b08870 10.1002/aenm.201601177 10.1039/c4cp01240b 10.1016/j.jpowsour.2018.07.019 10.1002/adma.201304962 10.1002/adfm.201700447 10.1002/adma.201704670 10.1039/C7TA06770D 10.1039/C7QM00480J 10.1039/C5TA10568D 10.1002/smll.201703116 10.1002/adma.201604563 10.1039/c3ta13438e 10.1021/acsami.7b04635 10.1016/j.cej.2019.05.036 10.1039/c4cp00738g 10.1039/C5TA03181H 10.1039/C6CS00776G 10.1002/adma.201805432 10.1039/C5TA08601A 10.1021/acs.chemmater.5b03920 10.1002/aenm.201800079 10.1088/2053-1591/ab00cd 10.1021/acsami.5b08274 10.1016/j.matlet.2015.07.034 10.1016/j.apsusc.2017.09.154 10.1039/C9CC00001A 10.1021/acsami.6b13193 10.1039/c3ta11568b 10.1021/am4023994 10.1016/j.nantod.2012.08.004 10.1016/j.nanoen.2017.08.051 10.1038/nature11475 10.1016/j.jpowsour.2015.02.071 10.1002/chem.201801574 10.1039/B916098A 10.1016/j.electacta.2015.12.136 10.1016/j.nanoen.2015.07.020 10.1016/j.ensm.2018.01.016 10.1016/j.nanoen.2019.104133 10.1039/c2cc17129e 10.1039/c3cs60426h 10.1039/C9TA05176G 10.1021/acsaem.8b02231 10.1021/acsaem.8b01353 10.1002/celc.201700828 10.1039/C7TA06469A 10.1002/adma.201600012 10.1039/C8TA00592C 10.1021/acsami.6b04736 10.1039/C7TA03434B 10.1039/C9TA07199G 10.1016/j.jpowsour.2015.01.163 10.1038/nnano.2007.451 10.1021/acs.nanolett.7b01152 10.1021/jp501032d 10.1002/adfm.201502433 10.1002/adma.201503015 10.1039/C7TA10277A 10.1038/srep16629 10.1002/adfm.201900790 10.1021/acsenergylett.8b00762 10.1002/chem.201402511 10.1021/jacs.7b01398 10.1002/aenm.201801781 10.1039/C8TA02248H 10.1002/adma.201703012 10.1021/acs.nanolett.8b04468 10.1002/aenm.201901096 10.1002/aenm.201703237 10.1016/j.matt.2019.03.010 10.1016/j.chempr.2017.05.021 10.1007/s12274-017-1536-0 10.1002/adfm.201402943 10.1002/adma.201700622 10.1039/C8EE03632B 10.1002/smll.201500783 10.1002/cphc.201400088 10.1002/ijch.201400118 10.1039/C8TA01782D 10.1016/j.elecom.2013.03.029 10.1002/adfm.201200691 10.1021/acs.chemrev.5b00102 10.1002/aenm.201702403 10.1002/aenm.201700463 10.1039/C8NR06182C 10.1002/smll.201501313 10.1039/C8EE01023D 10.1021/nn4063598 10.1039/C5CC06266G 10.1021/acs.nanolett.7b00083 10.1039/C4TA06086E 10.1038/ncomms2878 10.1039/C8TA03692F 10.1039/C8NR08461K 10.1016/j.carbon.2015.09.091 10.1016/j.electacta.2014.04.159 10.1021/am507436u 10.1039/C9TA03380G 10.1021/acsami.6b01761 10.1002/anie.201902988 10.1021/acsaem.8b01934 10.1039/C7EE00524E 10.1002/smll.201900258 10.1002/adma.201204877 10.1039/C3EE42944J 10.1021/acsami.7b10085 10.1016/j.cej.2019.04.045 10.1002/anie.201607469 10.1016/j.ensm.2017.08.011 10.1002/smll.201903194 10.1039/C8TA09551E 10.1007/s40820-019-0294-9 10.1016/j.electacta.2016.03.171 10.1039/C9TA01158G 10.1002/adma.201701968 10.1039/C6TA10345F 10.1039/C4EE03215B 10.1039/C7TA00690J 10.1021/ja310347x 10.1021/acsami.6b16000 10.1002/smll.201701835 10.1021/nn4025674 10.1002/adfm.201602608 10.1002/advs.201700298 10.1016/j.ensm.2019.07.017 10.1039/C4NR05604C 10.1016/j.carbon.2014.04.064 10.1002/aenm.201701785 10.1039/C8TA02945H 10.1021/acsnano.8b07227 10.1016/j.nanoen.2018.10.027 10.1021/nl5028606 10.1039/C6EE01501H 10.1039/c2ee02781j 10.1002/anie.201805552 10.1039/C7TA03060F 10.1166/asl.2011.1198 10.1002/anie.201902583 10.1088/1468-6996/15/4/043501 10.1021/cr500192f 10.1016/j.mtener.2019.05.009 10.1016/j.ensm.2018.09.010 10.1039/C7TA01480E 10.1021/acsaem.9b00819 10.1016/j.electacta.2004.01.090 10.1016/j.nanoen.2016.08.010 10.1002/adma.201505918 10.1126/science.1212741 10.1021/acsami.7b07964 10.1039/c3ta12040f 10.1021/acs.nanolett.5b03373 10.1002/aenm.201500174 10.1007/s12274-014-0506-z 10.1016/j.jpowsour.2018.03.032 10.1002/aenm.201200558 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/c9ta11782b |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 2933 |
ExternalDocumentID | 10_1039_C9TA11782B c9ta11782b |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c351t-7d2bbeea9014ce2f2c3a5b38cc358b6ba8a9ebca881aa22777f510ebf67825623 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 19:09:11 EDT 2025 Mon Jun 30 11:57:54 EDT 2025 Tue Jul 01 01:12:48 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 Tue Dec 17 20:58:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-7d2bbeea9014ce2f2c3a5b38cc358b6ba8a9ebca881aa22777f510ebf67825623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2888-8860 0000-0003-0660-596X |
PQID | 2352932745 |
PQPubID | 2047523 |
PageCount | 21 |
ParticipantIDs | crossref_citationtrail_10_1039_C9TA11782B proquest_journals_2352932745 crossref_primary_10_1039_C9TA11782B rsc_primary_c9ta11782b proquest_miscellaneous_2388753061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200211 |
PublicationDateYYYYMMDD | 2020-02-11 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200211 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (C9TA11782B-(cit103)/*[position()=1]) 2019; 7 Choi (C9TA11782B-(cit127)/*[position()=1]) 2018; 386 Yabuuchi (C9TA11782B-(cit159)/*[position()=1]) 2014; 15 Bommier (C9TA11782B-(cit15)/*[position()=1]) 2015; 55 Gao (C9TA11782B-(cit2)/*[position()=1]) 2010; 3 Liu (C9TA11782B-(cit60)/*[position()=1]) 2014; 14 Wang (C9TA11782B-(cit72)/*[position()=1]) 2015; 11 Kim (C9TA11782B-(cit25)/*[position()=1]) 2013; 25 Muñoz-Márquez (C9TA11782B-(cit11)/*[position()=1]) 2017; 7 Baggetto (C9TA11782B-(cit30)/*[position()=1]) 2013; 1 Wu (C9TA11782B-(cit107)/*[position()=1]) 2019; 7 Li (C9TA11782B-(cit56)/*[position()=1]) 2008; 3 Kim (C9TA11782B-(cit135)/*[position()=1]) 2014; 16 Yabuuchi (C9TA11782B-(cit8)/*[position()=1]) 2014; 114 Fang (C9TA11782B-(cit21)/*[position()=1]) 2019; 58 Huang (C9TA11782B-(cit149)/*[position()=1]) 2019; 12 Chen (C9TA11782B-(cit111)/*[position()=1]) 2017; 3 He (C9TA11782B-(cit41)/*[position()=1]) 2018; 2 Darwiche (C9TA11782B-(cit67)/*[position()=1]) 2012; 134 Ruiz (C9TA11782B-(cit93)/*[position()=1]) 2018; 8 Yamamoto (C9TA11782B-(cit139)/*[position()=1]) 2014; 135 Li (C9TA11782B-(cit125)/*[position()=1]) 2014; 7 Jian (C9TA11782B-(cit3)/*[position()=1]) 2015; 25 Selvaraj (C9TA11782B-(cit94)/*[position()=1]) 2018; 1 Wang (C9TA11782B-(cit14)/*[position()=1]) 2017; 13 Jing (C9TA11782B-(cit101)/*[position()=1]) 2019; 1 Hwang (C9TA11782B-(cit142)/*[position()=1]) 2017; 46 Liu (C9TA11782B-(cit34)/*[position()=1]) 2018; 6 Wang (C9TA11782B-(cit20)/*[position()=1]) 2019; 31 Xu (C9TA11782B-(cit86)/*[position()=1]) 2017; 5 Li (C9TA11782B-(cit37)/*[position()=1]) 2018; 11 Baggetto (C9TA11782B-(cit109)/*[position()=1]) 2013; 1 Baggetto (C9TA11782B-(cit134)/*[position()=1]) 2014; 16 Liang (C9TA11782B-(cit79)/*[position()=1]) 2017; 5 Qin (C9TA11782B-(cit124)/*[position()=1]) 2018; 30 Balogun (C9TA11782B-(cit12)/*[position()=1]) 2016; 98 Wu (C9TA11782B-(cit70)/*[position()=1]) 2014; 7 Hu (C9TA11782B-(cit113)/*[position()=1]) 2015; 27 Lu (C9TA11782B-(cit145)/*[position()=1]) 2016; 190 Zhang (C9TA11782B-(cit98)/*[position()=1]) 2018; 12 Li (C9TA11782B-(cit54)/*[position()=1]) 2016; 200 Liang (C9TA11782B-(cit133)/*[position()=1]) 2017; 10 Lao (C9TA11782B-(cit32)/*[position()=1]) 2017; 29 Liu (C9TA11782B-(cit89)/*[position()=1]) 2018; 1 Liu (C9TA11782B-(cit80)/*[position()=1]) 2017; 17 Che (C9TA11782B-(cit144)/*[position()=1]) 2017; 10 Ying (C9TA11782B-(cit49)/*[position()=1]) 2017; 5 Zhang (C9TA11782B-(cit146)/*[position()=1]) 2016; 55 Fan (C9TA11782B-(cit26)/*[position()=1]) 2015; 5 Wang (C9TA11782B-(cit84)/*[position()=1]) 2017; 9 Hasa (C9TA11782B-(cit151)/*[position()=1]) 2014; 15 He (C9TA11782B-(cit119)/*[position()=1]) 2015; 7 Luo (C9TA11782B-(cit90)/*[position()=1]) 2018; 8 Wang (C9TA11782B-(cit77)/*[position()=1]) 2016; 28 Yang (C9TA11782B-(cit64)/*[position()=1]) 2018; 6 Wu (C9TA11782B-(cit85)/*[position()=1]) 2017; 9 Song (C9TA11782B-(cit82)/*[position()=1]) 2017; 40 Palomares (C9TA11782B-(cit5)/*[position()=1]) 2012; 5 Kim (C9TA11782B-(cit9)/*[position()=1]) 2014; 20 Palaniselvam (C9TA11782B-(cit43)/*[position()=1]) 2019; 29 Cui (C9TA11782B-(cit100)/*[position()=1]) 2019; 19 Ruan (C9TA11782B-(cit63)/*[position()=1]) 2017; 9 Guo (C9TA11782B-(cit155)/*[position()=1]) 2017; 29 Nita (C9TA11782B-(cit105)/*[position()=1]) 2019; 13 Ji (C9TA11782B-(cit131)/*[position()=1]) 2014; 26 Walter (C9TA11782B-(cit120)/*[position()=1]) 2016; 4 Zhang (C9TA11782B-(cit23)/*[position()=1]) 2020; 24 Liu (C9TA11782B-(cit46)/*[position()=1]) 2015; 27 Sha (C9TA11782B-(cit48)/*[position()=1]) 2017; 5 Xu (C9TA11782B-(cit148)/*[position()=1]) 2018; 8 Jian (C9TA11782B-(cit158)/*[position()=1]) 2013; 3 Kang (C9TA11782B-(cit10)/*[position()=1]) 2015; 3 Liu (C9TA11782B-(cit76)/*[position()=1]) 2016; 9 Yuan (C9TA11782B-(cit97)/*[position()=1]) 2018; 6 Li (C9TA11782B-(cit17)/*[position()=1]) 2015; 51 Hwang (C9TA11782B-(cit6)/*[position()=1]) 2017; 46 Li (C9TA11782B-(cit40)/*[position()=1]) 2015; 48 Wang (C9TA11782B-(cit58)/*[position()=1]) 2017; 29 Ji (C9TA11782B-(cit121)/*[position()=1]) 2015; 7 Li (C9TA11782B-(cit160)/*[position()=1]) 2018; 397 Lin (C9TA11782B-(cit66)/*[position()=1]) 2013; 5 Xiao (C9TA11782B-(cit114)/*[position()=1]) 2012; 48 Zhao (C9TA11782B-(cit78)/*[position()=1]) 2016; 8 Yin (C9TA11782B-(cit59)/*[position()=1]) 2016; 28 Chen (C9TA11782B-(cit156)/*[position()=1]) 2019; 66 Yu (C9TA11782B-(cit57)/*[position()=1]) 2017; 29 Zhang (C9TA11782B-(cit147)/*[position()=1]) 2016; 26 Li (C9TA11782B-(cit47)/*[position()=1]) 2016; 8 Kim (C9TA11782B-(cit61)/*[position()=1]) 2017; 5 Fang (C9TA11782B-(cit22)/*[position()=1]) 2019; 58 Ying (C9TA11782B-(cit33)/*[position()=1]) 2017; 4 Choi (C9TA11782B-(cit138)/*[position()=1]) 2015; 159 Zhang (C9TA11782B-(cit154)/*[position()=1]) 2017; 9 Wu (C9TA11782B-(cit73)/*[position()=1]) 2015; 3 Youn (C9TA11782B-(cit132)/*[position()=1]) 2018; 5 Li (C9TA11782B-(cit104)/*[position()=1]) 2019; 9 Yang (C9TA11782B-(cit87)/*[position()=1]) 2017; 5 Li (C9TA11782B-(cit42)/*[position()=1]) 2019; 2 Zhu (C9TA11782B-(cit99)/*[position()=1]) 2018; 428 Slater (C9TA11782B-(cit31)/*[position()=1]) 2013; 23 Sun (C9TA11782B-(cit18)/*[position()=1]) 2013; 4 Li (C9TA11782B-(cit55)/*[position()=1]) 2015; 115 Han (C9TA11782B-(cit53)/*[position()=1]) 2017; 9 Chu (C9TA11782B-(cit1)/*[position()=1]) 2012; 488 Song (C9TA11782B-(cit35)/*[position()=1]) 2019; 15 Jackson (C9TA11782B-(cit137)/*[position()=1]) 2015; 7 Luo (C9TA11782B-(cit50)/*[position()=1]) 2019; 11 Fang (C9TA11782B-(cit88)/*[position()=1]) 2018; 6 Baggetto (C9TA11782B-(cit140)/*[position()=1]) 2014; 118 Zhang (C9TA11782B-(cit75)/*[position()=1]) 2015; 11 Li (C9TA11782B-(cit38)/*[position()=1]) 2016; 4 Wang (C9TA11782B-(cit52)/*[position()=1]) 2019; 7 Ma (C9TA11782B-(cit130)/*[position()=1]) 2019; 55 Chayambuka (C9TA11782B-(cit7)/*[position()=1]) 2018; 8 Fehse (C9TA11782B-(cit115)/*[position()=1]) 2018; 6 Aurbach (C9TA11782B-(cit143)/*[position()=1]) 2004; 50 Bommier (C9TA11782B-(cit16)/*[position()=1]) 2014; 76 Zhou (C9TA11782B-(cit27)/*[position()=1]) 2016; 6 Wu (C9TA11782B-(cit36)/*[position()=1]) 2012; 7 Pan (C9TA11782B-(cit51)/*[position()=1]) 2019; 16 Kalisvaart (C9TA11782B-(cit102)/*[position()=1]) 2019; 2 Stratford (C9TA11782B-(cit45)/*[position()=1]) 2017; 139 Liu (C9TA11782B-(cit28)/*[position()=1]) 2015; 25 Mao (C9TA11782B-(cit62)/*[position()=1]) 2017; 17 Park (C9TA11782B-(cit106)/*[position()=1]) 2019; 373 Ma (C9TA11782B-(cit91)/*[position()=1]) 2018; 13 Wang (C9TA11782B-(cit83)/*[position()=1]) 2017; 5 Choi (C9TA11782B-(cit110)/*[position()=1]) 2019; 7 Seng (C9TA11782B-(cit29)/*[position()=1]) 2011; 4 Liu (C9TA11782B-(cit71)/*[position()=1]) 2015; 16 Zhou (C9TA11782B-(cit68)/*[position()=1]) 2013; 1 Leng (C9TA11782B-(cit122)/*[position()=1]) 2015; 5 Yang (C9TA11782B-(cit19)/*[position()=1]) 2018; 6 Li (C9TA11782B-(cit65)/*[position()=1]) 2017; 27 Liu (C9TA11782B-(cit81)/*[position()=1]) 2017; 10 Kim (C9TA11782B-(cit152)/*[position()=1]) 2015; 8 You (C9TA11782B-(cit157)/*[position()=1]) 2018; 8 Dunn (C9TA11782B-(cit4)/*[position()=1]) 2011; 334 Fang (C9TA11782B-(cit24)/*[position()=1]) 2018; 57 Kalisvaart (C9TA11782B-(cit117)/*[position()=1]) 2019; 2 Ren (C9TA11782B-(cit153)/*[position()=1]) 2016; 28 Li (C9TA11782B-(cit126)/*[position()=1]) 2017; 9 Wang (C9TA11782B-(cit123)/*[position()=1]) 2019; 371 Zheng (C9TA11782B-(cit136)/*[position()=1]) 2019; 6 Fang (C9TA11782B-(cit150)/*[position()=1]) 2018; 14 Darwiche (C9TA11782B-(cit118)/*[position()=1]) 2013; 32 Zhu (C9TA11782B-(cit69)/*[position()=1]) 2013; 7 Pham (C9TA11782B-(cit92)/*[position()=1]) 2018; 10 Wu (C9TA11782B-(cit96)/*[position()=1]) 2018; 10 Yang (C9TA11782B-(cit74)/*[position()=1]) 2015; 282 Li (C9TA11782B-(cit108)/*[position()=1]) 2015; 15 Song (C9TA11782B-(cit95)/*[position()=1]) 2018; 11 Edison (C9TA11782B-(cit129)/*[position()=1]) 2019; 7 Li (C9TA11782B-(cit13)/*[position()=1]) 2018; 24 Farbod (C9TA11782B-(cit44)/*[position()=1]) 2014; 8 Ma (C9TA11782B-(cit128)/*[position()=1]) 2018; 54 Kim (C9TA11782B-(cit39)/*[position()=1]) 2019; 15 Kim (C9TA11782B-(cit141)/*[position()=1]) 2015; 281 Zhang (C9TA11782B-(cit112)/*[position()=1]) 2014; 43 Xie (C9TA11782B-(cit116)/*[position()=1]) 2018; 3 |
References_xml | – volume: 1 start-page: 2317 year: 2018 ident: C9TA11782B-(cit94)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00416 – volume: 10 start-page: 4360 year: 2017 ident: C9TA11782B-(cit81)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1627-y – volume: 48 start-page: 1657 year: 2015 ident: C9TA11782B-(cit40)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00114 – volume: 9 start-page: 28620 year: 2017 ident: C9TA11782B-(cit53)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08870 – volume: 6 start-page: 1601177 year: 2016 ident: C9TA11782B-(cit27)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601177 – volume: 16 start-page: 12884 year: 2014 ident: C9TA11782B-(cit135)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c4cp01240b – volume: 397 start-page: 162 year: 2018 ident: C9TA11782B-(cit160)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.019 – volume: 26 start-page: 2901 year: 2014 ident: C9TA11782B-(cit131)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304962 – volume: 27 start-page: 1700447 year: 2017 ident: C9TA11782B-(cit65)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700447 – volume: 30 start-page: 1704670 year: 2018 ident: C9TA11782B-(cit124)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704670 – volume: 5 start-page: 20623 year: 2017 ident: C9TA11782B-(cit83)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06770D – volume: 2 start-page: 437 year: 2018 ident: C9TA11782B-(cit41)/*[position()=1] publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00480J – volume: 4 start-page: 7053 year: 2016 ident: C9TA11782B-(cit120)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10568D – volume: 14 start-page: 1703116 year: 2018 ident: C9TA11782B-(cit150)/*[position()=1] publication-title: Small doi: 10.1002/smll.201703116 – volume: 29 start-page: 1604563 year: 2017 ident: C9TA11782B-(cit57)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604563 – volume: 1 start-page: 13727 year: 2013 ident: C9TA11782B-(cit68)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13438e – volume: 9 start-page: 25250 year: 2017 ident: C9TA11782B-(cit126)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04635 – volume: 373 start-page: 227 year: 2019 ident: C9TA11782B-(cit106)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.036 – volume: 16 start-page: 9538 year: 2014 ident: C9TA11782B-(cit134)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c4cp00738g – volume: 3 start-page: 17899 year: 2015 ident: C9TA11782B-(cit10)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03181H – volume: 46 start-page: 3485 year: 2017 ident: C9TA11782B-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 31 start-page: 1805432 year: 2019 ident: C9TA11782B-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201805432 – volume: 4 start-page: 96 year: 2016 ident: C9TA11782B-(cit38)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08601A – volume: 27 start-page: 8138 year: 2015 ident: C9TA11782B-(cit113)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03920 – volume: 8 start-page: 1800079 year: 2018 ident: C9TA11782B-(cit7)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800079 – volume: 6 start-page: 056410 year: 2019 ident: C9TA11782B-(cit136)/*[position()=1] publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab00cd – volume: 7 start-page: 24895 year: 2015 ident: C9TA11782B-(cit121)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08274 – volume: 159 start-page: 349 year: 2015 ident: C9TA11782B-(cit138)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.07.034 – volume: 428 start-page: 448 year: 2018 ident: C9TA11782B-(cit99)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.09.154 – volume: 55 start-page: 6938 year: 2019 ident: C9TA11782B-(cit130)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC00001A – volume: 9 start-page: 447 year: 2017 ident: C9TA11782B-(cit84)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13193 – volume: 1 start-page: 7985 year: 2013 ident: C9TA11782B-(cit109)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11568b – volume: 5 start-page: 8273 year: 2013 ident: C9TA11782B-(cit66)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4023994 – volume: 7 start-page: 414 year: 2012 ident: C9TA11782B-(cit36)/*[position()=1] publication-title: Nano Today doi: 10.1016/j.nantod.2012.08.004 – volume: 40 start-page: 504 year: 2017 ident: C9TA11782B-(cit82)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.051 – volume: 488 start-page: 294 year: 2012 ident: C9TA11782B-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature11475 – volume: 282 start-page: 358 year: 2015 ident: C9TA11782B-(cit74)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.071 – volume: 46 start-page: 3529 year: 2017 ident: C9TA11782B-(cit142)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 24 start-page: 13719 year: 2018 ident: C9TA11782B-(cit13)/*[position()=1] publication-title: Chemistry doi: 10.1002/chem.201801574 – volume: 3 start-page: 174 year: 2010 ident: C9TA11782B-(cit2)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/B916098A – volume: 190 start-page: 402 year: 2016 ident: C9TA11782B-(cit145)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.136 – volume: 16 start-page: 389 year: 2015 ident: C9TA11782B-(cit71)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.07.020 – volume: 13 start-page: 247 year: 2018 ident: C9TA11782B-(cit91)/*[position()=1] publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2018.01.016 – volume: 66 start-page: 104133 year: 2019 ident: C9TA11782B-(cit156)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104133 – volume: 48 start-page: 3321 year: 2012 ident: C9TA11782B-(cit114)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc17129e – volume: 43 start-page: 4423 year: 2014 ident: C9TA11782B-(cit112)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60426h – volume: 7 start-page: 23747 year: 2019 ident: C9TA11782B-(cit52)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05176G – volume: 2 start-page: 2205 year: 2019 ident: C9TA11782B-(cit102)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b02231 – volume: 1 start-page: 6381 year: 2018 ident: C9TA11782B-(cit89)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01353 – volume: 5 start-page: 391 year: 2018 ident: C9TA11782B-(cit132)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201700828 – volume: 5 start-page: 20304 year: 2017 ident: C9TA11782B-(cit61)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06469A – volume: 28 start-page: 7494 year: 2016 ident: C9TA11782B-(cit59)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600012 – volume: 6 start-page: 5555 year: 2018 ident: C9TA11782B-(cit97)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00592C – volume: 8 start-page: 19438 year: 2016 ident: C9TA11782B-(cit47)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04736 – volume: 5 start-page: 13411 year: 2017 ident: C9TA11782B-(cit86)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03434B – volume: 7 start-page: 23121 year: 2019 ident: C9TA11782B-(cit110)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07199G – volume: 281 start-page: 11 year: 2015 ident: C9TA11782B-(cit141)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.163 – volume: 3 start-page: 101 year: 2008 ident: C9TA11782B-(cit56)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.451 – volume: 17 start-page: 3830 year: 2017 ident: C9TA11782B-(cit62)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01152 – volume: 118 start-page: 7856 year: 2014 ident: C9TA11782B-(cit140)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp501032d – volume: 25 start-page: 5778 year: 2015 ident: C9TA11782B-(cit3)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502433 – volume: 27 start-page: 6702 year: 2015 ident: C9TA11782B-(cit46)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503015 – volume: 6 start-page: 3877 year: 2018 ident: C9TA11782B-(cit64)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10277A – volume: 5 start-page: 16629 year: 2015 ident: C9TA11782B-(cit122)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep16629 – volume: 29 start-page: 1900790 year: 2019 ident: C9TA11782B-(cit43)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900790 – volume: 3 start-page: 1670 year: 2018 ident: C9TA11782B-(cit116)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00762 – volume: 20 start-page: 11980 year: 2014 ident: C9TA11782B-(cit9)/*[position()=1] publication-title: Chemistry doi: 10.1002/chem.201402511 – volume: 139 start-page: 7273 year: 2017 ident: C9TA11782B-(cit45)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01398 – volume: 8 start-page: 1801781 year: 2018 ident: C9TA11782B-(cit93)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801781 – volume: 6 start-page: 8724 year: 2018 ident: C9TA11782B-(cit115)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02248H – volume: 29 start-page: 1703012 year: 2017 ident: C9TA11782B-(cit58)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703012 – volume: 19 start-page: 538 year: 2019 ident: C9TA11782B-(cit100)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04468 – volume: 9 start-page: 1901096 year: 2019 ident: C9TA11782B-(cit104)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901096 – volume: 8 start-page: 1703237 year: 2018 ident: C9TA11782B-(cit90)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703237 – volume: 1 start-page: 720 year: 2019 ident: C9TA11782B-(cit101)/*[position()=1] publication-title: Matter doi: 10.1016/j.matt.2019.03.010 – volume: 3 start-page: 152 year: 2017 ident: C9TA11782B-(cit111)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.05.021 – volume: 10 start-page: 3189 year: 2017 ident: C9TA11782B-(cit133)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1536-0 – volume: 25 start-page: 214 year: 2015 ident: C9TA11782B-(cit28)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402943 – volume: 29 start-page: 1700622 year: 2017 ident: C9TA11782B-(cit32)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700622 – volume: 12 start-page: 1550 year: 2019 ident: C9TA11782B-(cit149)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03632B – volume: 11 start-page: 3822 year: 2015 ident: C9TA11782B-(cit75)/*[position()=1] publication-title: Small doi: 10.1002/smll.201500783 – volume: 15 start-page: 2152 year: 2014 ident: C9TA11782B-(cit151)/*[position()=1] publication-title: Chemphyschem doi: 10.1002/cphc.201400088 – volume: 55 start-page: 486 year: 2015 ident: C9TA11782B-(cit15)/*[position()=1] publication-title: Isr. J. Chem. doi: 10.1002/ijch.201400118 – volume: 6 start-page: 8159 year: 2018 ident: C9TA11782B-(cit34)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01782D – volume: 32 start-page: 18 year: 2013 ident: C9TA11782B-(cit118)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.03.029 – volume: 23 start-page: 947 year: 2013 ident: C9TA11782B-(cit31)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200691 – volume: 115 start-page: 7046 year: 2015 ident: C9TA11782B-(cit55)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00102 – volume: 8 start-page: 1702403 year: 2018 ident: C9TA11782B-(cit148)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702403 – volume: 7 start-page: 1700463 year: 2017 ident: C9TA11782B-(cit11)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700463 – volume: 10 start-page: 19399 year: 2018 ident: C9TA11782B-(cit92)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR06182C – volume: 11 start-page: 5381 year: 2015 ident: C9TA11782B-(cit72)/*[position()=1] publication-title: Small doi: 10.1002/smll.201501313 – volume: 11 start-page: 2310 year: 2018 ident: C9TA11782B-(cit37)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01023D – volume: 8 start-page: 4415 year: 2014 ident: C9TA11782B-(cit44)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn4063598 – volume: 51 start-page: 16045 year: 2015 ident: C9TA11782B-(cit17)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC06266G – volume: 17 start-page: 2034 year: 2017 ident: C9TA11782B-(cit80)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00083 – volume: 3 start-page: 5708 year: 2015 ident: C9TA11782B-(cit73)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06086E – volume: 4 start-page: 1870 year: 2013 ident: C9TA11782B-(cit18)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2878 – volume: 6 start-page: 12663 year: 2018 ident: C9TA11782B-(cit19)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03692F – volume: 11 start-page: 348 year: 2018 ident: C9TA11782B-(cit95)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR08461K – volume: 98 start-page: 162 year: 2016 ident: C9TA11782B-(cit12)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2015.09.091 – volume: 135 start-page: 60 year: 2014 ident: C9TA11782B-(cit139)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.04.159 – volume: 7 start-page: 7447 year: 2015 ident: C9TA11782B-(cit137)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507436u – volume: 7 start-page: 12842 year: 2019 ident: C9TA11782B-(cit107)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03380G – volume: 8 start-page: 13871 year: 2016 ident: C9TA11782B-(cit78)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01761 – volume: 58 start-page: 7744 year: 2019 ident: C9TA11782B-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902988 – volume: 2 start-page: 860 year: 2019 ident: C9TA11782B-(cit42)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01934 – volume: 10 start-page: 1075 year: 2017 ident: C9TA11782B-(cit144)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00524E – volume: 15 start-page: 1900258 year: 2019 ident: C9TA11782B-(cit39)/*[position()=1] publication-title: Small doi: 10.1002/smll.201900258 – volume: 25 start-page: 3045 year: 2013 ident: C9TA11782B-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201204877 – volume: 7 start-page: 323 year: 2014 ident: C9TA11782B-(cit70)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42944J – volume: 9 start-page: 37682 year: 2017 ident: C9TA11782B-(cit63)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10085 – volume: 371 start-page: 356 year: 2019 ident: C9TA11782B-(cit123)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.045 – volume: 55 start-page: 12822 year: 2016 ident: C9TA11782B-(cit146)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201607469 – volume: 10 start-page: 122 year: 2018 ident: C9TA11782B-(cit96)/*[position()=1] publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2017.08.011 – volume: 15 start-page: 1903194 year: 2019 ident: C9TA11782B-(cit35)/*[position()=1] publication-title: Small doi: 10.1002/smll.201903194 – volume: 7 start-page: 2553 year: 2019 ident: C9TA11782B-(cit103)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09551E – volume: 11 start-page: 63 year: 2019 ident: C9TA11782B-(cit50)/*[position()=1] publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0294-9 – volume: 200 start-page: 59 year: 2016 ident: C9TA11782B-(cit54)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.171 – volume: 7 start-page: 14145 year: 2019 ident: C9TA11782B-(cit129)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01158G – volume: 29 start-page: 1701968 year: 2017 ident: C9TA11782B-(cit155)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701968 – volume: 5 start-page: 1749 year: 2017 ident: C9TA11782B-(cit79)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10345F – volume: 8 start-page: 540 year: 2015 ident: C9TA11782B-(cit152)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03215B – volume: 5 start-page: 6277 year: 2017 ident: C9TA11782B-(cit48)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00690J – volume: 134 start-page: 20805 year: 2012 ident: C9TA11782B-(cit67)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310347x – volume: 9 start-page: 7177 year: 2017 ident: C9TA11782B-(cit154)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16000 – volume: 13 start-page: 1701835 year: 2017 ident: C9TA11782B-(cit14)/*[position()=1] publication-title: Small doi: 10.1002/smll.201701835 – volume: 7 start-page: 6378 year: 2013 ident: C9TA11782B-(cit69)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn4025674 – volume: 26 start-page: 6728 year: 2016 ident: C9TA11782B-(cit147)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602608 – volume: 4 start-page: 1700298 year: 2017 ident: C9TA11782B-(cit33)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201700298 – volume: 24 start-page: 439 year: 2020 ident: C9TA11782B-(cit23)/*[position()=1] publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2019.07.017 – volume: 7 start-page: 455 year: 2015 ident: C9TA11782B-(cit119)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR05604C – volume: 76 start-page: 165 year: 2014 ident: C9TA11782B-(cit16)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2014.04.064 – volume: 8 start-page: 1701785 year: 2018 ident: C9TA11782B-(cit157)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701785 – volume: 6 start-page: 11244 year: 2018 ident: C9TA11782B-(cit88)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02945H – volume: 12 start-page: 11678 year: 2018 ident: C9TA11782B-(cit98)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b07227 – volume: 54 start-page: 349 year: 2018 ident: C9TA11782B-(cit128)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.027 – volume: 14 start-page: 6387 year: 2014 ident: C9TA11782B-(cit60)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5028606 – volume: 9 start-page: 2314 year: 2016 ident: C9TA11782B-(cit76)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01501H – volume: 5 start-page: 5884 year: 2012 ident: C9TA11782B-(cit5)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02781j – volume: 57 start-page: 9859 year: 2018 ident: C9TA11782B-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805552 – volume: 5 start-page: 12144 year: 2017 ident: C9TA11782B-(cit87)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03060F – volume: 4 start-page: 18 year: 2011 ident: C9TA11782B-(cit29)/*[position()=1] publication-title: Adv. Sci. Lett. doi: 10.1166/asl.2011.1198 – volume: 58 start-page: 7739 year: 2019 ident: C9TA11782B-(cit21)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902583 – volume: 15 start-page: 043501 year: 2014 ident: C9TA11782B-(cit159)/*[position()=1] publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/15/4/043501 – volume: 114 start-page: 11636 year: 2014 ident: C9TA11782B-(cit8)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500192f – volume: 13 start-page: 221 year: 2019 ident: C9TA11782B-(cit105)/*[position()=1] publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2019.05.009 – volume: 16 start-page: 519 year: 2019 ident: C9TA11782B-(cit51)/*[position()=1] publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2018.09.010 – volume: 5 start-page: 8334 year: 2017 ident: C9TA11782B-(cit49)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01480E – volume: 2 start-page: 5133 year: 2019 ident: C9TA11782B-(cit117)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00819 – volume: 50 start-page: 247 year: 2004 ident: C9TA11782B-(cit143)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.01.090 – volume: 28 start-page: 216 year: 2016 ident: C9TA11782B-(cit153)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.010 – volume: 28 start-page: 4126 year: 2016 ident: C9TA11782B-(cit77)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505918 – volume: 334 start-page: 928 year: 2011 ident: C9TA11782B-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1212741 – volume: 9 start-page: 26118 year: 2017 ident: C9TA11782B-(cit85)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07964 – volume: 1 start-page: 11163 year: 2013 ident: C9TA11782B-(cit30)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12040f – volume: 15 start-page: 6339 year: 2015 ident: C9TA11782B-(cit108)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03373 – volume: 5 start-page: 1500174 year: 2015 ident: C9TA11782B-(cit26)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500174 – volume: 7 start-page: 1466 year: 2014 ident: C9TA11782B-(cit125)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-014-0506-z – volume: 386 start-page: 34 year: 2018 ident: C9TA11782B-(cit127)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.032 – volume: 3 start-page: 156 year: 2013 ident: C9TA11782B-(cit158)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200558 |
SSID | ssj0000800699 |
Score | 2.5845933 |
SecondaryResourceType | review_article |
Snippet | Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2913 |
SubjectTerms | Anodes Antimony Batteries Carbonaceous materials Design Electrical conductivity Electrical resistivity Electrochemical analysis Electrochemistry Electrode materials energy energy density Energy storage Flux density Lithium lithium batteries Lithium-ion batteries Nanoparticles Nanostructure Rechargeable batteries Sodium Sodium-ion batteries Storage batteries tin |
Title | Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries |
URI | https://www.proquest.com/docview/2352932745 https://www.proquest.com/docview/2388753061 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67gIHxK-JsoGM4IKqlMROE_tYqk4DVUOIVPQW2a6jIbFk2trL_nrec-ykaDsMLlEVJ2nr78t7n-3n9wj5IMGNq8RwzHycRmkV80iILI4sKrk8Bx9lXbTFeXa2Sr-up-vBoNqLWtpt9cTc3ruv5H9QhXOAK-6S_Qdku4fCCfgM-MIREIbjgzAGzYdL-S7GCi0WIHlpQU1j4uofddSGZeoIPRVmZG021mVfGN80m1-7ywiR1y6_ZogkvKtSQdC2_2RsQmm4yXjW7vIJLS5reLuH0E3Dhz1ZGHbbh-j44ik_bT0uVNNZGz9fPb_Y1XCw3pG6G3zT9-Bd_eQEjESxVErS2zAWT-MoT9uitcHgij1eZeOrCZMJ1pPjfN-QynaLqnfKofWOwY855ks1cquSBMSO7t1aWMo__1aerpbLslisiwNyyICEbEgOZ4viy7KbjUPdnLlio90vDrlsufzUP_5v9dIPSQ6uQ70Yp0uKp-SJh4rOWnY8IwNbPyeP99JMviDLlic08IQ2NQ08ocATCqjRwBPa8oQCqLTnCe148pKsThfF_CzyVTQiw6fJNso3TGtrFa6XG8sqZriaai4MNAudaSWUxIg4IRKlGHRPXoGdtroCGcNQHR-RYd3U9hWhuZRWCSk2VWrSjU2k4JkVqjI8ZlVSVSPyMfROaXyKeax08rt0oQ5clnNZzFxPfh6R9921V21ilXuvOgmdXPoX76ZkMGiAYUeeTkfkXdcMrwCudanaNju8RuBIHNTqiBwBON139Fi-fsDNx-RRT-sTMtxe7-wbUKFb_dZT6A_wJYgq |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+on+metallic+Sn-+and+Sb-based+anodes+for+sodium-ion+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Jing%2C+Wen+Tao&rft.au=Yang%2C+Chun+Cheng&rft.au=Jiang%2C+Qing&rft.date=2020-02-11&rft.issn=2050-7496&rft.volume=8&rft.issue=6+p.2913-2933&rft.spage=2913&rft.epage=2933&rft_id=info:doi/10.1039%2Fc9ta11782b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |