RAgE: Robust Age Estimation Through Subject Anchoring With Consistency Regularisation

Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar conditions. However, domain shifts in data, encountered in practice, lead to a sharp drop in accuracy of most existing age estimation algorithms. In t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 46; no. 3; pp. 1603 - 1617
Main Authors Akbari, Ali, Awais, Muhammad, Fatemifar, Soroush, Khalid, Syed Safwan, Kittler, Josef
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar conditions. However, domain shifts in data, encountered in practice, lead to a sharp drop in accuracy of most existing age estimation algorithms. In this article, we propose a novel method, namely RAgE, to improve the robustness and reduce the uncertainty of age estimates by leveraging unlabelled data through a subject anchoring strategy and a novel consistency regularisation term. First, we propose an similarity-preserving pseudo-labelling algorithm by which the model generates pseudo-labels for a cohort of unlabelled images belonging to the same subject, while taking into account the similarity among age labels. In order to improve the robustness of the system, a consistency regularisation term is then used to simultaneously encourage the model to produce invariant outputs for the images in the cohort with respect to an anchor image. We propose a novel consistency regularisation term the noise-tolerant property of which effectively mitigates the so-called confirmation bias caused by incorrect pseudo-labels. Experiments on multiple benchmark ageing datasets demonstrate substantial improvements over the state-of-the-art methods and robustness to confounding external factors, including subject's head pose, illumination variation and appearance of expression in the face image.
AbstractList Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar conditions. However, domain shifts in data, encountered in practice, lead to a sharp drop in accuracy of most existing age estimation algorithms. In this article, we propose a novel method, namely RAgE, to improve the robustness and reduce the uncertainty of age estimates by leveraging unlabelled data through a subject anchoring strategy and a novel consistency regularisation term. First, we propose an similarity-preserving pseudo-labelling algorithm by which the model generates pseudo-labels for a cohort of unlabelled images belonging to the same subject, while taking into account the similarity among age labels. In order to improve the robustness of the system, a consistency regularisation term is then used to simultaneously encourage the model to produce invariant outputs for the images in the cohort with respect to an anchor image. We propose a novel consistency regularisation term the noise-tolerant property of which effectively mitigates the so-called confirmation bias caused by incorrect pseudo-labels. Experiments on multiple benchmark ageing datasets demonstrate substantial improvements over the state-of-the-art methods and robustness to confounding external factors, including subject's head pose, illumination variation and appearance of expression in the face image.
Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar conditions. However, domain shifts in data, encountered in practice, lead to a sharp drop in accuracy of most existing age estimation algorithms. In this article, we propose a novel method, namely RAgE, to improve the robustness and reduce the uncertainty of age estimates by leveraging unlabelled data through a subject anchoring strategy and a novel consistency regularisation term. First, we propose an similarity-preserving pseudo-labelling algorithm by which the model generates pseudo-labels for a cohort of unlabelled images belonging to the same subject, while taking into account the similarity among age labels. In order to improve the robustness of the system, a consistency regularisation term is then used to simultaneously encourage the model to produce invariant outputs for the images in the cohort with respect to an anchor image. We propose a novel consistency regularisation term the noise-tolerant property of which effectively mitigates the so-called confirmation bias caused by incorrect pseudo-labels. Experiments on multiple benchmark ageing datasets demonstrate substantial improvements over the state-of-the-art methods and robustness to confounding external factors, including subject's head pose, illumination variation and appearance of expression in the face image.Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar conditions. However, domain shifts in data, encountered in practice, lead to a sharp drop in accuracy of most existing age estimation algorithms. In this article, we propose a novel method, namely RAgE, to improve the robustness and reduce the uncertainty of age estimates by leveraging unlabelled data through a subject anchoring strategy and a novel consistency regularisation term. First, we propose an similarity-preserving pseudo-labelling algorithm by which the model generates pseudo-labels for a cohort of unlabelled images belonging to the same subject, while taking into account the similarity among age labels. In order to improve the robustness of the system, a consistency regularisation term is then used to simultaneously encourage the model to produce invariant outputs for the images in the cohort with respect to an anchor image. We propose a novel consistency regularisation term the noise-tolerant property of which effectively mitigates the so-called confirmation bias caused by incorrect pseudo-labels. Experiments on multiple benchmark ageing datasets demonstrate substantial improvements over the state-of-the-art methods and robustness to confounding external factors, including subject's head pose, illumination variation and appearance of expression in the face image.
Author Khalid, Syed Safwan
Fatemifar, Soroush
Akbari, Ali
Awais, Muhammad
Kittler, Josef
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0003-1457-2977
  surname: Akbari
  fullname: Akbari, Ali
  email: ali.akbari@surrey.ac.uk
  organization: Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, U.K
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0002-1122-0709
  surname: Awais
  fullname: Awais, Muhammad
  email: m.a.rana@surrey.ac.uk
  organization: Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, U.K
– sequence: 3
  givenname: Soroush
  orcidid: 0000-0003-3460-1093
  surname: Fatemifar
  fullname: Fatemifar, Soroush
  email: s.fatemifar@surrey.ac.uk
  organization: Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, U.K
– sequence: 4
  givenname: Syed Safwan
  orcidid: 0000-0001-6248-0300
  surname: Khalid
  fullname: Khalid, Syed Safwan
  email: s.khalid@surrey.ac.uk
  organization: Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, U.K
– sequence: 5
  givenname: Josef
  orcidid: 0000-0002-8110-9205
  surname: Kittler
  fullname: Kittler, Josef
  email: j.kittler@surrey.ac.uk
  organization: Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35767502$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFuGyEURVGVqnHS_EArVSN10824DxgY6M6ynDZSqlauoywRg_EYawwpMIv8fYjtdJFFVyzeOU-8ey_QmQ_eIvQBwxRjkF9Xv2c_b6YECJlSLFpo5Rs0IZhDLYkkZ2gCmJNaCCLO0UVKOwDcMKDv0DllLW8ZkAm6W876xbdqGbox5WrW22qRstvr7IKvVtsYxn5b_Rm7nTVl7M02ROf76t7lbTUPPrmUrTeP1dL246CjSwfzPXq70UOyV6f3Et1dL1bzH_Xtr-8389ltbSjDuW4NBb6WVgpGGyZMuaDRgssNYy1mkmKLW7luOsxarTdMCAkcmGW20QY6vKaX6Mtx70MMf0ebstq7ZOwwaG_DmBThghAmQEBBP79Cd2GMvvxOlbAoppzxplCfTtTY7e1aPcSSRXxUL4EVQBwBE0NK0W6Ucflwc47aDQqDeu5GHbpRz92oUzdFJa_Ul-3_lT4eJWet_SdIgYFhSZ8AzCyXsA
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_ins_2024_121086
crossref_primary_10_1016_j_neucom_2024_128659
crossref_primary_10_1007_s00530_022_01022_5
crossref_primary_10_1109_TGRS_2025_3527483
Cites_doi 10.1007/s10462-020-09855-0
10.1109/CVPR.2017.86
10.1109/TPAMI.2020.3031898
10.1109/tnnls.2021.3090358
10.1109/TMM.2017.2662203
10.1109/TIP.2017.2655445
10.1109/ICPR48806.2021.9413134
10.1109/TPAMI.2019.2943860
10.1109/WACV.2015.77
10.3758/BRM.42.1.351
10.1109/TIP.2017.2689998
10.1109/TPAMI.2017.2705122
10.1109/CVPR.2019.00521
10.1109/TPAMI.2019.2910522
10.1145/3291124
10.1109/ICCV.2019.00041
10.1007/s11263-016-0940-3
10.1007/978-3-030-01228-1_19
10.1609/aaai.v31i1.10822
10.1109/CVPR.2018.00745
10.1109/tpami.2022.3156885
10.1109/TPAMI.2018.2858821
10.1109/ACCESS.2017.2761849
10.1007/s10994-011-5268-1
10.1109/CVPR.2009.5206681
10.24963/ijcai.2018/99
10.1109/FGR.2006.78
10.1109/IJCNN48605.2020.9207304
10.1109/TPAMI.2013.51
10.1109/CVPRW.2013.75
10.1109/AFGR.2008.4813399
10.1109/PCS.2016.7906361
10.1109/ICDSP.2017.8096049
10.1109/TPAMI.2019.2945942
10.1109/TPAMI.2017.2738004
10.1109/IJCB48548.2020.9304891
10.1109/TPAMI.2019.2922396
10.1109/TIFS.2019.2902823
10.1109/TCSVT.2019.2927912
10.1109/CVPR.2016.532
10.1587/transinf.E93.D.2875
10.1007/978-3-319-46478-7_31
10.1109/TCYB.2017.2741998
10.1109/FG.2018.00020
10.1109/TPAMI.2020.3029486
10.1109/TPAMI.2019.2937294
10.1109/TSMCB.2003.817091
10.1109/tcyb.2021.3083245
10.1007/978-3-030-01267-0_9
10.1109/TKDE.2016.2545658
10.1109/LSP.2016.2603342
10.1109/TIP.2016.2633868
10.1007/s11042-009-0417-2
10.1109/34.927464
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2022.3187079
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1617
ExternalDocumentID 35767502
10_1109_TPAMI_2022_3187079
9810519
Genre orig-research
Journal Article
GrantInformation_xml – fundername: EPSRC Programme
  grantid: (FACER2VM) EP/N007743/1
– fundername: EPSRC/dstl/MURI
  grantid: 0184EP/R56/1
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-7c306d9e9853458c0794a869f55715931e179d4b157aaf58890605e5e4ac0b1d3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 14:59:00 EDT 2025
Sun Jun 29 15:49:06 EDT 2025
Mon Jul 21 05:59:50 EDT 2025
Tue Jul 01 01:43:04 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Wed Aug 27 02:07:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-7c306d9e9853458c0794a869f55715931e179d4b157aaf58890605e5e4ac0b1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6248-0300
0000-0003-1457-2977
0000-0003-3460-1093
0000-0002-1122-0709
0000-0002-8110-9205
PMID 35767502
PQID 2923136564
PQPubID 85458
PageCount 15
ParticipantIDs proquest_miscellaneous_2682258080
crossref_citationtrail_10_1109_TPAMI_2022_3187079
crossref_primary_10_1109_TPAMI_2022_3187079
pubmed_primary_35767502
proquest_journals_2923136564
ieee_primary_9810519
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
Li (ref7) 2020
ref52
ref54
ref17
ref16
ref19
ref18
Arazo (ref11) 2020
Sohn (ref4) 2020; 33
Sajjadi (ref9)
ref50
Vedaldi (ref61)
ref46
ref45
ref48
ref47
ref42
ref41
Nair (ref6) 2019
ref43
Aherne (ref55) 1998; 34
ref49
Berthelot (ref3)
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
Oliver (ref2)
ref33
ref32
ref1
ref39
ref38
Akbari (ref44)
ref24
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Tarvainen (ref8)
ref28
ref27
Berthelot (ref51) 2020
ref29
Liu (ref10) 2020
ref60
ref62
References_xml – ident: ref66
  doi: 10.1007/s10462-020-09855-0
– ident: ref24
  doi: 10.1109/CVPR.2017.86
– ident: ref47
  doi: 10.1109/TPAMI.2020.3031898
– ident: ref43
  doi: 10.1109/tnnls.2021.3090358
– ident: ref17
  doi: 10.1109/TMM.2017.2662203
– ident: ref31
  doi: 10.1109/TIP.2017.2655445
– ident: ref34
  doi: 10.1109/ICPR48806.2021.9413134
– start-page: 141
  volume-title: Proc. 38th Int. Conf. Mach. Learn.
  ident: ref44
  article-title: How does loss function affect generalization performance of deep learning? application to human age estimation
– ident: ref25
  doi: 10.1109/TPAMI.2019.2943860
– ident: ref22
  doi: 10.1109/WACV.2015.77
– ident: ref63
  doi: 10.3758/BRM.42.1.351
– ident: ref30
  doi: 10.1109/TIP.2017.2689998
– ident: ref21
  doi: 10.1109/TPAMI.2017.2705122
– ident: ref5
  doi: 10.1109/CVPR.2019.00521
– ident: ref67
  doi: 10.1109/TPAMI.2019.2910522
– ident: ref45
  doi: 10.1145/3291124
– ident: ref54
  doi: 10.1109/ICCV.2019.00041
– ident: ref26
  doi: 10.1007/s11263-016-0940-3
– start-page: 1195
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref8
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
– year: 2020
  ident: ref51
  article-title: ReMixMatch: Semi-supervised learning with distribution matching and augmentation anchoring
– start-page: 5049
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref3
  article-title: MixMatch: A holistic approach to semi-supervised learning
– ident: ref13
  doi: 10.1007/978-3-030-01228-1_19
– ident: ref40
  doi: 10.1609/aaai.v31i1.10822
– ident: ref57
  doi: 10.1109/CVPR.2018.00745
– ident: ref36
  doi: 10.1109/tpami.2022.3156885
– ident: ref49
  doi: 10.1109/TPAMI.2018.2858821
– year: 2020
  ident: ref10
  article-title: Decoupled certainty-driven consistency loss for semi-supervised learning
– ident: ref27
  doi: 10.1109/ACCESS.2017.2761849
– ident: ref56
  doi: 10.1007/s10994-011-5268-1
– ident: ref15
  doi: 10.1109/CVPR.2009.5206681
– ident: ref32
  doi: 10.24963/ijcai.2018/99
– year: 2020
  ident: ref7
  article-title: DivideMix: Learning with noisy labels as semi-supervised learning
– ident: ref62
  doi: 10.1109/FGR.2006.78
– year: 2020
  ident: ref11
  article-title: Pseudo-labeling and confirmation bias in deep semi-supervised learning
  doi: 10.1109/IJCNN48605.2020.9207304
– ident: ref14
  doi: 10.1109/TPAMI.2013.51
– ident: ref41
  doi: 10.1109/CVPRW.2013.75
– ident: ref53
  doi: 10.1109/AFGR.2008.4813399
– ident: ref20
  doi: 10.1109/PCS.2016.7906361
– ident: ref19
  doi: 10.1109/ICDSP.2017.8096049
– ident: ref46
  doi: 10.1109/TPAMI.2019.2945942
– ident: ref38
  doi: 10.1109/TPAMI.2017.2738004
– year: 2019
  ident: ref6
  article-title: RealMix: Towards realistic semi-supervised deep learning algorithms
– ident: ref1
  doi: 10.1109/IJCB48548.2020.9304891
– ident: ref48
  doi: 10.1109/TPAMI.2019.2922396
– ident: ref37
  doi: 10.1109/TIFS.2019.2902823
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref9
  article-title: Regularization with stochastic transformations and perturbations for deep semi-supervised learning
– ident: ref18
  doi: 10.1109/TCSVT.2019.2927912
– ident: ref23
  doi: 10.1109/CVPR.2016.532
– start-page: 3235
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref2
  article-title: Realistic evaluation of deep semi-supervised learning algorithms
– ident: ref42
  doi: 10.1587/transinf.E93.D.2875
– ident: ref59
  doi: 10.1007/978-3-319-46478-7_31
– ident: ref39
  doi: 10.1109/TCYB.2017.2741998
– ident: ref58
  doi: 10.1109/FG.2018.00020
– ident: ref12
  doi: 10.1109/TPAMI.2020.3029486
– ident: ref33
  doi: 10.1109/TPAMI.2019.2937294
– ident: ref16
  doi: 10.1109/TSMCB.2003.817091
– ident: ref35
  doi: 10.1109/tcyb.2021.3083245
– ident: ref52
  doi: 10.1007/978-3-030-01267-0_9
– ident: ref50
  doi: 10.1007/978-3-030-01228-1_19
– ident: ref29
  doi: 10.1109/TKDE.2016.2545658
– start-page: 689
  volume-title: Proc. ACM Int. Conf. Multimedia
  ident: ref61
  article-title: Matconvnet – convolutional neural networks for matlab
– ident: ref60
  doi: 10.1109/LSP.2016.2603342
– ident: ref28
  doi: 10.1109/TIP.2016.2633868
– ident: ref64
  doi: 10.1007/s11042-009-0417-2
– volume: 34
  start-page: 363
  year: 1998
  ident: ref55
  article-title: The bhattacharyya metric as an absolute similarity measure for frequency coded data
  publication-title: Kybernetika
– ident: ref65
  doi: 10.1109/34.927464
– volume: 33
  start-page: 596
  year: 2020
  ident: ref4
  article-title: FixMatch: Simplifying semi-supervised learning with consistency and confidence
SSID ssj0014503
Score 2.470837
Snippet Modern facial age estimation systems can achieve high accuracy when training and test datasets are identically distributed and captured under similar...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1603
SubjectTerms Age estimation
Algorithms
Chronology
Consistency
consistency regularisation
cross-domain recognition
Data models
Datasets
domain shift
Estimation
Labels
Lighting
Predictive models
Regularization
Robustness
semi-supervised learning
Semisupervised learning
Similarity
Training
Title RAgE: Robust Age Estimation Through Subject Anchoring With Consistency Regularisation
URI https://ieeexplore.ieee.org/document/9810519
https://www.ncbi.nlm.nih.gov/pubmed/35767502
https://www.proquest.com/docview/2923136564
https://www.proquest.com/docview/2682258080
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaByoC-ggVIZqbeS7Saxd2NuEdqqIC1Cq13RW-THpCCqLOomB_j1jB0nqqqCuEWKnTiZ1zf2PADOKm3JThsZT_LUxk7hxZpgcUzmCLnRRmpfwHT-eXK14p-uxfUWvBtyYRDRB5_hyF36s3y7Nq3bKruQeeIQxzZsk-PW5WoNJwZc-C7IhGBIwsmN6BNkxvJi-aWYfyRXME3JQ81dSbhdeJIJV8Yk7Kb09sg3WPk71vQ253IP5v1qu1CTH6O20SPz-0Ehx__9nH14FsAnKzpuOYAtrA9hr2_swIKcH8LTe1UKj2C1KG5m79lirdtNw4obZDPSC13KI1t2fX4YKSC3o8OKmvSpm8e-fm--Md8PdONw-S-28G3v70L80HNYXc6WH67i0I0hNplImnhqyLuwEiUZeC5yQ7-Rq3wiKyGmhImyBEm2LdeJmCpViTyXY3KVUCBXZqwTm72AnXpd4zGwVGmh0GIltebGZEpZY-0E00rn5CDaCJKeJqUJpcpdx4zb0rssY1l6kpaOpGUgaQTnw5yfXaGOf44-cvQYRgZSRHDSk74MsrwpU4eBM8K9PIK3w22SQne0ompctzSGWD0VrkZnBC87lhme3XPaq8ff-Rp2aWW8i2s7gZ3mrsU3BHQafeo5_A_slfZU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8aQ4JxYLANCAwwEjdI1yR2G3OLUKcO1glVrdgt8sfLQKAUrckB_nqeHSdCCBC3SLETJ-_r9-z3AfCy0pbstJHxJE9t7BRerAkWx2SOkBttpPYFTBcXk_mav7sUlzvwesiFQUQffIYjd-nP8u3GtG6r7ETmiUMcN-Am2X2Rdtlaw5kBF74PMmEYknFyJPoUmbE8WX0oFmfkDKYp-ai5Kwq3B7cy4QqZhP2U3iL5Fit_R5ve6pzuw6Jfbxds8mXUNnpkfvxWyvF_P-ge3A3wkxUdv9yHHawPYL9v7cCCpB_AnV_qFB7Cellczd6w5Ua324YVV8hmpBm6pEe26jr9MFJBbk-HFTVpVDePffzcfGK-I-jWIfPvbOkb31-HCKIjWJ_OVm_ncejHEJtMJE08NeRfWImSTDwXuaHfyFU-kZUQU0JFWYIk3ZbrREyVqkSeyzE5SyiQKzPWic0ewG69qfERsFRpodBiJbXmxmRKWWPtBNNK5-Qi2giSnialCcXKXc-Mr6V3Wsay9CQtHUnLQNIIXg1zvnWlOv45-tDRYxgZSBHBcU_6MkjztkwdCs4I-fIIXgy3SQ7d4YqqcdPSGGL2VLgqnRE87FhmeHbPaY___M7ncHu-WpyX52cX75_AHq2Sd1Fux7DbXLf4lGBPo595bv8J70X5ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RAgE%3A+Robust+Age+Estimation+Through+Subject+Anchoring+With+Consistency+Regularisation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Akbari%2C+Ali&rft.au=Awais%2C+Muhammad&rft.au=Fatemifar%2C+Soroush&rft.au=Khalid%2C+Syed+Safwan&rft.date=2024-03-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=46&rft.issue=3&rft.spage=1603&rft.epage=1617&rft_id=info:doi/10.1109%2FTPAMI.2022.3187079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2022_3187079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon