RAgE: Robust Age Estimation Through Subject Anchoring With Consistency Regularisation
Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar conditions. However, domain shifts in data, encountered in practice, lead to a sharp drop in accuracy of most existing age estimation algorithms. In t...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 46; no. 3; pp. 1603 - 1617 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar conditions. However, domain shifts in data, encountered in practice, lead to a sharp drop in accuracy of most existing age estimation algorithms. In this article, we propose a novel method, namely RAgE, to improve the robustness and reduce the uncertainty of age estimates by leveraging unlabelled data through a subject anchoring strategy and a novel consistency regularisation term. First, we propose an similarity-preserving pseudo-labelling algorithm by which the model generates pseudo-labels for a cohort of unlabelled images belonging to the same subject, while taking into account the similarity among age labels. In order to improve the robustness of the system, a consistency regularisation term is then used to simultaneously encourage the model to produce invariant outputs for the images in the cohort with respect to an anchor image. We propose a novel consistency regularisation term the noise-tolerant property of which effectively mitigates the so-called confirmation bias caused by incorrect pseudo-labels. Experiments on multiple benchmark ageing datasets demonstrate substantial improvements over the state-of-the-art methods and robustness to confounding external factors, including subject's head pose, illumination variation and appearance of expression in the face image. |
---|---|
AbstractList | Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar conditions. However, domain shifts in data, encountered in practice, lead to a sharp drop in accuracy of most existing age estimation algorithms. In this article, we propose a novel method, namely RAgE, to improve the robustness and reduce the uncertainty of age estimates by leveraging unlabelled data through a subject anchoring strategy and a novel consistency regularisation term. First, we propose an similarity-preserving pseudo-labelling algorithm by which the model generates pseudo-labels for a cohort of unlabelled images belonging to the same subject, while taking into account the similarity among age labels. In order to improve the robustness of the system, a consistency regularisation term is then used to simultaneously encourage the model to produce invariant outputs for the images in the cohort with respect to an anchor image. We propose a novel consistency regularisation term the noise-tolerant property of which effectively mitigates the so-called confirmation bias caused by incorrect pseudo-labels. Experiments on multiple benchmark ageing datasets demonstrate substantial improvements over the state-of-the-art methods and robustness to confounding external factors, including subject's head pose, illumination variation and appearance of expression in the face image. Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar conditions. However, domain shifts in data, encountered in practice, lead to a sharp drop in accuracy of most existing age estimation algorithms. In this article, we propose a novel method, namely RAgE, to improve the robustness and reduce the uncertainty of age estimates by leveraging unlabelled data through a subject anchoring strategy and a novel consistency regularisation term. First, we propose an similarity-preserving pseudo-labelling algorithm by which the model generates pseudo-labels for a cohort of unlabelled images belonging to the same subject, while taking into account the similarity among age labels. In order to improve the robustness of the system, a consistency regularisation term is then used to simultaneously encourage the model to produce invariant outputs for the images in the cohort with respect to an anchor image. We propose a novel consistency regularisation term the noise-tolerant property of which effectively mitigates the so-called confirmation bias caused by incorrect pseudo-labels. Experiments on multiple benchmark ageing datasets demonstrate substantial improvements over the state-of-the-art methods and robustness to confounding external factors, including subject's head pose, illumination variation and appearance of expression in the face image.Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar conditions. However, domain shifts in data, encountered in practice, lead to a sharp drop in accuracy of most existing age estimation algorithms. In this article, we propose a novel method, namely RAgE, to improve the robustness and reduce the uncertainty of age estimates by leveraging unlabelled data through a subject anchoring strategy and a novel consistency regularisation term. First, we propose an similarity-preserving pseudo-labelling algorithm by which the model generates pseudo-labels for a cohort of unlabelled images belonging to the same subject, while taking into account the similarity among age labels. In order to improve the robustness of the system, a consistency regularisation term is then used to simultaneously encourage the model to produce invariant outputs for the images in the cohort with respect to an anchor image. We propose a novel consistency regularisation term the noise-tolerant property of which effectively mitigates the so-called confirmation bias caused by incorrect pseudo-labels. Experiments on multiple benchmark ageing datasets demonstrate substantial improvements over the state-of-the-art methods and robustness to confounding external factors, including subject's head pose, illumination variation and appearance of expression in the face image. |
Author | Khalid, Syed Safwan Fatemifar, Soroush Akbari, Ali Awais, Muhammad Kittler, Josef |
Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0003-1457-2977 surname: Akbari fullname: Akbari, Ali email: ali.akbari@surrey.ac.uk organization: Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, U.K – sequence: 2 givenname: Muhammad orcidid: 0000-0002-1122-0709 surname: Awais fullname: Awais, Muhammad email: m.a.rana@surrey.ac.uk organization: Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, U.K – sequence: 3 givenname: Soroush orcidid: 0000-0003-3460-1093 surname: Fatemifar fullname: Fatemifar, Soroush email: s.fatemifar@surrey.ac.uk organization: Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, U.K – sequence: 4 givenname: Syed Safwan orcidid: 0000-0001-6248-0300 surname: Khalid fullname: Khalid, Syed Safwan email: s.khalid@surrey.ac.uk organization: Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, U.K – sequence: 5 givenname: Josef orcidid: 0000-0002-8110-9205 surname: Kittler fullname: Kittler, Josef email: j.kittler@surrey.ac.uk organization: Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35767502$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFuGyEURVGVqnHS_EArVSN10824DxgY6M6ynDZSqlauoywRg_EYawwpMIv8fYjtdJFFVyzeOU-8ey_QmQ_eIvQBwxRjkF9Xv2c_b6YECJlSLFpo5Rs0IZhDLYkkZ2gCmJNaCCLO0UVKOwDcMKDv0DllLW8ZkAm6W876xbdqGbox5WrW22qRstvr7IKvVtsYxn5b_Rm7nTVl7M02ROf76t7lbTUPPrmUrTeP1dL246CjSwfzPXq70UOyV6f3Et1dL1bzH_Xtr-8389ltbSjDuW4NBb6WVgpGGyZMuaDRgssNYy1mkmKLW7luOsxarTdMCAkcmGW20QY6vKaX6Mtx70MMf0ebstq7ZOwwaG_DmBThghAmQEBBP79Cd2GMvvxOlbAoppzxplCfTtTY7e1aPcSSRXxUL4EVQBwBE0NK0W6Ucflwc47aDQqDeu5GHbpRz92oUzdFJa_Ul-3_lT4eJWet_SdIgYFhSZ8AzCyXsA |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1016_j_ins_2024_121086 crossref_primary_10_1016_j_neucom_2024_128659 crossref_primary_10_1007_s00530_022_01022_5 crossref_primary_10_1109_TGRS_2025_3527483 |
Cites_doi | 10.1007/s10462-020-09855-0 10.1109/CVPR.2017.86 10.1109/TPAMI.2020.3031898 10.1109/tnnls.2021.3090358 10.1109/TMM.2017.2662203 10.1109/TIP.2017.2655445 10.1109/ICPR48806.2021.9413134 10.1109/TPAMI.2019.2943860 10.1109/WACV.2015.77 10.3758/BRM.42.1.351 10.1109/TIP.2017.2689998 10.1109/TPAMI.2017.2705122 10.1109/CVPR.2019.00521 10.1109/TPAMI.2019.2910522 10.1145/3291124 10.1109/ICCV.2019.00041 10.1007/s11263-016-0940-3 10.1007/978-3-030-01228-1_19 10.1609/aaai.v31i1.10822 10.1109/CVPR.2018.00745 10.1109/tpami.2022.3156885 10.1109/TPAMI.2018.2858821 10.1109/ACCESS.2017.2761849 10.1007/s10994-011-5268-1 10.1109/CVPR.2009.5206681 10.24963/ijcai.2018/99 10.1109/FGR.2006.78 10.1109/IJCNN48605.2020.9207304 10.1109/TPAMI.2013.51 10.1109/CVPRW.2013.75 10.1109/AFGR.2008.4813399 10.1109/PCS.2016.7906361 10.1109/ICDSP.2017.8096049 10.1109/TPAMI.2019.2945942 10.1109/TPAMI.2017.2738004 10.1109/IJCB48548.2020.9304891 10.1109/TPAMI.2019.2922396 10.1109/TIFS.2019.2902823 10.1109/TCSVT.2019.2927912 10.1109/CVPR.2016.532 10.1587/transinf.E93.D.2875 10.1007/978-3-319-46478-7_31 10.1109/TCYB.2017.2741998 10.1109/FG.2018.00020 10.1109/TPAMI.2020.3029486 10.1109/TPAMI.2019.2937294 10.1109/TSMCB.2003.817091 10.1109/tcyb.2021.3083245 10.1007/978-3-030-01267-0_9 10.1109/TKDE.2016.2545658 10.1109/LSP.2016.2603342 10.1109/TIP.2016.2633868 10.1007/s11042-009-0417-2 10.1109/34.927464 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2022.3187079 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 1617 |
ExternalDocumentID | 35767502 10_1109_TPAMI_2022_3187079 9810519 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: EPSRC Programme grantid: (FACER2VM) EP/N007743/1 – fundername: EPSRC/dstl/MURI grantid: 0184EP/R56/1 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYOK AAYXX CITATION RIG NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c351t-7c306d9e9853458c0794a869f55715931e179d4b157aaf58890605e5e4ac0b1d3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 14:59:00 EDT 2025 Sun Jun 29 15:49:06 EDT 2025 Mon Jul 21 05:59:50 EDT 2025 Tue Jul 01 01:43:04 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 Wed Aug 27 02:07:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-7c306d9e9853458c0794a869f55715931e179d4b157aaf58890605e5e4ac0b1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6248-0300 0000-0003-1457-2977 0000-0003-3460-1093 0000-0002-1122-0709 0000-0002-8110-9205 |
PMID | 35767502 |
PQID | 2923136564 |
PQPubID | 85458 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2682258080 crossref_citationtrail_10_1109_TPAMI_2022_3187079 crossref_primary_10_1109_TPAMI_2022_3187079 pubmed_primary_35767502 proquest_journals_2923136564 ieee_primary_9810519 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 Li (ref7) 2020 ref52 ref54 ref17 ref16 ref19 ref18 Arazo (ref11) 2020 Sohn (ref4) 2020; 33 Sajjadi (ref9) ref50 Vedaldi (ref61) ref46 ref45 ref48 ref47 ref42 ref41 Nair (ref6) 2019 ref43 Aherne (ref55) 1998; 34 ref49 Berthelot (ref3) ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 Oliver (ref2) ref33 ref32 ref1 ref39 ref38 Akbari (ref44) ref24 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Tarvainen (ref8) ref28 ref27 Berthelot (ref51) 2020 ref29 Liu (ref10) 2020 ref60 ref62 |
References_xml | – ident: ref66 doi: 10.1007/s10462-020-09855-0 – ident: ref24 doi: 10.1109/CVPR.2017.86 – ident: ref47 doi: 10.1109/TPAMI.2020.3031898 – ident: ref43 doi: 10.1109/tnnls.2021.3090358 – ident: ref17 doi: 10.1109/TMM.2017.2662203 – ident: ref31 doi: 10.1109/TIP.2017.2655445 – ident: ref34 doi: 10.1109/ICPR48806.2021.9413134 – start-page: 141 volume-title: Proc. 38th Int. Conf. Mach. Learn. ident: ref44 article-title: How does loss function affect generalization performance of deep learning? application to human age estimation – ident: ref25 doi: 10.1109/TPAMI.2019.2943860 – ident: ref22 doi: 10.1109/WACV.2015.77 – ident: ref63 doi: 10.3758/BRM.42.1.351 – ident: ref30 doi: 10.1109/TIP.2017.2689998 – ident: ref21 doi: 10.1109/TPAMI.2017.2705122 – ident: ref5 doi: 10.1109/CVPR.2019.00521 – ident: ref67 doi: 10.1109/TPAMI.2019.2910522 – ident: ref45 doi: 10.1145/3291124 – ident: ref54 doi: 10.1109/ICCV.2019.00041 – ident: ref26 doi: 10.1007/s11263-016-0940-3 – start-page: 1195 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref8 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – year: 2020 ident: ref51 article-title: ReMixMatch: Semi-supervised learning with distribution matching and augmentation anchoring – start-page: 5049 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref3 article-title: MixMatch: A holistic approach to semi-supervised learning – ident: ref13 doi: 10.1007/978-3-030-01228-1_19 – ident: ref40 doi: 10.1609/aaai.v31i1.10822 – ident: ref57 doi: 10.1109/CVPR.2018.00745 – ident: ref36 doi: 10.1109/tpami.2022.3156885 – ident: ref49 doi: 10.1109/TPAMI.2018.2858821 – year: 2020 ident: ref10 article-title: Decoupled certainty-driven consistency loss for semi-supervised learning – ident: ref27 doi: 10.1109/ACCESS.2017.2761849 – ident: ref56 doi: 10.1007/s10994-011-5268-1 – ident: ref15 doi: 10.1109/CVPR.2009.5206681 – ident: ref32 doi: 10.24963/ijcai.2018/99 – year: 2020 ident: ref7 article-title: DivideMix: Learning with noisy labels as semi-supervised learning – ident: ref62 doi: 10.1109/FGR.2006.78 – year: 2020 ident: ref11 article-title: Pseudo-labeling and confirmation bias in deep semi-supervised learning doi: 10.1109/IJCNN48605.2020.9207304 – ident: ref14 doi: 10.1109/TPAMI.2013.51 – ident: ref41 doi: 10.1109/CVPRW.2013.75 – ident: ref53 doi: 10.1109/AFGR.2008.4813399 – ident: ref20 doi: 10.1109/PCS.2016.7906361 – ident: ref19 doi: 10.1109/ICDSP.2017.8096049 – ident: ref46 doi: 10.1109/TPAMI.2019.2945942 – ident: ref38 doi: 10.1109/TPAMI.2017.2738004 – year: 2019 ident: ref6 article-title: RealMix: Towards realistic semi-supervised deep learning algorithms – ident: ref1 doi: 10.1109/IJCB48548.2020.9304891 – ident: ref48 doi: 10.1109/TPAMI.2019.2922396 – ident: ref37 doi: 10.1109/TIFS.2019.2902823 – volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref9 article-title: Regularization with stochastic transformations and perturbations for deep semi-supervised learning – ident: ref18 doi: 10.1109/TCSVT.2019.2927912 – ident: ref23 doi: 10.1109/CVPR.2016.532 – start-page: 3235 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref2 article-title: Realistic evaluation of deep semi-supervised learning algorithms – ident: ref42 doi: 10.1587/transinf.E93.D.2875 – ident: ref59 doi: 10.1007/978-3-319-46478-7_31 – ident: ref39 doi: 10.1109/TCYB.2017.2741998 – ident: ref58 doi: 10.1109/FG.2018.00020 – ident: ref12 doi: 10.1109/TPAMI.2020.3029486 – ident: ref33 doi: 10.1109/TPAMI.2019.2937294 – ident: ref16 doi: 10.1109/TSMCB.2003.817091 – ident: ref35 doi: 10.1109/tcyb.2021.3083245 – ident: ref52 doi: 10.1007/978-3-030-01267-0_9 – ident: ref50 doi: 10.1007/978-3-030-01228-1_19 – ident: ref29 doi: 10.1109/TKDE.2016.2545658 – start-page: 689 volume-title: Proc. ACM Int. Conf. Multimedia ident: ref61 article-title: Matconvnet – convolutional neural networks for matlab – ident: ref60 doi: 10.1109/LSP.2016.2603342 – ident: ref28 doi: 10.1109/TIP.2016.2633868 – ident: ref64 doi: 10.1007/s11042-009-0417-2 – volume: 34 start-page: 363 year: 1998 ident: ref55 article-title: The bhattacharyya metric as an absolute similarity measure for frequency coded data publication-title: Kybernetika – ident: ref65 doi: 10.1109/34.927464 – volume: 33 start-page: 596 year: 2020 ident: ref4 article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence |
SSID | ssj0014503 |
Score | 2.470837 |
Snippet | Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1603 |
SubjectTerms | Age estimation Algorithms Chronology Consistency consistency regularisation cross-domain recognition Data models Datasets domain shift Estimation Labels Lighting Predictive models Regularization Robustness semi-supervised learning Semisupervised learning Similarity Training |
Title | RAgE: Robust Age Estimation Through Subject Anchoring With Consistency Regularisation |
URI | https://ieeexplore.ieee.org/document/9810519 https://www.ncbi.nlm.nih.gov/pubmed/35767502 https://www.proquest.com/docview/2923136564 https://www.proquest.com/docview/2682258080 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaByoC-ggVIZqbeS7Saxd2NuEdqqIC1Cq13RW-THpCCqLOomB_j1jB0nqqqCuEWKnTiZ1zf2PADOKm3JThsZT_LUxk7hxZpgcUzmCLnRRmpfwHT-eXK14p-uxfUWvBtyYRDRB5_hyF36s3y7Nq3bKruQeeIQxzZsk-PW5WoNJwZc-C7IhGBIwsmN6BNkxvJi-aWYfyRXME3JQ81dSbhdeJIJV8Yk7Kb09sg3WPk71vQ253IP5v1qu1CTH6O20SPz-0Ehx__9nH14FsAnKzpuOYAtrA9hr2_swIKcH8LTe1UKj2C1KG5m79lirdtNw4obZDPSC13KI1t2fX4YKSC3o8OKmvSpm8e-fm--Md8PdONw-S-28G3v70L80HNYXc6WH67i0I0hNplImnhqyLuwEiUZeC5yQ7-Rq3wiKyGmhImyBEm2LdeJmCpViTyXY3KVUCBXZqwTm72AnXpd4zGwVGmh0GIltebGZEpZY-0E00rn5CDaCJKeJqUJpcpdx4zb0rssY1l6kpaOpGUgaQTnw5yfXaGOf44-cvQYRgZSRHDSk74MsrwpU4eBM8K9PIK3w22SQne0ompctzSGWD0VrkZnBC87lhme3XPaq8ff-Rp2aWW8i2s7gZ3mrsU3BHQafeo5_A_slfZU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8aQ4JxYLANCAwwEjdI1yR2G3OLUKcO1glVrdgt8sfLQKAUrckB_nqeHSdCCBC3SLETJ-_r9-z3AfCy0pbstJHxJE9t7BRerAkWx2SOkBttpPYFTBcXk_mav7sUlzvwesiFQUQffIYjd-nP8u3GtG6r7ETmiUMcN-Am2X2Rdtlaw5kBF74PMmEYknFyJPoUmbE8WX0oFmfkDKYp-ai5Kwq3B7cy4QqZhP2U3iL5Fit_R5ve6pzuw6Jfbxds8mXUNnpkfvxWyvF_P-ge3A3wkxUdv9yHHawPYL9v7cCCpB_AnV_qFB7Cellczd6w5Ua324YVV8hmpBm6pEe26jr9MFJBbk-HFTVpVDePffzcfGK-I-jWIfPvbOkb31-HCKIjWJ_OVm_ncejHEJtMJE08NeRfWImSTDwXuaHfyFU-kZUQU0JFWYIk3ZbrREyVqkSeyzE5SyiQKzPWic0ewG69qfERsFRpodBiJbXmxmRKWWPtBNNK5-Qi2giSnialCcXKXc-Mr6V3Wsay9CQtHUnLQNIIXg1zvnWlOv45-tDRYxgZSBHBcU_6MkjztkwdCs4I-fIIXgy3SQ7d4YqqcdPSGGL2VLgqnRE87FhmeHbPaY___M7ncHu-WpyX52cX75_AHq2Sd1Fux7DbXLf4lGBPo595bv8J70X5ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RAgE%3A+Robust+Age+Estimation+Through+Subject+Anchoring+With+Consistency+Regularisation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Akbari%2C+Ali&rft.au=Awais%2C+Muhammad&rft.au=Fatemifar%2C+Soroush&rft.au=Khalid%2C+Syed+Safwan&rft.date=2024-03-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=46&rft.issue=3&rft.spage=1603&rft.epage=1617&rft_id=info:doi/10.1109%2FTPAMI.2022.3187079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2022_3187079 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |