STEW: Simultaneous Task EEG Workload Data Set
This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant ch...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 11; pp. 2106 - 2114 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant channels and activities for the experiment are highlighted. Classification performance was evaluated by training a support vector regression model on selected features from neighborhood component analysis based on a nine-point workload rating scale. With a reduced feature dimension, 69% classification accuracy was obtained for 3 identified workload levels from the rating scale with Cohen's kappa of 0.46. Accurate discrimination of mental workload is a desirable outcome in the field of operator performance analysis and BCI development; thus, we hope that our provided database and analyses can contribute to future investigations in this research field. |
---|---|
AbstractList | This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant channels and activities for the experiment are highlighted. Classification performance was evaluated by training a support vector regression model on selected features from neighborhood component analysis based on a nine-point workload rating scale. With a reduced feature dimension, 69% classification accuracy was obtained for 3 identified workload levels from the rating scale with Cohen's kappa of 0.46. Accurate discrimination of mental workload is a desirable outcome in the field of operator performance analysis and BCI development; thus, we hope that our provided database and analyses can contribute to future investigations in this research field.This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant channels and activities for the experiment are highlighted. Classification performance was evaluated by training a support vector regression model on selected features from neighborhood component analysis based on a nine-point workload rating scale. With a reduced feature dimension, 69% classification accuracy was obtained for 3 identified workload levels from the rating scale with Cohen's kappa of 0.46. Accurate discrimination of mental workload is a desirable outcome in the field of operator performance analysis and BCI development; thus, we hope that our provided database and analyses can contribute to future investigations in this research field. This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant channels and activities for the experiment are highlighted. Classification performance was evaluated by training a support vector regression model on selected features from neighborhood component analysis based on a nine-point workload rating scale. With a reduced feature dimension, 69% classification accuracy was obtained for 3 identified workload levels from the rating scale with Cohen's kappa of 0.46. Accurate discrimination of mental workload is a desirable outcome in the field of operator performance analysis and BCI development; thus, we hope that our provided database and analyses can contribute to future investigations in this research field. |
Author | Lim, W. L. Wang, L. P. Sourina, O. |
Author_xml | – sequence: 1 givenname: W. L. orcidid: 0000-0002-3627-2679 surname: Lim fullname: Lim, W. L. email: wlim031@e.ntu.edu.sg organization: School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: O. orcidid: 0000-0001-9405-8841 surname: Sourina fullname: Sourina, O. email: eosourina@ntu.edu.sg organization: Fraunhofer Institute Singapore, Nanyang Technological University, Singapore – sequence: 3 givenname: L. P. orcidid: 0000-0002-4257-7639 surname: Wang fullname: Wang, L. P. email: elpwang@ntu.edu.sg organization: School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30281467$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQQC0Eoh_wB0BCkVhYUu5sx7HZUAkFqQKJBnWMXNeR0uajxMnAvyelpUMHpvPwnu_0BuS0rEpLyBXCCBHUffw2-4hGFFCOqAypovyE9DEIpA8U4XT7ZtznjEKPDJxbAWAogvCc9BhQiVyEfeLP4mj-4M2yos0bXdqqdV6s3dqLook3r-p1Xuml96Qb7c1sc0HOUp07e7mfQ_L5HMXjF3_6PnkdP059wwJs_BAEGABuFKR0CVKjsNqaUKEUC8NTFIuUKrRUamMMU4FggmnVyYqlqIANyd3u301dfbXWNUmROWPzfHdhQhEFUo6SdejtEbqq2rrsrusoFgZSMMk76mZPtYvCLpNNnRW6_k7-QnQA3QGmrpyrbXpAEJJt7eS3drKtnexrd5I8kkzW6CaryqbWWf6_er1TM2vtYZfkoUQRsB-e24hi |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_TNNLS_2022_3159573 crossref_primary_10_1016_j_ymeth_2021_04_006 crossref_primary_10_3390_s21155205 crossref_primary_10_1109_TNSRE_2023_3314679 crossref_primary_10_1016_j_bspc_2023_105488 crossref_primary_10_3389_fnhum_2025_1503228 crossref_primary_10_1109_TIM_2024_3470966 crossref_primary_10_3390_ijerph182211891 crossref_primary_10_2339_politeknik_794655 crossref_primary_10_1007_s10548_023_01016_0 crossref_primary_10_3390_s23031367 crossref_primary_10_1109_TCDS_2024_3460750 crossref_primary_10_1016_j_neuroscience_2025_01_068 crossref_primary_10_1109_JBHI_2022_3212475 crossref_primary_10_1088_2516_1091_ad8530 crossref_primary_10_3390_app14135830 crossref_primary_10_3389_fnins_2022_869522 crossref_primary_10_1109_TBME_2021_3092206 crossref_primary_10_1038_s41598_021_90029_5 crossref_primary_10_1016_j_cmpb_2023_107352 crossref_primary_10_1016_j_knosys_2024_112370 crossref_primary_10_1109_JSEN_2020_3006486 crossref_primary_10_1007_s13042_024_02142_2 crossref_primary_10_3389_fnhum_2019_00057 crossref_primary_10_3389_fnhum_2022_901387 crossref_primary_10_3390_diagnostics13111936 crossref_primary_10_56038_ejrnd_v2i4_193 crossref_primary_10_3390_technologies11060151 crossref_primary_10_4236_jbm_2023_114022 crossref_primary_10_1038_s41598_024_84429_6 crossref_primary_10_1088_1741_2552_ad44d7 crossref_primary_10_3390_biomedinformatics4010048 crossref_primary_10_1016_j_inffus_2024_102697 crossref_primary_10_1038_s41598_024_59652_w crossref_primary_10_1016_j_ymeth_2021_02_014 crossref_primary_10_3390_app14188274 crossref_primary_10_1016_j_bspc_2022_104010 crossref_primary_10_1080_10255842_2024_2386325 crossref_primary_10_1007_s11227_025_06947_y crossref_primary_10_1038_s41597_022_01538_5 crossref_primary_10_1007_s11571_023_10051_3 crossref_primary_10_1109_ACCESS_2024_3523491 crossref_primary_10_1016_j_bspc_2022_104006 crossref_primary_10_1049_el_2020_1011 crossref_primary_10_1109_JBHI_2023_3330345 crossref_primary_10_1142_S0219519421400200 crossref_primary_10_3389_fninf_2022_861967 crossref_primary_10_3390_s21175746 crossref_primary_10_3389_fnhum_2020_609096 crossref_primary_10_3390_app14062282 crossref_primary_10_1038_s41597_024_04348_z crossref_primary_10_1109_TAFFC_2024_3414330 crossref_primary_10_3390_app14156521 crossref_primary_10_1109_JBHI_2021_3091187 crossref_primary_10_1007_s11760_023_02547_6 crossref_primary_10_1109_JBHI_2023_3281793 crossref_primary_10_1109_TAFFC_2021_3137857 crossref_primary_10_1016_j_bspc_2024_106284 crossref_primary_10_1016_j_ymeth_2021_04_017 crossref_primary_10_1109_TIM_2024_3369143 crossref_primary_10_1016_j_bspc_2020_101989 crossref_primary_10_1088_1741_2552_accbed crossref_primary_10_1038_s41598_024_62230_9 crossref_primary_10_1016_j_measurement_2022_112379 crossref_primary_10_1109_TIM_2023_3265114 crossref_primary_10_1016_j_bspc_2021_103032 crossref_primary_10_1109_ACCESS_2021_3058271 crossref_primary_10_1016_j_bspc_2024_106046 crossref_primary_10_1109_TNSRE_2019_2923060 crossref_primary_10_1007_s44258_024_00043_1 crossref_primary_10_1109_TCDS_2021_3090217 crossref_primary_10_1007_s41870_022_01151_0 crossref_primary_10_3390_s24041174 crossref_primary_10_1109_ACCESS_2024_3360328 crossref_primary_10_1142_S0218348X23501360 crossref_primary_10_1007_s00521_024_09627_9 crossref_primary_10_1016_j_ymeth_2021_07_002 crossref_primary_10_1016_j_bspc_2021_102819 crossref_primary_10_1007_s44230_024_00086_y |
Cites_doi | 10.1016/S0166-4115(08)62386-9 10.1016/j.neulet.2009.06.045 10.1166/jnsne.2014.1092 10.1136/bmj.320.7237.768 10.1016/S0167-8760(99)00005-7 10.1109/TBME.2015.2481482 10.1109/ICOM.2011.5937125 10.1016/j.bspc.2016.09.007 10.1080/00140139.2014.956151 10.1371/journal.pone.0174949 10.4236/psych.2015.65055 10.1117/12.598555 10.1109/TNNLS.2015.2476656 10.1109/TAMD.2015.2441960 10.1016/0013-4694(87)90206-9 10.1037//0022-0663.84.4.429 10.1177/1071181311551279 10.1109/T-AFFC.2011.15 10.1016/j.ergon.2005.04.005 10.1080/14639220210159717 10.1207/s15327043hup1903_4 10.1016/j.jneumeth.2003.10.009 10.1100/tsw.2009.83 10.1016/j.jksuci.2013.01.001 10.1016/S0166-4115(08)62387-0 10.1088/1741-2560/4/2/R01 10.1007/s11251-009-9110-0 10.1016/j.neuroimage.2011.07.094 10.1109/IEMBS.2011.6091615 10.1109/TNSRE.2016.2628057 10.1016/j.bandc.2018.02.002 10.3389/fnhum.2016.00539 10.1109/TNSRE.2003.814453 10.1109/IJCNN.2014.6889525 10.1518/hfes.45.4.635.27088 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2018.2872924 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 2114 |
ExternalDocumentID | 30281467 10_1109_TNSRE_2018_2872924 8478165 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Research Foundation Singapore funderid: 10.13039/501100001381 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c351t-7060c004c90f2d08a16eaec79186bc4f16bf291e28accc3956363a9c3593f1903 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 01:31:01 EDT 2025 Fri Jul 25 07:00:41 EDT 2025 Mon Jul 21 06:07:16 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Tue Jul 01 00:43:17 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-7060c004c90f2d08a16eaec79186bc4f16bf291e28accc3956363a9c3593f1903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9405-8841 0000-0002-4257-7639 0000-0002-3627-2679 |
PMID | 30281467 |
PQID | 2137586384 |
PQPubID | 85423 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2116124183 crossref_primary_10_1109_TNSRE_2018_2872924 pubmed_primary_30281467 proquest_journals_2137586384 crossref_citationtrail_10_1109_TNSRE_2018_2872924 ieee_primary_8478165 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 santiago-espada (ref20) 2011 (ref43) 0 ref34 ref12 ref37 ref14 ref31 ref11 hart (ref17) 1988; 52 ref32 ref2 berka (ref28) 2007; 78 ref1 ref39 ref38 mühl (ref30) 2014; 8 ref16 (ref9) 2017 yang (ref45) 2012; 7 reason (ref15) 2000; 320 berka (ref23) 2005; 5797 ahmad (ref36) 2016 ref46 ref24 li (ref35) 2016; 30 ref26 ref47 ref25 ref42 ref22 ref44 comstock (ref19) 1992 ref21 (ref10) 2017 bratfisch (ref33) 2008 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 ref40 reid (ref18) 1988; 52 stytsenko (ref41) 2011 |
References_xml | – volume: 8 start-page: 114 year: 2014 ident: ref30 article-title: EEG-based workload estimation across affective contexts publication-title: Frontiers Neurosci – volume: 52 start-page: 139 year: 1988 ident: ref17 article-title: Development of NASA-TLX (task load index): Results of empirical and theoretical research publication-title: Advances in Psychology doi: 10.1016/S0166-4115(08)62386-9 – ident: ref1 doi: 10.1016/j.neulet.2009.06.045 – ident: ref40 doi: 10.1166/jnsne.2014.1092 – volume: 320 start-page: 768 year: 2000 ident: ref15 article-title: Human error: Models and management publication-title: BMJ Brit Med J doi: 10.1136/bmj.320.7237.768 – ident: ref47 doi: 10.1016/S0167-8760(99)00005-7 – ident: ref44 doi: 10.1109/TBME.2015.2481482 – ident: ref3 doi: 10.1109/ICOM.2011.5937125 – ident: ref5 doi: 10.1016/j.bspc.2016.09.007 – year: 0 ident: ref43 publication-title: Makoto's Preprocessing Pipeline – ident: ref14 doi: 10.1080/00140139.2014.956151 – volume: 7 start-page: 161 year: 2012 ident: ref45 article-title: Neighborhood component feature selection for high-dimensional data publication-title: J Chem Phys – year: 2008 ident: ref33 publication-title: SIMKAP-Simultankapazität/Multi-Tasking – ident: ref32 doi: 10.1371/journal.pone.0174949 – ident: ref31 doi: 10.4236/psych.2015.65055 – volume: 5797 start-page: 90 year: 2005 ident: ref23 article-title: Evaluation of an EEG workload model in an Aegis simulation environment publication-title: Proc SPIE doi: 10.1117/12.598555 – ident: ref8 doi: 10.1109/TNNLS.2015.2476656 – ident: ref7 doi: 10.1109/TAMD.2015.2441960 – ident: ref39 doi: 10.1016/0013-4694(87)90206-9 – year: 1992 ident: ref19 article-title: The multi-attribute task battery for human operator workload and strategic behavior research – ident: ref37 doi: 10.1037//0022-0663.84.4.429 – ident: ref29 doi: 10.1177/1071181311551279 – year: 2017 ident: ref9 publication-title: EEG Open Access Datasets – ident: ref12 doi: 10.1109/T-AFFC.2011.15 – ident: ref27 doi: 10.1016/j.ergon.2005.04.005 – ident: ref22 doi: 10.1080/14639220210159717 – ident: ref34 doi: 10.1207/s15327043hup1903_4 – volume: 30 start-page: 29 year: 2016 ident: ref35 article-title: A normative study of cognitive ability tests in Chinese-speaking student pilots publication-title: J Aviation Med – ident: ref42 doi: 10.1016/j.jneumeth.2003.10.009 – volume: 78 start-page: 231b year: 2007 ident: ref28 article-title: EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks publication-title: Aviation Space Environ Med – ident: ref24 doi: 10.1100/tsw.2009.83 – ident: ref6 doi: 10.1016/j.jksuci.2013.01.001 – year: 2011 ident: ref20 article-title: The multi-attribute task battery II (MATB-II) software for human performance and workload research: A user's guide – volume: 52 start-page: 185 year: 1988 ident: ref18 article-title: The subjective workload assessment technique: A scaling procedure for measuring mental workload publication-title: Advances in Psychology doi: 10.1016/S0166-4115(08)62387-0 – ident: ref2 doi: 10.1088/1741-2560/4/2/R01 – ident: ref38 doi: 10.1007/s11251-009-9110-0 – ident: ref26 doi: 10.1016/j.neuroimage.2011.07.094 – ident: ref25 doi: 10.1109/IEMBS.2011.6091615 – start-page: 1265 year: 2016 ident: ref36 article-title: Human error in multitasking environments publication-title: Proc Int Conf Ind Eng Oper Manage – ident: ref13 doi: 10.1109/TNSRE.2016.2628057 – ident: ref46 doi: 10.1016/j.bandc.2018.02.002 – ident: ref16 doi: 10.3389/fnhum.2016.00539 – ident: ref11 doi: 10.1109/TNSRE.2003.814453 – ident: ref4 doi: 10.1109/IJCNN.2014.6889525 – ident: ref21 doi: 10.1518/hfes.45.4.635.27088 – year: 2011 ident: ref41 article-title: Evaluation of consumer EEG device Emotiv EPOC publication-title: Proc MEi CogSci Conf – year: 2017 ident: ref10 publication-title: EEG/ERP Data Available for Free Public Download |
SSID | ssj0017657 |
Score | 2.5905452 |
Snippet | This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2106 |
SubjectTerms | Adult Algorithms Brain-Computer Interfaces Classification Cognitive ability Data bases Databases, Factual EEG Electroencephalography Electroencephalography (EEG) Electroencephalography - statistics & numerical data Electronic mail Frequency measurement Humans Male mental workload Models, Neurological Multitasking Open Access open access dataset Operator performance Regression analysis Regression models Reproducibility of Results Support Vector Machine Support vector machines Task analysis Working conditions Workload Workload - psychology Workloads |
Title | STEW: Simultaneous Task EEG Workload Data Set |
URI | https://ieeexplore.ieee.org/document/8478165 https://www.ncbi.nlm.nih.gov/pubmed/30281467 https://www.proquest.com/docview/2137586384 https://www.proquest.com/docview/2116124183 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ6oB-PF92N1NTVRL8oKFAr1ZpTVmOjBxeiNtKUkRrNrXPbir3dKAR9R442ElrbzYL5pZ6YAe3mkuUbT7LiRVk4QKOkIViCQ812FDjQX0jXZyNc37PIuuHoIH6bgqM2F0VpXwWe6Zx6rs_x8pCZmq-w4NnmRLJyGaXTcbK5We2IQsaqqJypw4ATUd5sEGZcfpzeD28REccU99A989DjmYJaiYfXs9fIf9qi6YOV3rFnZnP4CXDeztaEmT71JKXvq7Vshx_8uZxHma_BJTq20LMGUHi7D_udCwyS1VQbIAbn9UsN7BZxBmtyfkMGjiUEUQz2ajEkqxk8kSS6I2XN_HomcnItSkIEuV-Gun6Rnl0592YKjaOiVjqmio1BjFHcLP3dj4TEttIq4FzOpgsJjsvC5p_1YKKUoulWUUcGxM6cFogq6BjPD0VBvAOFMBhKhnArjIhBSxD4vQs0jgQPkUhUd8BqSZ6pehbkQ4zmrPBKXZxXHMsOxrOZYBw7bPi-2DsefrVcMuduWNaU70G04m9WqOs58j6LPhL8h7LXbvkYlMycnlprYBoExYp2YdmDdSkT77UaQNn8ecwvmzMxs-mIXZsrXid5GHFPKnUqA3wE5Tem9 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RkFouPAotWyi4UtsLzRLHiRP3VkFgoewe2KDuLbIdR0KgXcRmL_z6juMkfQiq3iLFju15ZL6xZ8YAH4vYCIOm2fNjo70w1MqTvEQgF_gaHWghlW-zkYcjPrgOLybRZAm-dLkwxpg6-Mz07WN9ll_M9MJulR0lNi-SRy9gBe1-RF22VndmEPO6rieqcOiFLPDbFBlfHGWj8VVq47iSPnoIAfocq_CSoWml7oL5XxapvmLlebRZW53TdRi283XBJrf9RaX6-vGvUo7_u6ANWGvgJ_nm5GUTlsz0NXz6vdQwyVydAfKZXP1RxXsLvHGW_vhKxjc2ClFOzWwxJ5mc35I0PSN21_1uJgtyIitJxqbahuvTNDseeM11C55mEa08W0dHo85o4ZdB4SeSciONjgVNuNJhSbkqA0FNkEitNUPHinEmBXYWrERcwd7A8nQ2NTtABFehQjCno6QMpZJJIMrIiFjiAIXSZQ9oS_JcN6uwV2Lc5bVP4ou85lhuOZY3HOvBYdfn3lXi-GfrLUvurmVD6R7stZzNG2Wd5wFl6DXhjwh7feheo5rZsxNHTWyD0BjRTsJ68NZJRPftVpDePT3mAbwaZMPL_PJ89H0XVu0sXTLjHixXDwvzHlFNpfZrYf4JljTtBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STEW%3A+Simultaneous+Task+EEG+Workload+Data+Set&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Lim%2C+W+L&rft.au=Sourina%2C+O&rft.au=Wang%2C+L+P&rft.date=2018-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=26&rft.issue=11&rft.spage=2106&rft_id=info:doi/10.1109%2FTNSRE.2018.2872924&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |