Object-Level Scene Context Prediction

Contextual information plays an important role in solving various image and scene understanding tasks. Prior works have focused on the extraction of contextual information from an image and use it to infer the properties of some object(s) in the image or understand the scene behind the image, e.g.,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 9; pp. 5280 - 5292
Main Authors Qiao, Xiaotian, Zheng, Quanlong, Cao, Ying, Lau, Rynson W.H.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2021.3075676

Cover

Abstract Contextual information plays an important role in solving various image and scene understanding tasks. Prior works have focused on the extraction of contextual information from an image and use it to infer the properties of some object(s) in the image or understand the scene behind the image, e.g., context-based object detection, recognition and semantic segmentation. In this paper, we consider an inverse problem, i.e., how to hallucinate the missing contextual information from the properties of standalone objects. We refer to it as object-level scene context prediction. This problem is difficult, as it requires extensive knowledge of the complex and diverse relationships among objects in the scene. We propose a deep neural network, which takes as input the properties (i.e., category, shape, and position) of a few standalone objects to predict an object-level scene layout that compactly encodes the semantics and structure of the scene context where the given objects are. Quantitative experiments and user studies demonstrate that our model can generate more plausible scene contexts than the baselines. Our model also enables the synthesis of realistic scene images from partial scene layouts. Finally, we validate that our model internally learns useful features for scene recognition and fake scene detection.
AbstractList Contextual information plays an important role in solving various image and scene understanding tasks. Prior works have focused on the extraction of contextual information from an image and use it to infer the properties of some object(s) in the image or understand the scene behind the image, e.g., context-based object detection, recognition and semantic segmentation. In this paper, we consider an inverse problem, i.e., how to hallucinate the missing contextual information from the properties of standalone objects. We refer to it as object-level scene context prediction. This problem is difficult, as it requires extensive knowledge of the complex and diverse relationships among objects in the scene. We propose a deep neural network, which takes as input the properties (i.e., category, shape, and position) of a few standalone objects to predict an object-level scene layout that compactly encodes the semantics and structure of the scene context where the given objects are. Quantitative experiments and user studies demonstrate that our model can generate more plausible scene contexts than the baselines. Our model also enables the synthesis of realistic scene images from partial scene layouts. Finally, we validate that our model internally learns useful features for scene recognition and fake scene detection.
Contextual information plays an important role in solving various image and scene understanding tasks. Prior works have focused on the extraction of contextual information from an image and use it to infer the properties of some object(s) in the image or understand the scene behind the image, e.g., context-based object detection, recognition and semantic segmentation. In this paper, we consider an inverse problem, i.e., how to hallucinate the missing contextual information from the properties of standalone objects. We refer to it as object-level scene context prediction. This problem is difficult, as it requires extensive knowledge of the complex and diverse relationships among objects in the scene. We propose a deep neural network, which takes as input the properties (i.e., category, shape, and position) of a few standalone objects to predict an object-level scene layout that compactly encodes the semantics and structure of the scene context where the given objects are. Quantitative experiments and user studies demonstrate that our model can generate more plausible scene contexts than the baselines. Our model also enables the synthesis of realistic scene images from partial scene layouts. Finally, we validate that our model internally learns useful features for scene recognition and fake scene detection.Contextual information plays an important role in solving various image and scene understanding tasks. Prior works have focused on the extraction of contextual information from an image and use it to infer the properties of some object(s) in the image or understand the scene behind the image, e.g., context-based object detection, recognition and semantic segmentation. In this paper, we consider an inverse problem, i.e., how to hallucinate the missing contextual information from the properties of standalone objects. We refer to it as object-level scene context prediction. This problem is difficult, as it requires extensive knowledge of the complex and diverse relationships among objects in the scene. We propose a deep neural network, which takes as input the properties (i.e., category, shape, and position) of a few standalone objects to predict an object-level scene layout that compactly encodes the semantics and structure of the scene context where the given objects are. Quantitative experiments and user studies demonstrate that our model can generate more plausible scene contexts than the baselines. Our model also enables the synthesis of realistic scene images from partial scene layouts. Finally, we validate that our model internally learns useful features for scene recognition and fake scene detection.
Author Qiao, Xiaotian
Lau, Rynson W.H.
Zheng, Quanlong
Cao, Ying
Author_xml – sequence: 1
  givenname: Xiaotian
  orcidid: 0000-0002-5351-8335
  surname: Qiao
  fullname: Qiao, Xiaotian
  email: qiaoxt1992@gmail.com
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Quanlong
  orcidid: 0000-0001-5059-0078
  surname: Zheng
  fullname: Zheng, Quanlong
  email: xiaolong921001@gmail.com
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Ying
  orcidid: 0000-0002-9288-3167
  surname: Cao
  fullname: Cao, Ying
  email: caoying59@gmail.com
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Rynson W.H.
  orcidid: 0000-0002-8957-8129
  surname: Lau
  fullname: Lau, Rynson W.H.
  email: rynson.lau@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33905322$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQQINU7If-AQUpiOBlaybZZJNjKX4UKi1YzyFNJrBlu1t3t6L_3l3bevDgaS7vDTOvTzp5kSMhl0BHAFTfLxfjl-mIUQYjThMhE3lCegwkjTTTrEN6FCSLlGKqS_pVtaYUYkH5GelyrqngjPXI7Xy1RldHM_zAbPjqMMfhpMhr_KyHixJ96uq0yM_JabBZhReHOSBvjw_LyXM0mz9NJ-NZ5LiAOpJBawAnvEyUQ-RJHFZBrDDxiRU-CYL72MU8UM-8be4OLLZgpQpKc2Fjzwfkbr93WxbvO6xqs0krh1lmcyx2lWECNAetpGzQmz_outiVeXOdYVK3T0OsG-r6QO1WG_RmW6YbW36ZY4AGUHvAlUVVlRiMS2vb_lyXNs0MUNO2Nj-tTdvaHFo3KvujHrf_K13tpRQRfwUdg1QA_BtTAodc
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TIM_2024_3441019
Cites_doi 10.1109/CVPR.2018.00730
10.1109/CVPR.2017.632
10.1109/CVPR.2018.00917
10.1007/978-3-642-15549-9_1
10.1109/CVPR.2017.359
10.1109/CVPR.2018.00833
10.1109/CVPR.2019.00152
10.1145/3130800.3130805
10.1109/ICCV.2015.164
10.1109/TPAMI.2009.154
10.1109/CVPR.2014.37
10.1109/CVPR.2018.00133
10.1109/ICCV.2013.51
10.1109/CVPR.2017.660
10.1109/CVPR.2018.00378
10.1111/cgf.12976
10.1109/CVPR.2010.5539970
10.1109/ICCV.2017.168
10.1016/j.patrec.2011.12.004
10.1007/s11263-011-0439-x
10.1109/ICCVW.2017.30
10.1109/CVPR.2018.00618
10.1038/nrn1476
10.1109/CVPR.2016.174
10.1006/cogp.1998.0681
10.1109/CVPR.2018.00068
10.1109/CVPR.2018.00981
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2018.00918
10.1109/CVPR.2009.5206532
10.1145/3197517.3201362
10.1109/CVPR.2016.91
10.1109/ICCV.2017.304
10.1007/978-3-030-01219-9_31
10.1109/TGRS.2019.2899955
10.1109/CVPR.2016.278
10.1023/A:1023052124951
10.1109/CVPR.2017.330
10.1109/CVPR.2014.119
10.1109/WACV.2018.00170
10.1145/1666420.1666446
10.1109/CVPR.2019.00244
10.1109/TPAMI.2019.2963663
10.1007/978-3-030-01258-8_23
10.1109/ICCV.2015.167
10.1145/2661229.2661243
10.1109/TPAMI.2011.119
10.1109/CVPR.2016.18
10.1109/ICCV.2015.169
10.1109/CVPR.2018.00132
10.1109/ICCV.2019.00999
10.1109/TPAMI.2009.186
10.1109/CVPR.2019.00274
10.1145/3065386
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2021.3075676
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 5292
ExternalDocumentID 33905322
10_1109_TPAMI_2021_3075676
9416811
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Research Grants Council of Hong Kong
  grantid: 11205620
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYOK
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RIG
RNI
RZB
VH1
XJT
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-6f9911c5d678cee374fbf5be7d7a5d7f53d4c43f0d2da202f24a1a68f8935a4d3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Jul 10 23:11:29 EDT 2025
Mon Jun 30 06:22:41 EDT 2025
Thu Apr 03 07:06:53 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Tue Jul 01 03:18:26 EDT 2025
Wed Aug 27 02:29:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-6f9911c5d678cee374fbf5be7d7a5d7f53d4c43f0d2da202f24a1a68f8935a4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5351-8335
0000-0002-9288-3167
0000-0002-8957-8129
0000-0001-5059-0078
PMID 33905322
PQID 2698828149
PQPubID 85458
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2021_3075676
ieee_primary_9416811
proquest_miscellaneous_2519319866
pubmed_primary_33905322
crossref_primary_10_1109_TPAMI_2021_3075676
proquest_journals_2698828149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
Goodfellow (ref40); 2
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Zhu (ref46)
ref17
ref16
ref19
ref18
Zhou (ref56)
Aneja (ref61) 2021
ref50
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
Torralba (ref5) 2003; 53
ref7
ref9
ref4
ref3
ref6
Kingma (ref44) 2014
Heusel (ref51)
Wu (ref63)
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Jaderberg (ref38)
ref2
ref1
ref39
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
Mikolov (ref28)
ref29
ref60
ref62
References_xml – ident: ref2
  doi: 10.1109/CVPR.2018.00730
– start-page: 3111
  volume-title: Proc. 26th Int. Conf. Neural Inf. Process. Syst.
  ident: ref28
  article-title: Distributed representations of words and phrases and their compositionality,
– start-page: 487
  volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst
  ident: ref56
  article-title: Learning deep features for scene recognition using places database,
– ident: ref8
  doi: 10.1109/CVPR.2017.632
– ident: ref33
  doi: 10.1109/CVPR.2018.00917
– ident: ref48
  doi: 10.1007/978-3-642-15549-9_1
– ident: ref21
  doi: 10.1109/CVPR.2017.359
– ident: ref34
  doi: 10.1109/CVPR.2018.00833
– ident: ref42
  doi: 10.1109/CVPR.2019.00152
– year: 2021
  ident: ref61
  article-title: Catching out-of-context misinformation with self-supervised learning,
– ident: ref23
  doi: 10.1145/3130800.3130805
– ident: ref53
  doi: 10.1109/ICCV.2015.164
– ident: ref58
  doi: 10.1109/TPAMI.2009.154
– start-page: 82
  volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst.
  ident: ref63
  article-title: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling,
– ident: ref19
  doi: 10.1109/CVPR.2014.37
– ident: ref35
  doi: 10.1109/CVPR.2018.00133
– ident: ref17
  doi: 10.1109/ICCV.2013.51
– ident: ref59
  doi: 10.1109/CVPR.2017.660
– ident: ref1
  doi: 10.1109/CVPR.2018.00378
– ident: ref22
  doi: 10.1111/cgf.12976
– ident: ref57
  doi: 10.1109/CVPR.2010.5539970
– start-page: 2017
  volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst.
  ident: ref38
  article-title: Spatial transformer networks,
– ident: ref39
  doi: 10.1109/ICCV.2017.168
– ident: ref18
  doi: 10.1016/j.patrec.2011.12.004
– ident: ref16
  doi: 10.1007/s11263-011-0439-x
– ident: ref20
  doi: 10.1109/ICCVW.2017.30
– volume: 2
  start-page: 2672
  volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst.
  ident: ref40
  article-title: Generative adversarial nets,
– ident: ref24
  doi: 10.1109/CVPR.2018.00618
– ident: ref12
  doi: 10.1038/nrn1476
– ident: ref60
  doi: 10.1109/CVPR.2016.174
– ident: ref13
  doi: 10.1006/cogp.1998.0681
– ident: ref50
  doi: 10.1109/CVPR.2018.00068
– ident: ref54
  doi: 10.1109/CVPR.2018.00981
– year: 2014
  ident: ref44
  article-title: Adam: A method for stochastic optimization,
– ident: ref47
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref52
  doi: 10.1109/CVPR.2018.00918
– ident: ref3
  doi: 10.1109/CVPR.2009.5206532
– ident: ref25
  doi: 10.1145/3197517.3201362
– ident: ref43
  doi: 10.1109/CVPR.2016.91
– ident: ref41
  doi: 10.1109/ICCV.2017.304
– ident: ref32
  doi: 10.1007/978-3-030-01219-9_31
– ident: ref37
  doi: 10.1109/TGRS.2019.2899955
– ident: ref7
  doi: 10.1109/CVPR.2016.278
– volume: 53
  start-page: 169
  issue: 2
  year: 2003
  ident: ref5
  article-title: Contextual priming for object detection,
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1023052124951
– ident: ref9
  doi: 10.1109/CVPR.2017.330
– ident: ref4
  doi: 10.1109/CVPR.2014.119
– ident: ref31
  doi: 10.1109/WACV.2018.00170
– ident: ref15
  doi: 10.1145/1666420.1666446
– ident: ref45
  doi: 10.1109/CVPR.2019.00244
– ident: ref26
  doi: 10.1109/TPAMI.2019.2963663
– ident: ref14
  doi: 10.1007/978-3-030-01258-8_23
– ident: ref29
  doi: 10.1109/ICCV.2015.167
– ident: ref49
  doi: 10.1145/2661229.2661243
– ident: ref62
  doi: 10.1109/TPAMI.2011.119
– ident: ref30
  doi: 10.1109/CVPR.2016.18
– ident: ref36
  doi: 10.1109/ICCV.2015.169
– start-page: 465
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref46
  article-title: Toward multimodal image-to-image translation,
– ident: ref10
  doi: 10.1109/CVPR.2018.00132
– start-page: 6629
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref51
  article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium,
– ident: ref27
  doi: 10.1109/ICCV.2019.00999
– ident: ref6
  doi: 10.1109/TPAMI.2009.186
– ident: ref11
  doi: 10.1109/CVPR.2019.00274
– ident: ref55
  doi: 10.1145/3065386
SSID ssj0014503
Score 2.4172857
Snippet Contextual information plays an important role in solving various image and scene understanding tasks. Prior works have focused on the extraction of contextual...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5280
SubjectTerms Artificial neural networks
Context
Context modeling
Feature recognition
Generators
Image segmentation
Inverse problems
Layout
Layouts
object inference
object properties
Object recognition
Scene analysis
Scene context
scene understanding
Semantics
Shape
Task analysis
Visualization
Title Object-Level Scene Context Prediction
URI https://ieeexplore.ieee.org/document/9416811
https://www.ncbi.nlm.nih.gov/pubmed/33905322
https://www.proquest.com/docview/2698828149
https://www.proquest.com/docview/2519319866
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9tQEB4Bp3KAkrCkBeRK9AQOsd-Wd0QVKFQNzQEkbpbfdmmVoNSRKn49M8-LSgWImyWPt1k837w3C8CJCVJzdEOpDkaknOp8dOZsalypUGekY3Hy3PRGTu7493txvwZnXS2M9z4mn_khHca9fLewK1oqO9eIHsZUyLuOalbXanU7BlzEKciIYNDCMYxoC2RG-vx2djG9xlAwz4ao0UIqmlvEMNgXLM-f-aM4YOV1rBl9ztU2TNu3rVNNfg1XlRnax_8aOb73cz7CVgM-k4taW3Zgzc97sN0OdkgaO-_B5j9dCvvw9aehxZr0B-UXIRH-HZPY1OpvlcyWtNFDwt2Fu6vL22-TtJmukFomsiqVAaFhZoVDd4WekikeTBDGK6dK4VQQzHHLWRi53JXIvJDzMivlOCDCESV3bA825ou5P4AkU4Q6xoHrYLlS0ggrmWKqZFx5btkAspbHhW1aj9MEjN9FDEFGuogiKkhERSOiAZx21zzUjTfepO4TfzvKhrUDOGxFWTS2-afIpSYFwdBwAF-602hVtFVSzv1ihTQEbDM9lnjn_VoFunu3mvPp5Wd-hg85lUjEPLRD2KiWK3-EwKUyx1FjnwCXauOm
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9tQEB4hOAAHKFAgLK0rtafiEPtteUeEikKbUA5B4mb5bRdQgqgjVf31nXleRBFF3Cx5vM3i-ea9WQA-myA1RzeU6mBEyqnOR2fOpsaVCnVGOhYnz02u5OiGf78Vt0tw0tXCeO9j8pnv02Hcy3dzu6ClslON6GFIhbwr6Pe5qKu1uj0DLuIcZMQwaOMYSLQlMgN9Or0-m1xiMJhnfdRpIRVNLmIY7guW5_94pDhi5f9oM3qdi02YtO9bJ5vc9ReV6ds_z1o5vvWD3sFGAz-Ts1pftmDJz7Zhsx3tkDSWvg3rT_oU7sCXn4aWa9IxZRghEf4fk9jW6neVXD_SVg-J9z3cXHybno_SZr5CapnIqlQGBIeZFQ4dFvpKpngwQRivnCqFU0Ewxy1nYeByVyLzQs7LrJTDgBhHlNyxXViezWd-H5JMEe4YBq6D5UpJI6xkiqmSceW5ZT3IWh4Xtmk-TjMw7osYhAx0EUVUkIiKRkQ9-Npd81C33niVeof421E2rO3BUSvKorHOX0UuNSkIBoc9-NSdRruizZJy5ucLpCFom-mhxDvv1SrQ3bvVnIOXn_kRVkfTybgYX179OIS1nAomYlbaESxXjwt_jDCmMh-i9v4Fr_fm8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-Level+Scene+Context+Prediction&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Qiao%2C+Xiaotian&rft.au=Zheng%2C+Quanlong&rft.au=Cao%2C+Ying&rft.au=Rynson+WH+Lau&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=44&rft.issue=9&rft.spage=5280&rft_id=info:doi/10.1109%2FTPAMI.2021.3075676&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon