Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries

Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing to the natural abundance, low cost and environmental benignity of sodium resources. However, the low energy density and poor cycling life limi...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 6; pp. 2913 - 2933
Main Authors Jing, Wen Tao, Yang, Chun Cheng, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 11.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing to the natural abundance, low cost and environmental benignity of sodium resources. However, the low energy density and poor cycling life limit their commercial applications. The development of high-performance anode materials is one of the key issues for SIBs. Compared with carbonaceous materials, metallic Sn-, Sb- and SnSb alloy-based anodes have developed rapidly due to their high theoretical capacity, high electrical conductivity and safe reaction potential. The major challenge for them is the large volume change during the sodiation/desodiation process, resulting in rapid capacity decay. Numerous efforts have been devoted to solving this problem. This review summarizes recent progress on this cutting-edge topic. A range of Sn-, Sb- and SnSb-based anode materials have been introduced with respect to size control and nanostructure design. It is found that the use of ultra-small nanoparticles, elaborate interface design, heterogeneous element (N, S etc. ) doping, multi-dimensional integration etc. are efficient strategies to enhance the electrochemical performance of these anode materials. The ingenious nanostructures and their synthesis methods reported in this review may provide new insights to the rational design of novel anode materials for practical application in advanced energy storage devices in the near future. Sodium-ion batteries with metallic Sn- and Sb-based anodes have great potential for application in large-scale green energy storage devices.
AbstractList Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing to the natural abundance, low cost and environmental benignity of sodium resources. However, the low energy density and poor cycling life limit their commercial applications. The development of high-performance anode materials is one of the key issues for SIBs. Compared with carbonaceous materials, metallic Sn-, Sb- and SnSb alloy-based anodes have developed rapidly due to their high theoretical capacity, high electrical conductivity and safe reaction potential. The major challenge for them is the large volume change during the sodiation/desodiation process, resulting in rapid capacity decay. Numerous efforts have been devoted to solving this problem. This review summarizes recent progress on this cutting-edge topic. A range of Sn-, Sb- and SnSb-based anode materials have been introduced with respect to size control and nanostructure design. It is found that the use of ultra-small nanoparticles, elaborate interface design, heterogeneous element (N, S etc.) doping, multi-dimensional integration etc. are efficient strategies to enhance the electrochemical performance of these anode materials. The ingenious nanostructures and their synthesis methods reported in this review may provide new insights to the rational design of novel anode materials for practical application in advanced energy storage devices in the near future.
Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing to the natural abundance, low cost and environmental benignity of sodium resources. However, the low energy density and poor cycling life limit their commercial applications. The development of high-performance anode materials is one of the key issues for SIBs. Compared with carbonaceous materials, metallic Sn-, Sb- and SnSb alloy-based anodes have developed rapidly due to their high theoretical capacity, high electrical conductivity and safe reaction potential. The major challenge for them is the large volume change during the sodiation/desodiation process, resulting in rapid capacity decay. Numerous efforts have been devoted to solving this problem. This review summarizes recent progress on this cutting-edge topic. A range of Sn-, Sb- and SnSb-based anode materials have been introduced with respect to size control and nanostructure design. It is found that the use of ultra-small nanoparticles, elaborate interface design, heterogeneous element (N, S etc. ) doping, multi-dimensional integration etc. are efficient strategies to enhance the electrochemical performance of these anode materials. The ingenious nanostructures and their synthesis methods reported in this review may provide new insights to the rational design of novel anode materials for practical application in advanced energy storage devices in the near future.
Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing to the natural abundance, low cost and environmental benignity of sodium resources. However, the low energy density and poor cycling life limit their commercial applications. The development of high-performance anode materials is one of the key issues for SIBs. Compared with carbonaceous materials, metallic Sn-, Sb- and SnSb alloy-based anodes have developed rapidly due to their high theoretical capacity, high electrical conductivity and safe reaction potential. The major challenge for them is the large volume change during the sodiation/desodiation process, resulting in rapid capacity decay. Numerous efforts have been devoted to solving this problem. This review summarizes recent progress on this cutting-edge topic. A range of Sn-, Sb- and SnSb-based anode materials have been introduced with respect to size control and nanostructure design. It is found that the use of ultra-small nanoparticles, elaborate interface design, heterogeneous element (N, S etc. ) doping, multi-dimensional integration etc. are efficient strategies to enhance the electrochemical performance of these anode materials. The ingenious nanostructures and their synthesis methods reported in this review may provide new insights to the rational design of novel anode materials for practical application in advanced energy storage devices in the near future. Sodium-ion batteries with metallic Sn- and Sb-based anodes have great potential for application in large-scale green energy storage devices.
Author Yang, Chun Cheng
Jing, Wen Tao
Jiang, Qing
AuthorAffiliation Ministry of Education
Jilin University
School of Materials Science and Engineering
Key Laboratory of Automobile Materials
AuthorAffiliation_xml – sequence: 0
  name: Jilin University
– sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: Key Laboratory of Automobile Materials
– sequence: 0
  name: Ministry of Education
Author_xml – sequence: 1
  givenname: Wen Tao
  surname: Jing
  fullname: Jing, Wen Tao
– sequence: 2
  givenname: Chun Cheng
  surname: Yang
  fullname: Yang, Chun Cheng
– sequence: 3
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
BookMark eNpt0c1LwzAUAPAgE5xzF-9CwYsI1XysbXKcwy8YCG6ey0v6Kh1tM5P04H9vdDJhmEsS8nuP915Oyai3PRJyzugNo0LdGhWAsUJyfUTGnGY0LWYqH-3PUp6QqfcbGpekNFdqTJavaLAPydbZd4feJ7ZPOgzQto1JVn2aQF8lK51q8FjFi63QJ7V1ibdVM3RpE72GENA16M_IcQ2tx-nvPiFvD_frxVO6fHl8XsyXqREZC2lRca0RQVE2M8hrbgRkWkgTn6XONUhQqA1IyQA4L4qizhhFXeextyznYkKudnlj1R8D-lB2jTfYttCjHXzJhZRFJmjOIr08oBs7uD5WF1XGleDFLIuK7pRx1nuHdWmaACE2Fxw0bclo-T3hcqHW858J38WQ64OQrWs6cJ__44sddt7s3d93iS-MHIZa
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_178692
crossref_primary_10_1007_s12274_021_3334_y
crossref_primary_10_1016_j_ensm_2024_103334
crossref_primary_10_1016_j_xcrp_2022_100891
crossref_primary_10_1002_slct_202302417
crossref_primary_10_1016_j_cej_2024_158461
crossref_primary_10_1016_j_jqsrt_2023_108508
crossref_primary_10_1557_s43581_022_00029_9
crossref_primary_10_1039_D3QI00460K
crossref_primary_10_1002_anie_202206770
crossref_primary_10_1002_admi_202101571
crossref_primary_10_1016_j_cej_2021_132359
crossref_primary_10_1016_j_jmst_2021_11_079
crossref_primary_10_1002_adfm_202408296
crossref_primary_10_1088_1361_6528_acb15c
crossref_primary_10_1039_D1SE00386K
crossref_primary_10_1016_j_nanoms_2021_06_007
crossref_primary_10_1002_advs_202408450
crossref_primary_10_1016_j_cej_2021_133675
crossref_primary_10_1039_D1EE01341F
crossref_primary_10_3390_batteries11020054
crossref_primary_10_1002_adfm_202314147
crossref_primary_10_1039_D0TA04349D
crossref_primary_10_1016_j_jpowsour_2024_235739
crossref_primary_10_1021_acsami_2c12759
crossref_primary_10_1088_1361_6463_abfdd8
crossref_primary_10_1007_s40843_023_2493_9
crossref_primary_10_1142_S1793292024500292
crossref_primary_10_1016_j_mser_2023_100737
crossref_primary_10_1016_j_ensm_2022_03_010
crossref_primary_10_3390_cryst12050575
crossref_primary_10_1002_cey2_374
crossref_primary_10_1016_j_flatc_2023_100516
crossref_primary_10_1016_j_electacta_2023_143308
crossref_primary_10_1039_D5SE00172B
crossref_primary_10_1016_j_cej_2021_134318
crossref_primary_10_1016_j_jallcom_2021_160857
crossref_primary_10_1021_acsami_3c01905
crossref_primary_10_1002_batt_202300022
crossref_primary_10_1016_j_supflu_2022_105720
crossref_primary_10_3390_ma13163453
crossref_primary_10_1039_D3CS00601H
crossref_primary_10_1002_aenm_202203187
crossref_primary_10_1016_j_est_2024_113395
crossref_primary_10_1002_ange_202206770
crossref_primary_10_1016_j_jallcom_2021_161658
crossref_primary_10_1002_smll_202006016
crossref_primary_10_1007_s10853_025_10702_2
crossref_primary_10_1016_j_nanoen_2022_107995
crossref_primary_10_1016_j_jpowsour_2020_228872
crossref_primary_10_1016_j_jpowsour_2021_229585
crossref_primary_10_1002_tcr_202200098
crossref_primary_10_1002_anie_202214258
crossref_primary_10_1016_j_jmrt_2023_02_128
crossref_primary_10_1016_j_jmst_2023_05_048
crossref_primary_10_1016_j_nxener_2024_100097
crossref_primary_10_1007_s10854_024_12696_0
crossref_primary_10_1002_slct_202305056
crossref_primary_10_1039_D4NR03503H
crossref_primary_10_1002_ange_202214258
crossref_primary_10_1002_cey2_552
crossref_primary_10_1016_j_est_2024_113045
crossref_primary_10_1016_j_jpowsour_2024_235543
crossref_primary_10_1002_chem_202101561
crossref_primary_10_1039_D0TA12063D
crossref_primary_10_1016_j_nanoen_2023_108753
crossref_primary_10_1016_j_jpowsour_2021_230826
crossref_primary_10_1002_er_5769
crossref_primary_10_1016_j_chphma_2021_10_003
crossref_primary_10_1002_batt_202300281
crossref_primary_10_3390_ma16062189
crossref_primary_10_1002_adma_202209924
crossref_primary_10_1016_j_est_2024_114422
crossref_primary_10_1016_j_cej_2022_136768
crossref_primary_10_1016_j_jallcom_2021_161913
crossref_primary_10_1149_1945_7111_ac2708
crossref_primary_10_1002_adfm_202400302
crossref_primary_10_1016_j_jallcom_2022_167576
crossref_primary_10_1002_advs_202403530
crossref_primary_10_1016_j_matchemphys_2021_125510
crossref_primary_10_1016_j_jallcom_2022_163772
crossref_primary_10_1039_D0TA11501K
crossref_primary_10_1002_cey2_172
crossref_primary_10_1016_j_oceram_2023_100354
crossref_primary_10_1016_j_cej_2022_139805
crossref_primary_10_1002_smll_202107869
crossref_primary_10_1016_j_jallcom_2020_158267
crossref_primary_10_1002_smll_202205681
crossref_primary_10_1016_j_electacta_2020_137379
crossref_primary_10_1007_s11426_022_1416_2
crossref_primary_10_1016_j_jcis_2022_05_090
crossref_primary_10_1016_j_matlet_2020_128989
crossref_primary_10_1039_D1SE00219H
crossref_primary_10_1039_D2CS01029A
crossref_primary_10_1002_batt_202400551
crossref_primary_10_1016_j_jcis_2024_06_080
crossref_primary_10_3390_surfaces6030016
crossref_primary_10_1016_j_electacta_2021_139071
crossref_primary_10_1016_j_enchem_2022_100095
crossref_primary_10_1021_acsmaterialslett_4c02033
crossref_primary_10_1002_adfm_202400779
crossref_primary_10_1016_j_jmst_2022_10_051
crossref_primary_10_1039_D0MA00024H
crossref_primary_10_1149_1945_7111_ad3854
crossref_primary_10_1002_cphc_202400793
crossref_primary_10_1021_acsami_3c18941
crossref_primary_10_3390_nano12152521
crossref_primary_10_1016_j_matlet_2025_138032
Cites_doi 10.1021/acsaem.8b00416
10.1007/s12274-017-1627-y
10.1021/acs.accounts.5b00114
10.1021/acsami.7b08870
10.1002/aenm.201601177
10.1039/c4cp01240b
10.1016/j.jpowsour.2018.07.019
10.1002/adma.201304962
10.1002/adfm.201700447
10.1002/adma.201704670
10.1039/C7TA06770D
10.1039/C7QM00480J
10.1039/C5TA10568D
10.1002/smll.201703116
10.1002/adma.201604563
10.1039/c3ta13438e
10.1021/acsami.7b04635
10.1016/j.cej.2019.05.036
10.1039/c4cp00738g
10.1039/C5TA03181H
10.1039/C6CS00776G
10.1002/adma.201805432
10.1039/C5TA08601A
10.1021/acs.chemmater.5b03920
10.1002/aenm.201800079
10.1088/2053-1591/ab00cd
10.1021/acsami.5b08274
10.1016/j.matlet.2015.07.034
10.1016/j.apsusc.2017.09.154
10.1039/C9CC00001A
10.1021/acsami.6b13193
10.1039/c3ta11568b
10.1021/am4023994
10.1016/j.nantod.2012.08.004
10.1016/j.nanoen.2017.08.051
10.1038/nature11475
10.1016/j.jpowsour.2015.02.071
10.1002/chem.201801574
10.1039/B916098A
10.1016/j.electacta.2015.12.136
10.1016/j.nanoen.2015.07.020
10.1016/j.ensm.2018.01.016
10.1016/j.nanoen.2019.104133
10.1039/c2cc17129e
10.1039/c3cs60426h
10.1039/C9TA05176G
10.1021/acsaem.8b02231
10.1021/acsaem.8b01353
10.1002/celc.201700828
10.1039/C7TA06469A
10.1002/adma.201600012
10.1039/C8TA00592C
10.1021/acsami.6b04736
10.1039/C7TA03434B
10.1039/C9TA07199G
10.1016/j.jpowsour.2015.01.163
10.1038/nnano.2007.451
10.1021/acs.nanolett.7b01152
10.1021/jp501032d
10.1002/adfm.201502433
10.1002/adma.201503015
10.1039/C7TA10277A
10.1038/srep16629
10.1002/adfm.201900790
10.1021/acsenergylett.8b00762
10.1002/chem.201402511
10.1021/jacs.7b01398
10.1002/aenm.201801781
10.1039/C8TA02248H
10.1002/adma.201703012
10.1021/acs.nanolett.8b04468
10.1002/aenm.201901096
10.1002/aenm.201703237
10.1016/j.matt.2019.03.010
10.1016/j.chempr.2017.05.021
10.1007/s12274-017-1536-0
10.1002/adfm.201402943
10.1002/adma.201700622
10.1039/C8EE03632B
10.1002/smll.201500783
10.1002/cphc.201400088
10.1002/ijch.201400118
10.1039/C8TA01782D
10.1016/j.elecom.2013.03.029
10.1002/adfm.201200691
10.1021/acs.chemrev.5b00102
10.1002/aenm.201702403
10.1002/aenm.201700463
10.1039/C8NR06182C
10.1002/smll.201501313
10.1039/C8EE01023D
10.1021/nn4063598
10.1039/C5CC06266G
10.1021/acs.nanolett.7b00083
10.1039/C4TA06086E
10.1038/ncomms2878
10.1039/C8TA03692F
10.1039/C8NR08461K
10.1016/j.carbon.2015.09.091
10.1016/j.electacta.2014.04.159
10.1021/am507436u
10.1039/C9TA03380G
10.1021/acsami.6b01761
10.1002/anie.201902988
10.1021/acsaem.8b01934
10.1039/C7EE00524E
10.1002/smll.201900258
10.1002/adma.201204877
10.1039/C3EE42944J
10.1021/acsami.7b10085
10.1016/j.cej.2019.04.045
10.1002/anie.201607469
10.1016/j.ensm.2017.08.011
10.1002/smll.201903194
10.1039/C8TA09551E
10.1007/s40820-019-0294-9
10.1016/j.electacta.2016.03.171
10.1039/C9TA01158G
10.1002/adma.201701968
10.1039/C6TA10345F
10.1039/C4EE03215B
10.1039/C7TA00690J
10.1021/ja310347x
10.1021/acsami.6b16000
10.1002/smll.201701835
10.1021/nn4025674
10.1002/adfm.201602608
10.1002/advs.201700298
10.1016/j.ensm.2019.07.017
10.1039/C4NR05604C
10.1016/j.carbon.2014.04.064
10.1002/aenm.201701785
10.1039/C8TA02945H
10.1021/acsnano.8b07227
10.1016/j.nanoen.2018.10.027
10.1021/nl5028606
10.1039/C6EE01501H
10.1039/c2ee02781j
10.1002/anie.201805552
10.1039/C7TA03060F
10.1166/asl.2011.1198
10.1002/anie.201902583
10.1088/1468-6996/15/4/043501
10.1021/cr500192f
10.1016/j.mtener.2019.05.009
10.1016/j.ensm.2018.09.010
10.1039/C7TA01480E
10.1021/acsaem.9b00819
10.1016/j.electacta.2004.01.090
10.1016/j.nanoen.2016.08.010
10.1002/adma.201505918
10.1126/science.1212741
10.1021/acsami.7b07964
10.1039/c3ta12040f
10.1021/acs.nanolett.5b03373
10.1002/aenm.201500174
10.1007/s12274-014-0506-z
10.1016/j.jpowsour.2018.03.032
10.1002/aenm.201200558
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/c9ta11782b
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 2933
ExternalDocumentID 10_1039_C9TA11782B
c9ta11782b
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c351t-7d2bbeea9014ce2f2c3a5b38cc358b6ba8a9ebca881aa22777f510ebf67825623
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 19:09:11 EDT 2025
Mon Jun 30 11:57:54 EDT 2025
Tue Jul 01 01:12:48 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Tue Dec 17 20:58:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-7d2bbeea9014ce2f2c3a5b38cc358b6ba8a9ebca881aa22777f510ebf67825623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2888-8860
0000-0003-0660-596X
PQID 2352932745
PQPubID 2047523
PageCount 21
ParticipantIDs crossref_citationtrail_10_1039_C9TA11782B
proquest_journals_2352932745
crossref_primary_10_1039_C9TA11782B
rsc_primary_c9ta11782b
proquest_miscellaneous_2388753061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200211
PublicationDateYYYYMMDD 2020-02-11
PublicationDate_xml – month: 2
  year: 2020
  text: 20200211
  day: 11
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (C9TA11782B-(cit103)/*[position()=1]) 2019; 7
Choi (C9TA11782B-(cit127)/*[position()=1]) 2018; 386
Yabuuchi (C9TA11782B-(cit159)/*[position()=1]) 2014; 15
Bommier (C9TA11782B-(cit15)/*[position()=1]) 2015; 55
Gao (C9TA11782B-(cit2)/*[position()=1]) 2010; 3
Liu (C9TA11782B-(cit60)/*[position()=1]) 2014; 14
Wang (C9TA11782B-(cit72)/*[position()=1]) 2015; 11
Kim (C9TA11782B-(cit25)/*[position()=1]) 2013; 25
Muñoz-Márquez (C9TA11782B-(cit11)/*[position()=1]) 2017; 7
Baggetto (C9TA11782B-(cit30)/*[position()=1]) 2013; 1
Wu (C9TA11782B-(cit107)/*[position()=1]) 2019; 7
Li (C9TA11782B-(cit56)/*[position()=1]) 2008; 3
Kim (C9TA11782B-(cit135)/*[position()=1]) 2014; 16
Yabuuchi (C9TA11782B-(cit8)/*[position()=1]) 2014; 114
Fang (C9TA11782B-(cit21)/*[position()=1]) 2019; 58
Huang (C9TA11782B-(cit149)/*[position()=1]) 2019; 12
Chen (C9TA11782B-(cit111)/*[position()=1]) 2017; 3
He (C9TA11782B-(cit41)/*[position()=1]) 2018; 2
Darwiche (C9TA11782B-(cit67)/*[position()=1]) 2012; 134
Ruiz (C9TA11782B-(cit93)/*[position()=1]) 2018; 8
Yamamoto (C9TA11782B-(cit139)/*[position()=1]) 2014; 135
Li (C9TA11782B-(cit125)/*[position()=1]) 2014; 7
Jian (C9TA11782B-(cit3)/*[position()=1]) 2015; 25
Selvaraj (C9TA11782B-(cit94)/*[position()=1]) 2018; 1
Wang (C9TA11782B-(cit14)/*[position()=1]) 2017; 13
Jing (C9TA11782B-(cit101)/*[position()=1]) 2019; 1
Hwang (C9TA11782B-(cit142)/*[position()=1]) 2017; 46
Liu (C9TA11782B-(cit34)/*[position()=1]) 2018; 6
Wang (C9TA11782B-(cit20)/*[position()=1]) 2019; 31
Xu (C9TA11782B-(cit86)/*[position()=1]) 2017; 5
Li (C9TA11782B-(cit37)/*[position()=1]) 2018; 11
Baggetto (C9TA11782B-(cit109)/*[position()=1]) 2013; 1
Baggetto (C9TA11782B-(cit134)/*[position()=1]) 2014; 16
Liang (C9TA11782B-(cit79)/*[position()=1]) 2017; 5
Qin (C9TA11782B-(cit124)/*[position()=1]) 2018; 30
Balogun (C9TA11782B-(cit12)/*[position()=1]) 2016; 98
Wu (C9TA11782B-(cit70)/*[position()=1]) 2014; 7
Hu (C9TA11782B-(cit113)/*[position()=1]) 2015; 27
Lu (C9TA11782B-(cit145)/*[position()=1]) 2016; 190
Zhang (C9TA11782B-(cit98)/*[position()=1]) 2018; 12
Li (C9TA11782B-(cit54)/*[position()=1]) 2016; 200
Liang (C9TA11782B-(cit133)/*[position()=1]) 2017; 10
Lao (C9TA11782B-(cit32)/*[position()=1]) 2017; 29
Liu (C9TA11782B-(cit89)/*[position()=1]) 2018; 1
Liu (C9TA11782B-(cit80)/*[position()=1]) 2017; 17
Che (C9TA11782B-(cit144)/*[position()=1]) 2017; 10
Ying (C9TA11782B-(cit49)/*[position()=1]) 2017; 5
Zhang (C9TA11782B-(cit146)/*[position()=1]) 2016; 55
Fan (C9TA11782B-(cit26)/*[position()=1]) 2015; 5
Wang (C9TA11782B-(cit84)/*[position()=1]) 2017; 9
Hasa (C9TA11782B-(cit151)/*[position()=1]) 2014; 15
He (C9TA11782B-(cit119)/*[position()=1]) 2015; 7
Luo (C9TA11782B-(cit90)/*[position()=1]) 2018; 8
Wang (C9TA11782B-(cit77)/*[position()=1]) 2016; 28
Yang (C9TA11782B-(cit64)/*[position()=1]) 2018; 6
Wu (C9TA11782B-(cit85)/*[position()=1]) 2017; 9
Song (C9TA11782B-(cit82)/*[position()=1]) 2017; 40
Palomares (C9TA11782B-(cit5)/*[position()=1]) 2012; 5
Kim (C9TA11782B-(cit9)/*[position()=1]) 2014; 20
Palaniselvam (C9TA11782B-(cit43)/*[position()=1]) 2019; 29
Cui (C9TA11782B-(cit100)/*[position()=1]) 2019; 19
Ruan (C9TA11782B-(cit63)/*[position()=1]) 2017; 9
Guo (C9TA11782B-(cit155)/*[position()=1]) 2017; 29
Nita (C9TA11782B-(cit105)/*[position()=1]) 2019; 13
Ji (C9TA11782B-(cit131)/*[position()=1]) 2014; 26
Walter (C9TA11782B-(cit120)/*[position()=1]) 2016; 4
Zhang (C9TA11782B-(cit23)/*[position()=1]) 2020; 24
Liu (C9TA11782B-(cit46)/*[position()=1]) 2015; 27
Sha (C9TA11782B-(cit48)/*[position()=1]) 2017; 5
Xu (C9TA11782B-(cit148)/*[position()=1]) 2018; 8
Jian (C9TA11782B-(cit158)/*[position()=1]) 2013; 3
Kang (C9TA11782B-(cit10)/*[position()=1]) 2015; 3
Liu (C9TA11782B-(cit76)/*[position()=1]) 2016; 9
Yuan (C9TA11782B-(cit97)/*[position()=1]) 2018; 6
Li (C9TA11782B-(cit17)/*[position()=1]) 2015; 51
Hwang (C9TA11782B-(cit6)/*[position()=1]) 2017; 46
Li (C9TA11782B-(cit40)/*[position()=1]) 2015; 48
Wang (C9TA11782B-(cit58)/*[position()=1]) 2017; 29
Ji (C9TA11782B-(cit121)/*[position()=1]) 2015; 7
Li (C9TA11782B-(cit160)/*[position()=1]) 2018; 397
Lin (C9TA11782B-(cit66)/*[position()=1]) 2013; 5
Xiao (C9TA11782B-(cit114)/*[position()=1]) 2012; 48
Zhao (C9TA11782B-(cit78)/*[position()=1]) 2016; 8
Yin (C9TA11782B-(cit59)/*[position()=1]) 2016; 28
Chen (C9TA11782B-(cit156)/*[position()=1]) 2019; 66
Yu (C9TA11782B-(cit57)/*[position()=1]) 2017; 29
Zhang (C9TA11782B-(cit147)/*[position()=1]) 2016; 26
Li (C9TA11782B-(cit47)/*[position()=1]) 2016; 8
Kim (C9TA11782B-(cit61)/*[position()=1]) 2017; 5
Fang (C9TA11782B-(cit22)/*[position()=1]) 2019; 58
Ying (C9TA11782B-(cit33)/*[position()=1]) 2017; 4
Choi (C9TA11782B-(cit138)/*[position()=1]) 2015; 159
Zhang (C9TA11782B-(cit154)/*[position()=1]) 2017; 9
Wu (C9TA11782B-(cit73)/*[position()=1]) 2015; 3
Youn (C9TA11782B-(cit132)/*[position()=1]) 2018; 5
Li (C9TA11782B-(cit104)/*[position()=1]) 2019; 9
Yang (C9TA11782B-(cit87)/*[position()=1]) 2017; 5
Li (C9TA11782B-(cit42)/*[position()=1]) 2019; 2
Zhu (C9TA11782B-(cit99)/*[position()=1]) 2018; 428
Slater (C9TA11782B-(cit31)/*[position()=1]) 2013; 23
Sun (C9TA11782B-(cit18)/*[position()=1]) 2013; 4
Li (C9TA11782B-(cit55)/*[position()=1]) 2015; 115
Han (C9TA11782B-(cit53)/*[position()=1]) 2017; 9
Chu (C9TA11782B-(cit1)/*[position()=1]) 2012; 488
Song (C9TA11782B-(cit35)/*[position()=1]) 2019; 15
Jackson (C9TA11782B-(cit137)/*[position()=1]) 2015; 7
Luo (C9TA11782B-(cit50)/*[position()=1]) 2019; 11
Fang (C9TA11782B-(cit88)/*[position()=1]) 2018; 6
Baggetto (C9TA11782B-(cit140)/*[position()=1]) 2014; 118
Zhang (C9TA11782B-(cit75)/*[position()=1]) 2015; 11
Li (C9TA11782B-(cit38)/*[position()=1]) 2016; 4
Wang (C9TA11782B-(cit52)/*[position()=1]) 2019; 7
Ma (C9TA11782B-(cit130)/*[position()=1]) 2019; 55
Chayambuka (C9TA11782B-(cit7)/*[position()=1]) 2018; 8
Fehse (C9TA11782B-(cit115)/*[position()=1]) 2018; 6
Aurbach (C9TA11782B-(cit143)/*[position()=1]) 2004; 50
Bommier (C9TA11782B-(cit16)/*[position()=1]) 2014; 76
Zhou (C9TA11782B-(cit27)/*[position()=1]) 2016; 6
Wu (C9TA11782B-(cit36)/*[position()=1]) 2012; 7
Pan (C9TA11782B-(cit51)/*[position()=1]) 2019; 16
Kalisvaart (C9TA11782B-(cit102)/*[position()=1]) 2019; 2
Stratford (C9TA11782B-(cit45)/*[position()=1]) 2017; 139
Liu (C9TA11782B-(cit28)/*[position()=1]) 2015; 25
Mao (C9TA11782B-(cit62)/*[position()=1]) 2017; 17
Park (C9TA11782B-(cit106)/*[position()=1]) 2019; 373
Ma (C9TA11782B-(cit91)/*[position()=1]) 2018; 13
Wang (C9TA11782B-(cit83)/*[position()=1]) 2017; 5
Choi (C9TA11782B-(cit110)/*[position()=1]) 2019; 7
Seng (C9TA11782B-(cit29)/*[position()=1]) 2011; 4
Liu (C9TA11782B-(cit71)/*[position()=1]) 2015; 16
Zhou (C9TA11782B-(cit68)/*[position()=1]) 2013; 1
Leng (C9TA11782B-(cit122)/*[position()=1]) 2015; 5
Yang (C9TA11782B-(cit19)/*[position()=1]) 2018; 6
Li (C9TA11782B-(cit65)/*[position()=1]) 2017; 27
Liu (C9TA11782B-(cit81)/*[position()=1]) 2017; 10
Kim (C9TA11782B-(cit152)/*[position()=1]) 2015; 8
You (C9TA11782B-(cit157)/*[position()=1]) 2018; 8
Dunn (C9TA11782B-(cit4)/*[position()=1]) 2011; 334
Fang (C9TA11782B-(cit24)/*[position()=1]) 2018; 57
Kalisvaart (C9TA11782B-(cit117)/*[position()=1]) 2019; 2
Ren (C9TA11782B-(cit153)/*[position()=1]) 2016; 28
Li (C9TA11782B-(cit126)/*[position()=1]) 2017; 9
Wang (C9TA11782B-(cit123)/*[position()=1]) 2019; 371
Zheng (C9TA11782B-(cit136)/*[position()=1]) 2019; 6
Fang (C9TA11782B-(cit150)/*[position()=1]) 2018; 14
Darwiche (C9TA11782B-(cit118)/*[position()=1]) 2013; 32
Zhu (C9TA11782B-(cit69)/*[position()=1]) 2013; 7
Pham (C9TA11782B-(cit92)/*[position()=1]) 2018; 10
Wu (C9TA11782B-(cit96)/*[position()=1]) 2018; 10
Yang (C9TA11782B-(cit74)/*[position()=1]) 2015; 282
Li (C9TA11782B-(cit108)/*[position()=1]) 2015; 15
Song (C9TA11782B-(cit95)/*[position()=1]) 2018; 11
Edison (C9TA11782B-(cit129)/*[position()=1]) 2019; 7
Li (C9TA11782B-(cit13)/*[position()=1]) 2018; 24
Farbod (C9TA11782B-(cit44)/*[position()=1]) 2014; 8
Ma (C9TA11782B-(cit128)/*[position()=1]) 2018; 54
Kim (C9TA11782B-(cit39)/*[position()=1]) 2019; 15
Kim (C9TA11782B-(cit141)/*[position()=1]) 2015; 281
Zhang (C9TA11782B-(cit112)/*[position()=1]) 2014; 43
Xie (C9TA11782B-(cit116)/*[position()=1]) 2018; 3
References_xml – volume: 1
  start-page: 2317
  year: 2018
  ident: C9TA11782B-(cit94)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00416
– volume: 10
  start-page: 4360
  year: 2017
  ident: C9TA11782B-(cit81)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1627-y
– volume: 48
  start-page: 1657
  year: 2015
  ident: C9TA11782B-(cit40)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00114
– volume: 9
  start-page: 28620
  year: 2017
  ident: C9TA11782B-(cit53)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08870
– volume: 6
  start-page: 1601177
  year: 2016
  ident: C9TA11782B-(cit27)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601177
– volume: 16
  start-page: 12884
  year: 2014
  ident: C9TA11782B-(cit135)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c4cp01240b
– volume: 397
  start-page: 162
  year: 2018
  ident: C9TA11782B-(cit160)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.019
– volume: 26
  start-page: 2901
  year: 2014
  ident: C9TA11782B-(cit131)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304962
– volume: 27
  start-page: 1700447
  year: 2017
  ident: C9TA11782B-(cit65)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700447
– volume: 30
  start-page: 1704670
  year: 2018
  ident: C9TA11782B-(cit124)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704670
– volume: 5
  start-page: 20623
  year: 2017
  ident: C9TA11782B-(cit83)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06770D
– volume: 2
  start-page: 437
  year: 2018
  ident: C9TA11782B-(cit41)/*[position()=1]
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00480J
– volume: 4
  start-page: 7053
  year: 2016
  ident: C9TA11782B-(cit120)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10568D
– volume: 14
  start-page: 1703116
  year: 2018
  ident: C9TA11782B-(cit150)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201703116
– volume: 29
  start-page: 1604563
  year: 2017
  ident: C9TA11782B-(cit57)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604563
– volume: 1
  start-page: 13727
  year: 2013
  ident: C9TA11782B-(cit68)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13438e
– volume: 9
  start-page: 25250
  year: 2017
  ident: C9TA11782B-(cit126)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04635
– volume: 373
  start-page: 227
  year: 2019
  ident: C9TA11782B-(cit106)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.036
– volume: 16
  start-page: 9538
  year: 2014
  ident: C9TA11782B-(cit134)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c4cp00738g
– volume: 3
  start-page: 17899
  year: 2015
  ident: C9TA11782B-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03181H
– volume: 46
  start-page: 3485
  year: 2017
  ident: C9TA11782B-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 31
  start-page: 1805432
  year: 2019
  ident: C9TA11782B-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805432
– volume: 4
  start-page: 96
  year: 2016
  ident: C9TA11782B-(cit38)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08601A
– volume: 27
  start-page: 8138
  year: 2015
  ident: C9TA11782B-(cit113)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03920
– volume: 8
  start-page: 1800079
  year: 2018
  ident: C9TA11782B-(cit7)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800079
– volume: 6
  start-page: 056410
  year: 2019
  ident: C9TA11782B-(cit136)/*[position()=1]
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab00cd
– volume: 7
  start-page: 24895
  year: 2015
  ident: C9TA11782B-(cit121)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08274
– volume: 159
  start-page: 349
  year: 2015
  ident: C9TA11782B-(cit138)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.07.034
– volume: 428
  start-page: 448
  year: 2018
  ident: C9TA11782B-(cit99)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.09.154
– volume: 55
  start-page: 6938
  year: 2019
  ident: C9TA11782B-(cit130)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00001A
– volume: 9
  start-page: 447
  year: 2017
  ident: C9TA11782B-(cit84)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13193
– volume: 1
  start-page: 7985
  year: 2013
  ident: C9TA11782B-(cit109)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11568b
– volume: 5
  start-page: 8273
  year: 2013
  ident: C9TA11782B-(cit66)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4023994
– volume: 7
  start-page: 414
  year: 2012
  ident: C9TA11782B-(cit36)/*[position()=1]
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2012.08.004
– volume: 40
  start-page: 504
  year: 2017
  ident: C9TA11782B-(cit82)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.051
– volume: 488
  start-page: 294
  year: 2012
  ident: C9TA11782B-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 282
  start-page: 358
  year: 2015
  ident: C9TA11782B-(cit74)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.071
– volume: 46
  start-page: 3529
  year: 2017
  ident: C9TA11782B-(cit142)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 24
  start-page: 13719
  year: 2018
  ident: C9TA11782B-(cit13)/*[position()=1]
  publication-title: Chemistry
  doi: 10.1002/chem.201801574
– volume: 3
  start-page: 174
  year: 2010
  ident: C9TA11782B-(cit2)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/B916098A
– volume: 190
  start-page: 402
  year: 2016
  ident: C9TA11782B-(cit145)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.136
– volume: 16
  start-page: 389
  year: 2015
  ident: C9TA11782B-(cit71)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.07.020
– volume: 13
  start-page: 247
  year: 2018
  ident: C9TA11782B-(cit91)/*[position()=1]
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2018.01.016
– volume: 66
  start-page: 104133
  year: 2019
  ident: C9TA11782B-(cit156)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104133
– volume: 48
  start-page: 3321
  year: 2012
  ident: C9TA11782B-(cit114)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17129e
– volume: 43
  start-page: 4423
  year: 2014
  ident: C9TA11782B-(cit112)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60426h
– volume: 7
  start-page: 23747
  year: 2019
  ident: C9TA11782B-(cit52)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05176G
– volume: 2
  start-page: 2205
  year: 2019
  ident: C9TA11782B-(cit102)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b02231
– volume: 1
  start-page: 6381
  year: 2018
  ident: C9TA11782B-(cit89)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01353
– volume: 5
  start-page: 391
  year: 2018
  ident: C9TA11782B-(cit132)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700828
– volume: 5
  start-page: 20304
  year: 2017
  ident: C9TA11782B-(cit61)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06469A
– volume: 28
  start-page: 7494
  year: 2016
  ident: C9TA11782B-(cit59)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600012
– volume: 6
  start-page: 5555
  year: 2018
  ident: C9TA11782B-(cit97)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00592C
– volume: 8
  start-page: 19438
  year: 2016
  ident: C9TA11782B-(cit47)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04736
– volume: 5
  start-page: 13411
  year: 2017
  ident: C9TA11782B-(cit86)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03434B
– volume: 7
  start-page: 23121
  year: 2019
  ident: C9TA11782B-(cit110)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07199G
– volume: 281
  start-page: 11
  year: 2015
  ident: C9TA11782B-(cit141)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.163
– volume: 3
  start-page: 101
  year: 2008
  ident: C9TA11782B-(cit56)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.451
– volume: 17
  start-page: 3830
  year: 2017
  ident: C9TA11782B-(cit62)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01152
– volume: 118
  start-page: 7856
  year: 2014
  ident: C9TA11782B-(cit140)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp501032d
– volume: 25
  start-page: 5778
  year: 2015
  ident: C9TA11782B-(cit3)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502433
– volume: 27
  start-page: 6702
  year: 2015
  ident: C9TA11782B-(cit46)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503015
– volume: 6
  start-page: 3877
  year: 2018
  ident: C9TA11782B-(cit64)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10277A
– volume: 5
  start-page: 16629
  year: 2015
  ident: C9TA11782B-(cit122)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep16629
– volume: 29
  start-page: 1900790
  year: 2019
  ident: C9TA11782B-(cit43)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900790
– volume: 3
  start-page: 1670
  year: 2018
  ident: C9TA11782B-(cit116)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00762
– volume: 20
  start-page: 11980
  year: 2014
  ident: C9TA11782B-(cit9)/*[position()=1]
  publication-title: Chemistry
  doi: 10.1002/chem.201402511
– volume: 139
  start-page: 7273
  year: 2017
  ident: C9TA11782B-(cit45)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01398
– volume: 8
  start-page: 1801781
  year: 2018
  ident: C9TA11782B-(cit93)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801781
– volume: 6
  start-page: 8724
  year: 2018
  ident: C9TA11782B-(cit115)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02248H
– volume: 29
  start-page: 1703012
  year: 2017
  ident: C9TA11782B-(cit58)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703012
– volume: 19
  start-page: 538
  year: 2019
  ident: C9TA11782B-(cit100)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04468
– volume: 9
  start-page: 1901096
  year: 2019
  ident: C9TA11782B-(cit104)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901096
– volume: 8
  start-page: 1703237
  year: 2018
  ident: C9TA11782B-(cit90)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703237
– volume: 1
  start-page: 720
  year: 2019
  ident: C9TA11782B-(cit101)/*[position()=1]
  publication-title: Matter
  doi: 10.1016/j.matt.2019.03.010
– volume: 3
  start-page: 152
  year: 2017
  ident: C9TA11782B-(cit111)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.021
– volume: 10
  start-page: 3189
  year: 2017
  ident: C9TA11782B-(cit133)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1536-0
– volume: 25
  start-page: 214
  year: 2015
  ident: C9TA11782B-(cit28)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402943
– volume: 29
  start-page: 1700622
  year: 2017
  ident: C9TA11782B-(cit32)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700622
– volume: 12
  start-page: 1550
  year: 2019
  ident: C9TA11782B-(cit149)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03632B
– volume: 11
  start-page: 3822
  year: 2015
  ident: C9TA11782B-(cit75)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201500783
– volume: 15
  start-page: 2152
  year: 2014
  ident: C9TA11782B-(cit151)/*[position()=1]
  publication-title: Chemphyschem
  doi: 10.1002/cphc.201400088
– volume: 55
  start-page: 486
  year: 2015
  ident: C9TA11782B-(cit15)/*[position()=1]
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201400118
– volume: 6
  start-page: 8159
  year: 2018
  ident: C9TA11782B-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01782D
– volume: 32
  start-page: 18
  year: 2013
  ident: C9TA11782B-(cit118)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.03.029
– volume: 23
  start-page: 947
  year: 2013
  ident: C9TA11782B-(cit31)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200691
– volume: 115
  start-page: 7046
  year: 2015
  ident: C9TA11782B-(cit55)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00102
– volume: 8
  start-page: 1702403
  year: 2018
  ident: C9TA11782B-(cit148)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702403
– volume: 7
  start-page: 1700463
  year: 2017
  ident: C9TA11782B-(cit11)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700463
– volume: 10
  start-page: 19399
  year: 2018
  ident: C9TA11782B-(cit92)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR06182C
– volume: 11
  start-page: 5381
  year: 2015
  ident: C9TA11782B-(cit72)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201501313
– volume: 11
  start-page: 2310
  year: 2018
  ident: C9TA11782B-(cit37)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01023D
– volume: 8
  start-page: 4415
  year: 2014
  ident: C9TA11782B-(cit44)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn4063598
– volume: 51
  start-page: 16045
  year: 2015
  ident: C9TA11782B-(cit17)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06266G
– volume: 17
  start-page: 2034
  year: 2017
  ident: C9TA11782B-(cit80)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00083
– volume: 3
  start-page: 5708
  year: 2015
  ident: C9TA11782B-(cit73)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06086E
– volume: 4
  start-page: 1870
  year: 2013
  ident: C9TA11782B-(cit18)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2878
– volume: 6
  start-page: 12663
  year: 2018
  ident: C9TA11782B-(cit19)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03692F
– volume: 11
  start-page: 348
  year: 2018
  ident: C9TA11782B-(cit95)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR08461K
– volume: 98
  start-page: 162
  year: 2016
  ident: C9TA11782B-(cit12)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.09.091
– volume: 135
  start-page: 60
  year: 2014
  ident: C9TA11782B-(cit139)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.04.159
– volume: 7
  start-page: 7447
  year: 2015
  ident: C9TA11782B-(cit137)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507436u
– volume: 7
  start-page: 12842
  year: 2019
  ident: C9TA11782B-(cit107)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03380G
– volume: 8
  start-page: 13871
  year: 2016
  ident: C9TA11782B-(cit78)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01761
– volume: 58
  start-page: 7744
  year: 2019
  ident: C9TA11782B-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902988
– volume: 2
  start-page: 860
  year: 2019
  ident: C9TA11782B-(cit42)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01934
– volume: 10
  start-page: 1075
  year: 2017
  ident: C9TA11782B-(cit144)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00524E
– volume: 15
  start-page: 1900258
  year: 2019
  ident: C9TA11782B-(cit39)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201900258
– volume: 25
  start-page: 3045
  year: 2013
  ident: C9TA11782B-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204877
– volume: 7
  start-page: 323
  year: 2014
  ident: C9TA11782B-(cit70)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42944J
– volume: 9
  start-page: 37682
  year: 2017
  ident: C9TA11782B-(cit63)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10085
– volume: 371
  start-page: 356
  year: 2019
  ident: C9TA11782B-(cit123)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.045
– volume: 55
  start-page: 12822
  year: 2016
  ident: C9TA11782B-(cit146)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201607469
– volume: 10
  start-page: 122
  year: 2018
  ident: C9TA11782B-(cit96)/*[position()=1]
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2017.08.011
– volume: 15
  start-page: 1903194
  year: 2019
  ident: C9TA11782B-(cit35)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201903194
– volume: 7
  start-page: 2553
  year: 2019
  ident: C9TA11782B-(cit103)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09551E
– volume: 11
  start-page: 63
  year: 2019
  ident: C9TA11782B-(cit50)/*[position()=1]
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0294-9
– volume: 200
  start-page: 59
  year: 2016
  ident: C9TA11782B-(cit54)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.171
– volume: 7
  start-page: 14145
  year: 2019
  ident: C9TA11782B-(cit129)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01158G
– volume: 29
  start-page: 1701968
  year: 2017
  ident: C9TA11782B-(cit155)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701968
– volume: 5
  start-page: 1749
  year: 2017
  ident: C9TA11782B-(cit79)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10345F
– volume: 8
  start-page: 540
  year: 2015
  ident: C9TA11782B-(cit152)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03215B
– volume: 5
  start-page: 6277
  year: 2017
  ident: C9TA11782B-(cit48)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00690J
– volume: 134
  start-page: 20805
  year: 2012
  ident: C9TA11782B-(cit67)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310347x
– volume: 9
  start-page: 7177
  year: 2017
  ident: C9TA11782B-(cit154)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16000
– volume: 13
  start-page: 1701835
  year: 2017
  ident: C9TA11782B-(cit14)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201701835
– volume: 7
  start-page: 6378
  year: 2013
  ident: C9TA11782B-(cit69)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn4025674
– volume: 26
  start-page: 6728
  year: 2016
  ident: C9TA11782B-(cit147)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602608
– volume: 4
  start-page: 1700298
  year: 2017
  ident: C9TA11782B-(cit33)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700298
– volume: 24
  start-page: 439
  year: 2020
  ident: C9TA11782B-(cit23)/*[position()=1]
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2019.07.017
– volume: 7
  start-page: 455
  year: 2015
  ident: C9TA11782B-(cit119)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR05604C
– volume: 76
  start-page: 165
  year: 2014
  ident: C9TA11782B-(cit16)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.04.064
– volume: 8
  start-page: 1701785
  year: 2018
  ident: C9TA11782B-(cit157)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701785
– volume: 6
  start-page: 11244
  year: 2018
  ident: C9TA11782B-(cit88)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02945H
– volume: 12
  start-page: 11678
  year: 2018
  ident: C9TA11782B-(cit98)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07227
– volume: 54
  start-page: 349
  year: 2018
  ident: C9TA11782B-(cit128)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.027
– volume: 14
  start-page: 6387
  year: 2014
  ident: C9TA11782B-(cit60)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5028606
– volume: 9
  start-page: 2314
  year: 2016
  ident: C9TA11782B-(cit76)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01501H
– volume: 5
  start-page: 5884
  year: 2012
  ident: C9TA11782B-(cit5)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02781j
– volume: 57
  start-page: 9859
  year: 2018
  ident: C9TA11782B-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805552
– volume: 5
  start-page: 12144
  year: 2017
  ident: C9TA11782B-(cit87)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03060F
– volume: 4
  start-page: 18
  year: 2011
  ident: C9TA11782B-(cit29)/*[position()=1]
  publication-title: Adv. Sci. Lett.
  doi: 10.1166/asl.2011.1198
– volume: 58
  start-page: 7739
  year: 2019
  ident: C9TA11782B-(cit21)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902583
– volume: 15
  start-page: 043501
  year: 2014
  ident: C9TA11782B-(cit159)/*[position()=1]
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/15/4/043501
– volume: 114
  start-page: 11636
  year: 2014
  ident: C9TA11782B-(cit8)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500192f
– volume: 13
  start-page: 221
  year: 2019
  ident: C9TA11782B-(cit105)/*[position()=1]
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2019.05.009
– volume: 16
  start-page: 519
  year: 2019
  ident: C9TA11782B-(cit51)/*[position()=1]
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2018.09.010
– volume: 5
  start-page: 8334
  year: 2017
  ident: C9TA11782B-(cit49)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01480E
– volume: 2
  start-page: 5133
  year: 2019
  ident: C9TA11782B-(cit117)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00819
– volume: 50
  start-page: 247
  year: 2004
  ident: C9TA11782B-(cit143)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.01.090
– volume: 28
  start-page: 216
  year: 2016
  ident: C9TA11782B-(cit153)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.010
– volume: 28
  start-page: 4126
  year: 2016
  ident: C9TA11782B-(cit77)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505918
– volume: 334
  start-page: 928
  year: 2011
  ident: C9TA11782B-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 9
  start-page: 26118
  year: 2017
  ident: C9TA11782B-(cit85)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07964
– volume: 1
  start-page: 11163
  year: 2013
  ident: C9TA11782B-(cit30)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12040f
– volume: 15
  start-page: 6339
  year: 2015
  ident: C9TA11782B-(cit108)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03373
– volume: 5
  start-page: 1500174
  year: 2015
  ident: C9TA11782B-(cit26)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500174
– volume: 7
  start-page: 1466
  year: 2014
  ident: C9TA11782B-(cit125)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0506-z
– volume: 386
  start-page: 34
  year: 2018
  ident: C9TA11782B-(cit127)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.032
– volume: 3
  start-page: 156
  year: 2013
  ident: C9TA11782B-(cit158)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200558
SSID ssj0000800699
Score 2.5845933
SecondaryResourceType review_article
Snippet Sodium-ion batteries (SIBs) have demonstrated greater potential for application in large-scale energy storage devices than lithium-ion batteries (LIBs) owing...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2913
SubjectTerms Anodes
Antimony
Batteries
Carbonaceous materials
Design
Electrical conductivity
Electrical resistivity
Electrochemical analysis
Electrochemistry
Electrode materials
energy
energy density
Energy storage
Flux density
Lithium
lithium batteries
Lithium-ion batteries
Nanoparticles
Nanostructure
Rechargeable batteries
Sodium
Sodium-ion batteries
Storage batteries
tin
Title Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries
URI https://www.proquest.com/docview/2352932745
https://www.proquest.com/docview/2388753061
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67gIHxK-JsoGM4IKqlMROE_tYqk4DVUOIVPQW2a6jIbFk2trL_nrec-ykaDsMLlEVJ2nr78t7n-3n9wj5IMGNq8RwzHycRmkV80iILI4sKrk8Bx9lXbTFeXa2Sr-up-vBoNqLWtpt9cTc3ruv5H9QhXOAK-6S_Qdku4fCCfgM-MIREIbjgzAGzYdL-S7GCi0WIHlpQU1j4uofddSGZeoIPRVmZG021mVfGN80m1-7ywiR1y6_ZogkvKtSQdC2_2RsQmm4yXjW7vIJLS5reLuH0E3Dhz1ZGHbbh-j44ik_bT0uVNNZGz9fPb_Y1XCw3pG6G3zT9-Bd_eQEjESxVErS2zAWT-MoT9uitcHgij1eZeOrCZMJ1pPjfN-QynaLqnfKofWOwY855ks1cquSBMSO7t1aWMo__1aerpbLslisiwNyyICEbEgOZ4viy7KbjUPdnLlio90vDrlsufzUP_5v9dIPSQ6uQ70Yp0uKp-SJh4rOWnY8IwNbPyeP99JMviDLlic08IQ2NQ08ocATCqjRwBPa8oQCqLTnCe148pKsThfF_CzyVTQiw6fJNso3TGtrFa6XG8sqZriaai4MNAudaSWUxIg4IRKlGHRPXoGdtroCGcNQHR-RYd3U9hWhuZRWCSk2VWrSjU2k4JkVqjI8ZlVSVSPyMfROaXyKeax08rt0oQ5clnNZzFxPfh6R9921V21ilXuvOgmdXPoX76ZkMGiAYUeeTkfkXdcMrwCudanaNju8RuBIHNTqiBwBON139Fi-fsDNx-RRT-sTMtxe7-wbUKFb_dZT6A_wJYgq
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+on+metallic+Sn-+and+Sb-based+anodes+for+sodium-ion+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Jing%2C+Wen+Tao&rft.au=Yang%2C+Chun+Cheng&rft.au=Jiang%2C+Qing&rft.date=2020-02-11&rft.issn=2050-7496&rft.volume=8&rft.issue=6+p.2913-2933&rft.spage=2913&rft.epage=2933&rft_id=info:doi/10.1039%2Fc9ta11782b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon