STEW: Simultaneous Task EEG Workload Data Set

This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant ch...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 11; pp. 2106 - 2114
Main Authors Lim, W. L., Sourina, O., Wang, L. P.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant channels and activities for the experiment are highlighted. Classification performance was evaluated by training a support vector regression model on selected features from neighborhood component analysis based on a nine-point workload rating scale. With a reduced feature dimension, 69% classification accuracy was obtained for 3 identified workload levels from the rating scale with Cohen's kappa of 0.46. Accurate discrimination of mental workload is a desirable outcome in the field of operator performance analysis and BCI development; thus, we hope that our provided database and analyses can contribute to future investigations in this research field.
AbstractList This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant channels and activities for the experiment are highlighted. Classification performance was evaluated by training a support vector regression model on selected features from neighborhood component analysis based on a nine-point workload rating scale. With a reduced feature dimension, 69% classification accuracy was obtained for 3 identified workload levels from the rating scale with Cohen's kappa of 0.46. Accurate discrimination of mental workload is a desirable outcome in the field of operator performance analysis and BCI development; thus, we hope that our provided database and analyses can contribute to future investigations in this research field.This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant channels and activities for the experiment are highlighted. Classification performance was evaluated by training a support vector regression model on selected features from neighborhood component analysis based on a nine-point workload rating scale. With a reduced feature dimension, 69% classification accuracy was obtained for 3 identified workload levels from the rating scale with Cohen's kappa of 0.46. Accurate discrimination of mental workload is a desirable outcome in the field of operator performance analysis and BCI development; thus, we hope that our provided database and analyses can contribute to future investigations in this research field.
This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant channels and activities for the experiment are highlighted. Classification performance was evaluated by training a support vector regression model on selected features from neighborhood component analysis based on a nine-point workload rating scale. With a reduced feature dimension, 69% classification accuracy was obtained for 3 identified workload levels from the rating scale with Cohen's kappa of 0.46. Accurate discrimination of mental workload is a desirable outcome in the field of operator performance analysis and BCI development; thus, we hope that our provided database and analyses can contribute to future investigations in this research field.
Author Lim, W. L.
Wang, L. P.
Sourina, O.
Author_xml – sequence: 1
  givenname: W. L.
  orcidid: 0000-0002-3627-2679
  surname: Lim
  fullname: Lim, W. L.
  email: wlim031@e.ntu.edu.sg
  organization: School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: O.
  orcidid: 0000-0001-9405-8841
  surname: Sourina
  fullname: Sourina, O.
  email: eosourina@ntu.edu.sg
  organization: Fraunhofer Institute Singapore, Nanyang Technological University, Singapore
– sequence: 3
  givenname: L. P.
  orcidid: 0000-0002-4257-7639
  surname: Wang
  fullname: Wang, L. P.
  email: elpwang@ntu.edu.sg
  organization: School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30281467$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQQC0Eoh_wB0BCkVhYUu5sx7HZUAkFqQKJBnWMXNeR0uajxMnAvyelpUMHpvPwnu_0BuS0rEpLyBXCCBHUffw2-4hGFFCOqAypovyE9DEIpA8U4XT7ZtznjEKPDJxbAWAogvCc9BhQiVyEfeLP4mj-4M2yos0bXdqqdV6s3dqLook3r-p1Xuml96Qb7c1sc0HOUp07e7mfQ_L5HMXjF3_6PnkdP059wwJs_BAEGABuFKR0CVKjsNqaUKEUC8NTFIuUKrRUamMMU4FggmnVyYqlqIANyd3u301dfbXWNUmROWPzfHdhQhEFUo6SdejtEbqq2rrsrusoFgZSMMk76mZPtYvCLpNNnRW6_k7-QnQA3QGmrpyrbXpAEJJt7eS3drKtnexrd5I8kkzW6CaryqbWWf6_er1TM2vtYZfkoUQRsB-e24hi
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_TNNLS_2022_3159573
crossref_primary_10_1016_j_ymeth_2021_04_006
crossref_primary_10_3390_s21155205
crossref_primary_10_1109_TNSRE_2023_3314679
crossref_primary_10_1016_j_bspc_2023_105488
crossref_primary_10_3389_fnhum_2025_1503228
crossref_primary_10_1109_TIM_2024_3470966
crossref_primary_10_3390_ijerph182211891
crossref_primary_10_2339_politeknik_794655
crossref_primary_10_1007_s10548_023_01016_0
crossref_primary_10_3390_s23031367
crossref_primary_10_1109_TCDS_2024_3460750
crossref_primary_10_1016_j_neuroscience_2025_01_068
crossref_primary_10_1109_JBHI_2022_3212475
crossref_primary_10_1088_2516_1091_ad8530
crossref_primary_10_3390_app14135830
crossref_primary_10_3389_fnins_2022_869522
crossref_primary_10_1109_TBME_2021_3092206
crossref_primary_10_1038_s41598_021_90029_5
crossref_primary_10_1016_j_cmpb_2023_107352
crossref_primary_10_1016_j_knosys_2024_112370
crossref_primary_10_1109_JSEN_2020_3006486
crossref_primary_10_1007_s13042_024_02142_2
crossref_primary_10_3389_fnhum_2019_00057
crossref_primary_10_3389_fnhum_2022_901387
crossref_primary_10_3390_diagnostics13111936
crossref_primary_10_56038_ejrnd_v2i4_193
crossref_primary_10_3390_technologies11060151
crossref_primary_10_4236_jbm_2023_114022
crossref_primary_10_1038_s41598_024_84429_6
crossref_primary_10_1088_1741_2552_ad44d7
crossref_primary_10_3390_biomedinformatics4010048
crossref_primary_10_1016_j_inffus_2024_102697
crossref_primary_10_1038_s41598_024_59652_w
crossref_primary_10_1016_j_ymeth_2021_02_014
crossref_primary_10_3390_app14188274
crossref_primary_10_1016_j_bspc_2022_104010
crossref_primary_10_1080_10255842_2024_2386325
crossref_primary_10_1007_s11227_025_06947_y
crossref_primary_10_1038_s41597_022_01538_5
crossref_primary_10_1007_s11571_023_10051_3
crossref_primary_10_1109_ACCESS_2024_3523491
crossref_primary_10_1016_j_bspc_2022_104006
crossref_primary_10_1049_el_2020_1011
crossref_primary_10_1109_JBHI_2023_3330345
crossref_primary_10_1142_S0219519421400200
crossref_primary_10_3389_fninf_2022_861967
crossref_primary_10_3390_s21175746
crossref_primary_10_3389_fnhum_2020_609096
crossref_primary_10_3390_app14062282
crossref_primary_10_1038_s41597_024_04348_z
crossref_primary_10_1109_TAFFC_2024_3414330
crossref_primary_10_3390_app14156521
crossref_primary_10_1109_JBHI_2021_3091187
crossref_primary_10_1007_s11760_023_02547_6
crossref_primary_10_1109_JBHI_2023_3281793
crossref_primary_10_1109_TAFFC_2021_3137857
crossref_primary_10_1016_j_bspc_2024_106284
crossref_primary_10_1016_j_ymeth_2021_04_017
crossref_primary_10_1109_TIM_2024_3369143
crossref_primary_10_1016_j_bspc_2020_101989
crossref_primary_10_1088_1741_2552_accbed
crossref_primary_10_1038_s41598_024_62230_9
crossref_primary_10_1016_j_measurement_2022_112379
crossref_primary_10_1109_TIM_2023_3265114
crossref_primary_10_1016_j_bspc_2021_103032
crossref_primary_10_1109_ACCESS_2021_3058271
crossref_primary_10_1016_j_bspc_2024_106046
crossref_primary_10_1109_TNSRE_2019_2923060
crossref_primary_10_1007_s44258_024_00043_1
crossref_primary_10_1109_TCDS_2021_3090217
crossref_primary_10_1007_s41870_022_01151_0
crossref_primary_10_3390_s24041174
crossref_primary_10_1109_ACCESS_2024_3360328
crossref_primary_10_1142_S0218348X23501360
crossref_primary_10_1007_s00521_024_09627_9
crossref_primary_10_1016_j_ymeth_2021_07_002
crossref_primary_10_1016_j_bspc_2021_102819
crossref_primary_10_1007_s44230_024_00086_y
Cites_doi 10.1016/S0166-4115(08)62386-9
10.1016/j.neulet.2009.06.045
10.1166/jnsne.2014.1092
10.1136/bmj.320.7237.768
10.1016/S0167-8760(99)00005-7
10.1109/TBME.2015.2481482
10.1109/ICOM.2011.5937125
10.1016/j.bspc.2016.09.007
10.1080/00140139.2014.956151
10.1371/journal.pone.0174949
10.4236/psych.2015.65055
10.1117/12.598555
10.1109/TNNLS.2015.2476656
10.1109/TAMD.2015.2441960
10.1016/0013-4694(87)90206-9
10.1037//0022-0663.84.4.429
10.1177/1071181311551279
10.1109/T-AFFC.2011.15
10.1016/j.ergon.2005.04.005
10.1080/14639220210159717
10.1207/s15327043hup1903_4
10.1016/j.jneumeth.2003.10.009
10.1100/tsw.2009.83
10.1016/j.jksuci.2013.01.001
10.1016/S0166-4115(08)62387-0
10.1088/1741-2560/4/2/R01
10.1007/s11251-009-9110-0
10.1016/j.neuroimage.2011.07.094
10.1109/IEMBS.2011.6091615
10.1109/TNSRE.2016.2628057
10.1016/j.bandc.2018.02.002
10.3389/fnhum.2016.00539
10.1109/TNSRE.2003.814453
10.1109/IJCNN.2014.6889525
10.1518/hfes.45.4.635.27088
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2018.2872924
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2114
ExternalDocumentID 30281467
10_1109_TNSRE_2018_2872924
8478165
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Foundation Singapore
  funderid: 10.13039/501100001381
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-7060c004c90f2d08a16eaec79186bc4f16bf291e28accc3956363a9c3593f1903
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 01:31:01 EDT 2025
Fri Jul 25 07:00:41 EDT 2025
Mon Jul 21 06:07:16 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Tue Jul 01 00:43:17 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-7060c004c90f2d08a16eaec79186bc4f16bf291e28accc3956363a9c3593f1903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9405-8841
0000-0002-4257-7639
0000-0002-3627-2679
PMID 30281467
PQID 2137586384
PQPubID 85423
PageCount 9
ParticipantIDs proquest_miscellaneous_2116124183
crossref_primary_10_1109_TNSRE_2018_2872924
pubmed_primary_30281467
proquest_journals_2137586384
crossref_citationtrail_10_1109_TNSRE_2018_2872924
ieee_primary_8478165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
santiago-espada (ref20) 2011
(ref43) 0
ref34
ref12
ref37
ref14
ref31
ref11
hart (ref17) 1988; 52
ref32
ref2
berka (ref28) 2007; 78
ref1
ref39
ref38
mühl (ref30) 2014; 8
ref16
(ref9) 2017
yang (ref45) 2012; 7
reason (ref15) 2000; 320
berka (ref23) 2005; 5797
ahmad (ref36) 2016
ref46
ref24
li (ref35) 2016; 30
ref26
ref47
ref25
ref42
ref22
ref44
comstock (ref19) 1992
ref21
(ref10) 2017
bratfisch (ref33) 2008
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
ref40
reid (ref18) 1988; 52
stytsenko (ref41) 2011
References_xml – volume: 8
  start-page: 114
  year: 2014
  ident: ref30
  article-title: EEG-based workload estimation across affective contexts
  publication-title: Frontiers Neurosci
– volume: 52
  start-page: 139
  year: 1988
  ident: ref17
  article-title: Development of NASA-TLX (task load index): Results of empirical and theoretical research
  publication-title: Advances in Psychology
  doi: 10.1016/S0166-4115(08)62386-9
– ident: ref1
  doi: 10.1016/j.neulet.2009.06.045
– ident: ref40
  doi: 10.1166/jnsne.2014.1092
– volume: 320
  start-page: 768
  year: 2000
  ident: ref15
  article-title: Human error: Models and management
  publication-title: BMJ Brit Med J
  doi: 10.1136/bmj.320.7237.768
– ident: ref47
  doi: 10.1016/S0167-8760(99)00005-7
– ident: ref44
  doi: 10.1109/TBME.2015.2481482
– ident: ref3
  doi: 10.1109/ICOM.2011.5937125
– ident: ref5
  doi: 10.1016/j.bspc.2016.09.007
– year: 0
  ident: ref43
  publication-title: Makoto's Preprocessing Pipeline
– ident: ref14
  doi: 10.1080/00140139.2014.956151
– volume: 7
  start-page: 161
  year: 2012
  ident: ref45
  article-title: Neighborhood component feature selection for high-dimensional data
  publication-title: J Chem Phys
– year: 2008
  ident: ref33
  publication-title: SIMKAP-Simultankapazität/Multi-Tasking
– ident: ref32
  doi: 10.1371/journal.pone.0174949
– ident: ref31
  doi: 10.4236/psych.2015.65055
– volume: 5797
  start-page: 90
  year: 2005
  ident: ref23
  article-title: Evaluation of an EEG workload model in an Aegis simulation environment
  publication-title: Proc SPIE
  doi: 10.1117/12.598555
– ident: ref8
  doi: 10.1109/TNNLS.2015.2476656
– ident: ref7
  doi: 10.1109/TAMD.2015.2441960
– ident: ref39
  doi: 10.1016/0013-4694(87)90206-9
– year: 1992
  ident: ref19
  article-title: The multi-attribute task battery for human operator workload and strategic behavior research
– ident: ref37
  doi: 10.1037//0022-0663.84.4.429
– ident: ref29
  doi: 10.1177/1071181311551279
– year: 2017
  ident: ref9
  publication-title: EEG Open Access Datasets
– ident: ref12
  doi: 10.1109/T-AFFC.2011.15
– ident: ref27
  doi: 10.1016/j.ergon.2005.04.005
– ident: ref22
  doi: 10.1080/14639220210159717
– ident: ref34
  doi: 10.1207/s15327043hup1903_4
– volume: 30
  start-page: 29
  year: 2016
  ident: ref35
  article-title: A normative study of cognitive ability tests in Chinese-speaking student pilots
  publication-title: J Aviation Med
– ident: ref42
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 78
  start-page: 231b
  year: 2007
  ident: ref28
  article-title: EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks
  publication-title: Aviation Space Environ Med
– ident: ref24
  doi: 10.1100/tsw.2009.83
– ident: ref6
  doi: 10.1016/j.jksuci.2013.01.001
– year: 2011
  ident: ref20
  article-title: The multi-attribute task battery II (MATB-II) software for human performance and workload research: A user's guide
– volume: 52
  start-page: 185
  year: 1988
  ident: ref18
  article-title: The subjective workload assessment technique: A scaling procedure for measuring mental workload
  publication-title: Advances in Psychology
  doi: 10.1016/S0166-4115(08)62387-0
– ident: ref2
  doi: 10.1088/1741-2560/4/2/R01
– ident: ref38
  doi: 10.1007/s11251-009-9110-0
– ident: ref26
  doi: 10.1016/j.neuroimage.2011.07.094
– ident: ref25
  doi: 10.1109/IEMBS.2011.6091615
– start-page: 1265
  year: 2016
  ident: ref36
  article-title: Human error in multitasking environments
  publication-title: Proc Int Conf Ind Eng Oper Manage
– ident: ref13
  doi: 10.1109/TNSRE.2016.2628057
– ident: ref46
  doi: 10.1016/j.bandc.2018.02.002
– ident: ref16
  doi: 10.3389/fnhum.2016.00539
– ident: ref11
  doi: 10.1109/TNSRE.2003.814453
– ident: ref4
  doi: 10.1109/IJCNN.2014.6889525
– ident: ref21
  doi: 10.1518/hfes.45.4.635.27088
– year: 2011
  ident: ref41
  article-title: Evaluation of consumer EEG device Emotiv EPOC
  publication-title: Proc MEi CogSci Conf
– year: 2017
  ident: ref10
  publication-title: EEG/ERP Data Available for Free Public Download
SSID ssj0017657
Score 2.5905452
Snippet This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2106
SubjectTerms Adult
Algorithms
Brain-Computer Interfaces
Classification
Cognitive ability
Data bases
Databases, Factual
EEG
Electroencephalography
Electroencephalography (EEG)
Electroencephalography - statistics & numerical data
Electronic mail
Frequency measurement
Humans
Male
mental workload
Models, Neurological
Multitasking
Open Access
open access dataset
Operator performance
Regression analysis
Regression models
Reproducibility of Results
Support Vector Machine
Support vector machines
Task analysis
Working conditions
Workload
Workload - psychology
Workloads
Title STEW: Simultaneous Task EEG Workload Data Set
URI https://ieeexplore.ieee.org/document/8478165
https://www.ncbi.nlm.nih.gov/pubmed/30281467
https://www.proquest.com/docview/2137586384
https://www.proquest.com/docview/2116124183
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ6oB-PF92N1NTVRL8oKFAr1ZpTVmOjBxeiNtKUkRrNrXPbir3dKAR9R442ElrbzYL5pZ6YAe3mkuUbT7LiRVk4QKOkIViCQ812FDjQX0jXZyNc37PIuuHoIH6bgqM2F0VpXwWe6Zx6rs_x8pCZmq-w4NnmRLJyGaXTcbK5We2IQsaqqJypw4ATUd5sEGZcfpzeD28REccU99A989DjmYJaiYfXs9fIf9qi6YOV3rFnZnP4CXDeztaEmT71JKXvq7Vshx_8uZxHma_BJTq20LMGUHi7D_udCwyS1VQbIAbn9UsN7BZxBmtyfkMGjiUEUQz2ajEkqxk8kSS6I2XN_HomcnItSkIEuV-Gun6Rnl0592YKjaOiVjqmio1BjFHcLP3dj4TEttIq4FzOpgsJjsvC5p_1YKKUoulWUUcGxM6cFogq6BjPD0VBvAOFMBhKhnArjIhBSxD4vQs0jgQPkUhUd8BqSZ6pehbkQ4zmrPBKXZxXHMsOxrOZYBw7bPi-2DsefrVcMuduWNaU70G04m9WqOs58j6LPhL8h7LXbvkYlMycnlprYBoExYp2YdmDdSkT77UaQNn8ecwvmzMxs-mIXZsrXid5GHFPKnUqA3wE5Tem9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RkFouPAotWyi4UtsLzRLHiRP3VkFgoewe2KDuLbIdR0KgXcRmL_z6juMkfQiq3iLFju15ZL6xZ8YAH4vYCIOm2fNjo70w1MqTvEQgF_gaHWghlW-zkYcjPrgOLybRZAm-dLkwxpg6-Mz07WN9ll_M9MJulR0lNi-SRy9gBe1-RF22VndmEPO6rieqcOiFLPDbFBlfHGWj8VVq47iSPnoIAfocq_CSoWml7oL5XxapvmLlebRZW53TdRi283XBJrf9RaX6-vGvUo7_u6ANWGvgJ_nm5GUTlsz0NXz6vdQwyVydAfKZXP1RxXsLvHGW_vhKxjc2ClFOzWwxJ5mc35I0PSN21_1uJgtyIitJxqbahuvTNDseeM11C55mEa08W0dHo85o4ZdB4SeSciONjgVNuNJhSbkqA0FNkEitNUPHinEmBXYWrERcwd7A8nQ2NTtABFehQjCno6QMpZJJIMrIiFjiAIXSZQ9oS_JcN6uwV2Lc5bVP4ou85lhuOZY3HOvBYdfn3lXi-GfrLUvurmVD6R7stZzNG2Wd5wFl6DXhjwh7feheo5rZsxNHTWyD0BjRTsJ68NZJRPftVpDePT3mAbwaZMPL_PJ89H0XVu0sXTLjHixXDwvzHlFNpfZrYf4JljTtBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STEW%3A+Simultaneous+Task+EEG+Workload+Data+Set&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Lim%2C+W+L&rft.au=Sourina%2C+O&rft.au=Wang%2C+L+P&rft.date=2018-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=26&rft.issue=11&rft.spage=2106&rft_id=info:doi/10.1109%2FTNSRE.2018.2872924&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon