The whole process, bubble dynamic analysis in two-phase transport of the passive miniature direct methanol fuel cells
In this paper, the force controlling bubble formation is calculated in anode reaction region by establishing a two-phase dynamic model. The whole dynamic process of bubble generation, growth, merging and detachment in porous media and microchannels are analyzed in depth. The effects of methanol conc...
Saved in:
Published in | Journal of power sources Vol. 416; pp. 9 - 20 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the force controlling bubble formation is calculated in anode reaction region by establishing a two-phase dynamic model. The whole dynamic process of bubble generation, growth, merging and detachment in porous media and microchannels are analyzed in depth. The effects of methanol concentration and discharge current on the bubble in the pores of the diffusion layer are analyzed, and the cross-section effect and hydrophobic effect of the flow channel are simulated. Besides, through visual experiments, a further understanding of cell performance, anode bubble growth characteristics and the behavior of bubbles are established to verify the simulation. Simulation and experimental results both show that the size and number of anode CO2 bubbles are highly correlated with cell operating conditions. More and smaller bubbles are easily generated when the anode reaction is more intense.
•The force on process of bubble formation is calculated by dynamic model.•The whole bubble dynamic process are analyzed.•The effects of parameters on the bubble are simulated.•More but smaller CO2 bubbles appear with better operating conditions. |
---|---|
AbstractList | In this paper, the force controlling bubble formation is calculated in anode reaction region by establishing a two-phase dynamic model. The whole dynamic process of bubble generation, growth, merging and detachment in porous media and microchannels are analyzed in depth. The effects of methanol concentration and discharge current on the bubble in the pores of the diffusion layer are analyzed, and the cross-section effect and hydrophobic effect of the flow channel are simulated. Besides, through visual experiments, a further understanding of cell performance, anode bubble growth characteristics and the behavior of bubbles are established to verify the simulation. Simulation and experimental results both show that the size and number of anode CO2 bubbles are highly correlated with cell operating conditions. More and smaller bubbles are easily generated when the anode reaction is more intense.
•The force on process of bubble formation is calculated by dynamic model.•The whole bubble dynamic process are analyzed.•The effects of parameters on the bubble are simulated.•More but smaller CO2 bubbles appear with better operating conditions. |
Author | Zuo, Kaiyuan Cao, Cheng Guo, Zhongming Yuan, Zhenyu Chuai, Wenhui Chen, Shuxuan |
Author_xml | – sequence: 1 givenname: Zhenyu orcidid: 0000-0003-2988-2214 surname: Yuan fullname: Yuan, Zhenyu email: yuanzhenyu@ise.neu.edu.cn – sequence: 2 givenname: Kaiyuan surname: Zuo fullname: Zuo, Kaiyuan – sequence: 3 givenname: Cheng surname: Cao fullname: Cao, Cheng – sequence: 4 givenname: Shuxuan surname: Chen fullname: Chen, Shuxuan – sequence: 5 givenname: Wenhui surname: Chuai fullname: Chuai, Wenhui – sequence: 6 givenname: Zhongming surname: Guo fullname: Guo, Zhongming |
BookMark | eNqFkMtqwzAQRUVJoUnaXyj6gNod-R3ooiX0BYFu0rWQ5DGWcSQjyQn5-zqk3XST1TCLc-CeBZkZa5CQewYxA1Y8dnE32IO3o4sTYKsYWAxVdUXmrCrTKCnzfEbmkJZVVJZ5ekMW3ncAwFgJczJuW6SH1vZIB2cVev9A5Sjl9NdHI3ZaUWFEf_TaU21oONhoaIVHGpwwfrAuUNvQMEkG4b3eI91po0UY3STQDlWgOwytMLanzYg9Vdj3_pZcN6L3ePd7l-T77XW7_og2X--f65dNpNKchaiopazqrJB5jo0UtSpSzLI6y3JcNWmVAyYNCIlFWcmiXqkMEaoMkoYJKEpI0iUpzl7lrPcOGz44vRPuyBnwUzze8b94_BSPA-NTvAl8-gcqHUTQ1ky7dX8Zfz7jOI3ba3TcK41G4TkJr62-pPgBflWWag |
CitedBy_id | crossref_primary_10_1063_5_0252946 crossref_primary_10_1016_j_jpowsour_2020_228018 crossref_primary_10_3390_en15103787 crossref_primary_10_1016_j_rineng_2023_101439 crossref_primary_10_1126_sciadv_ade3262 crossref_primary_10_1021_acssuschemeng_9b01665 crossref_primary_10_1016_j_electacta_2021_137751 crossref_primary_10_1039_D3TA02782A crossref_primary_10_1016_j_ijhydene_2022_04_154 crossref_primary_10_1088_1361_6439_ab1db7 crossref_primary_10_1016_j_applthermaleng_2022_118639 crossref_primary_10_1016_j_energy_2025_134361 crossref_primary_10_1016_j_enconman_2024_118150 crossref_primary_10_1016_j_energy_2023_129670 crossref_primary_10_1016_j_rser_2024_115049 crossref_primary_10_1002_apj_2596 crossref_primary_10_1016_j_energy_2020_119543 crossref_primary_10_1016_j_energy_2023_127276 crossref_primary_10_1063_5_0089348 crossref_primary_10_1016_j_energy_2021_119907 crossref_primary_10_1016_j_jclepro_2020_125211 crossref_primary_10_1016_j_energy_2021_122098 crossref_primary_10_1016_j_jpowsour_2021_230260 crossref_primary_10_1016_j_renene_2022_03_067 crossref_primary_10_1021_acsami_9b09713 crossref_primary_10_3390_s24030969 crossref_primary_10_3390_mi10100641 crossref_primary_10_1016_j_jpowsour_2019_227669 crossref_primary_10_1002_er_6158 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122749 |
Cites_doi | 10.1016/j.jpowsour.2011.05.070 10.1016/j.ijhydene.2016.05.059 10.1016/j.energy.2015.01.071 10.1007/s10404-007-0232-x 10.1016/S0378-7753(03)00824-3 10.1016/j.ijhydene.2016.03.164 10.1007/s11581-013-0889-y 10.1016/S0927-7757(02)00592-7 10.1149/1.3603974 10.1007/s00348-013-1513-7 10.1016/j.electacta.2014.10.080 10.1016/j.energy.2016.02.010 10.1016/j.apenergy.2010.11.012 10.1016/j.ijhydene.2014.02.002 10.1016/j.jcis.2009.08.005 10.1016/j.jpowsour.2007.06.257 10.1016/j.ijhydene.2017.06.149 10.1016/j.ijhydene.2016.05.116 10.1016/j.ijhydene.2014.01.117 10.1016/j.energy.2010.02.044 10.1016/j.jpowsour.2017.03.099 10.1016/j.jpowsour.2009.03.008 10.1016/j.jpowsour.2009.10.025 10.1016/j.ijhydene.2017.03.144 10.1016/j.jpowsour.2004.09.036 10.3390/s90503314 10.1115/1.4005384 10.1007/s11581-015-1479-y 10.1016/j.energy.2011.10.023 10.1016/j.ijhydene.2016.02.057 10.1016/j.apenergy.2016.01.042 10.4028/www.scientific.net/AMM.635-637.346 10.1016/j.energy.2010.11.034 10.1007/s10948-010-0723-y 10.1016/j.fuel.2014.08.066 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2019.01.088 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
EndPage | 20 |
ExternalDocumentID | 10_1016_j_jpowsour_2019_01_088 S0378775319300989 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c351t-6dbb8d46b55efbadc63e44d445e9f3850e2f0abe678b6d9c4ee08402f1a067023 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Tue Jul 01 01:40:14 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Fri Feb 23 02:28:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Passive micro direct methanol fuel cells Transport optimization Bubbles Whole dynamic process |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-6dbb8d46b55efbadc63e44d445e9f3850e2f0abe678b6d9c4ee08402f1a067023 |
ORCID | 0000-0003-2988-2214 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_jpowsour_2019_01_088 crossref_citationtrail_10_1016_j_jpowsour_2019_01_088 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2019_01_088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-15 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of power sources |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yang, Zhao, Ye (bib17) 2005; 142 Shrivastava, Thombre, Mallick (bib13) 2014; 149 Alaswad, Baroutaji, Achour, Carton, Makky (bib16) 2016; 41 Bewer, Beckmann, Dohle, Mergel, Stolten (bib22) 2004; 125 Achmad, Kamarudin, Daud, Majlan (bib2) 2011; 88 Li, Liang, Liu, Sun, Zhao (bib19) 2009; 9 Burgmann, Blank, Panchenko (bib9) 2013; 54 Ye, Zhu, Liao, Li, Fu (bib14) 2009; 192 Zheng, Suominen, Lagercrantz, Tuominen (bib32) 2012; 9 Fei, Chen, Hong (bib35) 2008; 5 Garvina, Meyers (bib34) 2011; 158 Liu, Cai, Liu, Sun, Xing (bib18) 2015; 139 Carton, Olabi (bib10) 2010; 35 Carton, Lawlor, Olabi, Hochenauer, Zauner (bib11) 2012; 39 Yousefi, Zohoor (bib15) 2014; 39 Falcao, Pereira, Pinto (bib24) 2016; 41 Liao, Zhu, Zheng, Ding (bib20) 2007; 171 Kang, Zhou, Jiang (bib33) 2017; 42 Hashemi, Yousefi, Faraji (bib12) 2015; 21 Gnyloskurenko, Byakova, Raychenko, Nakamura (bib25) 2003; 218 Vafaei, Wen (bib27) 2010; 343 Li, Geng, Zhu (bib31) 2014; 635–637 Meng, Kim, Kim (bib29) 2003 Wang, Jing, Mao, Xie (bib3) 2016; 41 Hutzenlaub, Paust, Zengerle, Ziegler (bib21) 2011; 196 Liang, Luo, Zheng, Wang (bib23) 2017; 351 Yousefi, Shakeri, Sedighi (bib6) 2013; 19 Deodath, Jhingoorie, Riverol (bib1) 2017; 42 Carton, Olabi (bib5) 2017; 136 Fei, Chen, Hong (bib36) 2010; 195 Taymaz, Akgun, Benli (bib4) 2011; 36 Yuan, Zhou, Deng, Tang, Zhang, Li (bib7) 2014; 39 Zhu, Liao, Wang, Bao, Xie, Lin (bib26) 2010; 23 Calabriso, Borello, Romano (bib28) 2017; 185 Ferreira, Falcao, Oliveira, Pinto (bib30) 2015; 82 Wilberforce, Alaswad, Palumbo, Dassisti, Olabi (bib8) 2016; 41 Bewer (10.1016/j.jpowsour.2019.01.088_bib22) 2004; 125 Yousefi (10.1016/j.jpowsour.2019.01.088_bib6) 2013; 19 Carton (10.1016/j.jpowsour.2019.01.088_bib10) 2010; 35 Fei (10.1016/j.jpowsour.2019.01.088_bib36) 2010; 195 Liu (10.1016/j.jpowsour.2019.01.088_bib18) 2015; 139 Falcao (10.1016/j.jpowsour.2019.01.088_bib24) 2016; 41 Li (10.1016/j.jpowsour.2019.01.088_bib31) 2014; 635–637 Shrivastava (10.1016/j.jpowsour.2019.01.088_bib13) 2014; 149 Burgmann (10.1016/j.jpowsour.2019.01.088_bib9) 2013; 54 Carton (10.1016/j.jpowsour.2019.01.088_bib11) 2012; 39 Calabriso (10.1016/j.jpowsour.2019.01.088_bib28) 2017; 185 Liang (10.1016/j.jpowsour.2019.01.088_bib23) 2017; 351 Fei (10.1016/j.jpowsour.2019.01.088_bib35) 2008; 5 Zheng (10.1016/j.jpowsour.2019.01.088_bib32) 2012; 9 Wilberforce (10.1016/j.jpowsour.2019.01.088_bib8) 2016; 41 Gnyloskurenko (10.1016/j.jpowsour.2019.01.088_bib25) 2003; 218 Hashemi (10.1016/j.jpowsour.2019.01.088_bib12) 2015; 21 Yang (10.1016/j.jpowsour.2019.01.088_bib17) 2005; 142 Alaswad (10.1016/j.jpowsour.2019.01.088_bib16) 2016; 41 Achmad (10.1016/j.jpowsour.2019.01.088_bib2) 2011; 88 Zhu (10.1016/j.jpowsour.2019.01.088_bib26) 2010; 23 Yousefi (10.1016/j.jpowsour.2019.01.088_bib15) 2014; 39 Deodath (10.1016/j.jpowsour.2019.01.088_bib1) 2017; 42 Yuan (10.1016/j.jpowsour.2019.01.088_bib7) 2014; 39 Hutzenlaub (10.1016/j.jpowsour.2019.01.088_bib21) 2011; 196 Vafaei (10.1016/j.jpowsour.2019.01.088_bib27) 2010; 343 Garvina (10.1016/j.jpowsour.2019.01.088_bib34) 2011; 158 Ferreira (10.1016/j.jpowsour.2019.01.088_bib30) 2015; 82 Liao (10.1016/j.jpowsour.2019.01.088_bib20) 2007; 171 Taymaz (10.1016/j.jpowsour.2019.01.088_bib4) 2011; 36 Carton (10.1016/j.jpowsour.2019.01.088_bib5) 2017; 136 Ye (10.1016/j.jpowsour.2019.01.088_bib14) 2009; 192 Wang (10.1016/j.jpowsour.2019.01.088_bib3) 2016; 41 Meng (10.1016/j.jpowsour.2019.01.088_bib29) 2003 Li (10.1016/j.jpowsour.2019.01.088_bib19) 2009; 9 Kang (10.1016/j.jpowsour.2019.01.088_bib33) 2017; 42 |
References_xml | – volume: 23 start-page: 1141 year: 2010 end-page: 1145 ident: bib26 article-title: Experimental Study of bubble growth and departure at the tip of capillary tubes with various wettabilities in a stagnant liquid publication-title: J. Supercond. Nov. Magnetism – volume: 5 start-page: 119 year: 2008 end-page: 129 ident: bib35 article-title: Microfluidic analysis of CO publication-title: Microfluid. Nanofluidics – volume: 42 start-page: 12032 year: 2017 end-page: 12045 ident: bib1 article-title: Direct methanol fuel cell system reliability analysis publication-title: Int. J. Hydrogen Energy – volume: 9 year: 2012 ident: bib32 article-title: A two-dimensional model for CO publication-title: J. Fuel Cell Sci. Technol. – volume: 196 start-page: 8048 year: 2011 end-page: 8056 ident: bib21 article-title: The effect of wetting properties on bubble dynamics and fuel distribution in the flow field of direct methanol fuel cells publication-title: J. Power Sources – volume: 158 start-page: B1119 year: 2011 end-page: B1127 ident: bib34 article-title: Modeling of coupled multiphase transport in direct methanol fuel cell diffusion layers publication-title: J. Electrochem. Soc. – volume: 82 start-page: 619 year: 2015 end-page: 628 ident: bib30 article-title: Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell publication-title: Energy – volume: 39 start-page: 5972 year: 2014 end-page: 5980 ident: bib15 article-title: Conceptual design and statistical overview on the design of a passive DMFC single cell publication-title: Int. J. Hydrogen Energy – volume: 88 start-page: 1681 year: 2011 end-page: 1689 ident: bib2 article-title: Passive direct methanol fuel cells for portable electronic devices publication-title: Appl. Energy – volume: 136 start-page: 185 year: 2017 end-page: 195 ident: bib5 article-title: Three-dimensional proton exchange membrane fuel cell model: comparison of double channel and open pore cellular foam flow plates publication-title: Energy – volume: 218 start-page: 73 year: 2003 end-page: 87 ident: bib25 article-title: Influence of wetting conditions on bubble formation at orifice in an inviscid liquid. Transformation of bubble shape and size publication-title: Colloid. Surface. Physicochem. Eng. Aspect. – start-page: 534 year: 2003 end-page: 537 ident: bib29 article-title: A distributed gas breather for micro direct methanol fuel cell publication-title: Proc. IEEE Int. Conf. On Micor Electro Mechanical System, Kyoto, Japan – volume: 41 start-page: 16247 year: 2016 end-page: 16253 ident: bib3 article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 13859 year: 2016 end-page: 13867 ident: bib24 article-title: Effect of stainless steel meshes on the performance of passive micro direct methanol fuel cells publication-title: Int. J. Hydrogen Energy – volume: 185 start-page: 1245 year: 2017 end-page: 1255 ident: bib28 article-title: Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation publication-title: Appl. Energy – volume: 35 start-page: 2796 year: 2010 end-page: 2806 ident: bib10 article-title: Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell publication-title: Energy – volume: 39 start-page: 63 year: 2012 end-page: 73 ident: bib11 article-title: Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels publication-title: Energy – volume: 149 start-page: 167 year: 2014 end-page: 175 ident: bib13 article-title: Effect of diffusion layer compression on passive DMFC performance publication-title: Electrochim. Acta – volume: 39 start-page: 6689 year: 2014 end-page: 6704 ident: bib7 article-title: Overview on the developments of vapor-feed direct methanol fuel cells publication-title: Int. J. Hydrogen Energy – volume: 171 start-page: 644 year: 2007 end-page: 651 ident: bib20 article-title: Visualization study on the dynamics of CO publication-title: J. Power Sources – volume: 192 start-page: 502 year: 2009 end-page: 514 ident: bib14 article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells publication-title: J. Power Sources – volume: 41 start-page: 16509 year: 2016 end-page: 16522 ident: bib8 article-title: Advances in stationary and portable fuel cell applications publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 16499 year: 2016 end-page: 16508 ident: bib16 article-title: Developments in fuel cell technologies in the transport sector publication-title: Int. J. Hydrogen Energy – volume: 21 start-page: 2851 year: 2015 end-page: 2862 ident: bib12 article-title: Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell publication-title: Ionics – volume: 9 start-page: 3314 year: 2009 end-page: 3324 ident: bib19 article-title: Effects of anode flow field design on CO publication-title: Sensors – volume: 125 start-page: 1 year: 2004 end-page: 9 ident: bib22 article-title: Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H publication-title: J. Power Sources – volume: 19 start-page: 1637 year: 2013 end-page: 1647 ident: bib6 article-title: The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell publication-title: Ionics – volume: 142 start-page: 117 year: 2005 end-page: 124 ident: bib17 article-title: Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells publication-title: J. Power Sources – volume: 351 start-page: 86 year: 2017 end-page: 95 ident: bib23 article-title: Enhance performance of micro direct methanol fuel cell by in situ CO2 removal using novel anode flow field with superhydrophobic degassing channels publication-title: J. Power Sources – volume: 139 start-page: 308 year: 2015 end-page: 313 ident: bib18 article-title: Magnetic coupled passive direct methanol fuel cell: promoted CO publication-title: Fuel – volume: 195 start-page: 1940 year: 2010 end-page: 1945 ident: bib36 article-title: Direct methanol fuel cell bubble transport simulations via thermal lattice Boltzmann and volume of fluid methods publication-title: J. Power Sources – volume: 343 start-page: 291 year: 2010 end-page: 297 ident: bib27 article-title: Bubble formation on a submerged micronozzle publication-title: J. Colloid Interface Sci. – volume: 54 start-page: 1513 year: 2013 end-page: 1526 ident: bib9 article-title: μPIV measurements of two-phase flows of an operated direct methanol fuel cell publication-title: Exp. Fluid – volume: 42 start-page: 20201 year: 2017 end-page: 20215 ident: bib33 article-title: Bubble behaviors in direct methanol fuel cell anode with parallel design publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 1155 year: 2011 end-page: 1160 ident: bib4 article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC publication-title: Energy – volume: 635–637 start-page: 346 year: 2014 end-page: 353 ident: bib31 article-title: Theoretical analysis of CO publication-title: Appl. Mech. Mater. – volume: 196 start-page: 8048 issue: 19 year: 2011 ident: 10.1016/j.jpowsour.2019.01.088_bib21 article-title: The effect of wetting properties on bubble dynamics and fuel distribution in the flow field of direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.05.070 – volume: 41 start-page: 13859 issue: 31 year: 2016 ident: 10.1016/j.jpowsour.2019.01.088_bib24 article-title: Effect of stainless steel meshes on the performance of passive micro direct methanol fuel cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.059 – volume: 82 start-page: 619 year: 2015 ident: 10.1016/j.jpowsour.2019.01.088_bib30 article-title: Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell publication-title: Energy doi: 10.1016/j.energy.2015.01.071 – volume: 5 start-page: 119 issue: 1 year: 2008 ident: 10.1016/j.jpowsour.2019.01.088_bib35 article-title: Microfluidic analysis of CO2 bubble dynamics using thermal lattice-Boltzmann method publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-007-0232-x – volume: 125 start-page: 1 year: 2004 ident: 10.1016/j.jpowsour.2019.01.088_bib22 article-title: Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00824-3 – volume: 41 start-page: 16499 issue: 37 year: 2016 ident: 10.1016/j.jpowsour.2019.01.088_bib16 article-title: Developments in fuel cell technologies in the transport sector publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.164 – volume: 19 start-page: 1637 year: 2013 ident: 10.1016/j.jpowsour.2019.01.088_bib6 article-title: The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell publication-title: Ionics doi: 10.1007/s11581-013-0889-y – volume: 218 start-page: 73 issue: 1–3 year: 2003 ident: 10.1016/j.jpowsour.2019.01.088_bib25 article-title: Influence of wetting conditions on bubble formation at orifice in an inviscid liquid. Transformation of bubble shape and size publication-title: Colloid. Surface. Physicochem. Eng. Aspect. doi: 10.1016/S0927-7757(02)00592-7 – volume: 158 start-page: B1119 issue: 9 year: 2011 ident: 10.1016/j.jpowsour.2019.01.088_bib34 article-title: Modeling of coupled multiphase transport in direct methanol fuel cell diffusion layers publication-title: J. Electrochem. Soc. doi: 10.1149/1.3603974 – volume: 54 start-page: 1513 year: 2013 ident: 10.1016/j.jpowsour.2019.01.088_bib9 article-title: μPIV measurements of two-phase flows of an operated direct methanol fuel cell publication-title: Exp. Fluid doi: 10.1007/s00348-013-1513-7 – start-page: 534 year: 2003 ident: 10.1016/j.jpowsour.2019.01.088_bib29 article-title: A distributed gas breather for micro direct methanol fuel cell – volume: 149 start-page: 167 year: 2014 ident: 10.1016/j.jpowsour.2019.01.088_bib13 article-title: Effect of diffusion layer compression on passive DMFC performance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.10.080 – volume: 136 start-page: 185 year: 2017 ident: 10.1016/j.jpowsour.2019.01.088_bib5 article-title: Three-dimensional proton exchange membrane fuel cell model: comparison of double channel and open pore cellular foam flow plates publication-title: Energy doi: 10.1016/j.energy.2016.02.010 – volume: 88 start-page: 1681 year: 2011 ident: 10.1016/j.jpowsour.2019.01.088_bib2 article-title: Passive direct methanol fuel cells for portable electronic devices publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.11.012 – volume: 39 start-page: 6689 year: 2014 ident: 10.1016/j.jpowsour.2019.01.088_bib7 article-title: Overview on the developments of vapor-feed direct methanol fuel cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.002 – volume: 343 start-page: 291 year: 2010 ident: 10.1016/j.jpowsour.2019.01.088_bib27 article-title: Bubble formation on a submerged micronozzle publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.08.005 – volume: 171 start-page: 644 issue: 2 year: 2007 ident: 10.1016/j.jpowsour.2019.01.088_bib20 article-title: Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.06.257 – volume: 42 start-page: 20201 issue: 31 year: 2017 ident: 10.1016/j.jpowsour.2019.01.088_bib33 article-title: Bubble behaviors in direct methanol fuel cell anode with parallel design publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.06.149 – volume: 41 start-page: 16247 issue: 36 year: 2016 ident: 10.1016/j.jpowsour.2019.01.088_bib3 article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.116 – volume: 39 start-page: 5972 year: 2014 ident: 10.1016/j.jpowsour.2019.01.088_bib15 article-title: Conceptual design and statistical overview on the design of a passive DMFC single cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.117 – volume: 35 start-page: 2796 year: 2010 ident: 10.1016/j.jpowsour.2019.01.088_bib10 article-title: Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell publication-title: Energy doi: 10.1016/j.energy.2010.02.044 – volume: 351 start-page: 86 year: 2017 ident: 10.1016/j.jpowsour.2019.01.088_bib23 article-title: Enhance performance of micro direct methanol fuel cell by in situ CO2 removal using novel anode flow field with superhydrophobic degassing channels publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.099 – volume: 192 start-page: 502 year: 2009 ident: 10.1016/j.jpowsour.2019.01.088_bib14 article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.03.008 – volume: 195 start-page: 1940 issue: 7 year: 2010 ident: 10.1016/j.jpowsour.2019.01.088_bib36 article-title: Direct methanol fuel cell bubble transport simulations via thermal lattice Boltzmann and volume of fluid methods publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.10.025 – volume: 42 start-page: 12032 issue: 16 year: 2017 ident: 10.1016/j.jpowsour.2019.01.088_bib1 article-title: Direct methanol fuel cell system reliability analysis publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.03.144 – volume: 142 start-page: 117 year: 2005 ident: 10.1016/j.jpowsour.2019.01.088_bib17 article-title: Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.09.036 – volume: 9 start-page: 3314 year: 2009 ident: 10.1016/j.jpowsour.2019.01.088_bib19 article-title: Effects of anode flow field design on CO2 bubble behavior in μDMFC publication-title: Sensors doi: 10.3390/s90503314 – volume: 9 issue: 1 year: 2012 ident: 10.1016/j.jpowsour.2019.01.088_bib32 article-title: A two-dimensional model for CO2/fuel multiphase flow on the anode side of a DMFC publication-title: J. Fuel Cell Sci. Technol. doi: 10.1115/1.4005384 – volume: 21 start-page: 2851 year: 2015 ident: 10.1016/j.jpowsour.2019.01.088_bib12 article-title: Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell publication-title: Ionics doi: 10.1007/s11581-015-1479-y – volume: 39 start-page: 63 issue: 1 year: 2012 ident: 10.1016/j.jpowsour.2019.01.088_bib11 article-title: Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels publication-title: Energy doi: 10.1016/j.energy.2011.10.023 – volume: 41 start-page: 16509 issue: 37 year: 2016 ident: 10.1016/j.jpowsour.2019.01.088_bib8 article-title: Advances in stationary and portable fuel cell applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.02.057 – volume: 185 start-page: 1245 year: 2017 ident: 10.1016/j.jpowsour.2019.01.088_bib28 article-title: Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.042 – volume: 635–637 start-page: 346 year: 2014 ident: 10.1016/j.jpowsour.2019.01.088_bib31 article-title: Theoretical analysis of CO2 bubble formation in anode flow field of μDMFC publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.635-637.346 – volume: 36 start-page: 1155 year: 2011 ident: 10.1016/j.jpowsour.2019.01.088_bib4 article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC publication-title: Energy doi: 10.1016/j.energy.2010.11.034 – volume: 23 start-page: 1141 issue: 6 year: 2010 ident: 10.1016/j.jpowsour.2019.01.088_bib26 article-title: Experimental Study of bubble growth and departure at the tip of capillary tubes with various wettabilities in a stagnant liquid publication-title: J. Supercond. Nov. Magnetism doi: 10.1007/s10948-010-0723-y – volume: 139 start-page: 308 year: 2015 ident: 10.1016/j.jpowsour.2019.01.088_bib18 article-title: Magnetic coupled passive direct methanol fuel cell: promoted CO2 removal and enhanced catalyst utilization publication-title: Fuel doi: 10.1016/j.fuel.2014.08.066 |
SSID | ssj0001170 |
Score | 2.4362466 |
Snippet | In this paper, the force controlling bubble formation is calculated in anode reaction region by establishing a two-phase dynamic model. The whole dynamic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 9 |
SubjectTerms | Bubbles Passive micro direct methanol fuel cells Transport optimization Whole dynamic process |
Title | The whole process, bubble dynamic analysis in two-phase transport of the passive miniature direct methanol fuel cells |
URI | https://dx.doi.org/10.1016/j.jpowsour.2019.01.088 |
Volume | 416 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lDl4NG0emzQ5lmKpir1oobewm93FlpIETenN3-5MHlpB6MHjhgyEb4f5Zjcz3zB2K4ThQipjedIM8IBiCyt0HG0ZpANkF5U4Zdf78zSYzPjj3J-32KjphaGyyjr2VzG9jNb1k36NZj9fLPovtofONiAf8kgVk5r4OB-Ql_c-f8o8aLJK-ScBT0v09laX8LK3zLMNXZJTiVdUyneWE1j-IKgt0hkfscM6W4Rh9UHHrKXTE3awpSF4yta40bChKbeQV0X_dyDXUuJaVdPmQdTCI7BIodhkVv6G1AVFI2sOmQFMAyHHPBpjH5DaSCn3CRU2QFOmRZqtwKz1Cuiq_-OMzcb3r6OJVc9SsBLPdworUFKGigfS97WRQiWBpzlXnPs6Ml7o29o1tpAauUsGKkq41jae_VzjCOrkcb1z1k6zVF8wCA1PuGub0CjDjUpEKBB-rnEl3UQ5HeY3AMZJLTRO8y5WcVNRtowb4GMCPradGIHvsP63XV5Jbey0iJr9iX85TYx8sMP28h-2V2yfVlSK5vjXrF28r_UN5iaF7JbO12V7w4enyfQLnXTp5A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UB7QLQFsS3QOfTYsPmwQ3JECLQU2EtB4mbZsS12tUqiNqv9-53JB1okJA4cnWikaDyaN3Zm3gP4qbUX2lgfJMaf0QEl1EEWRS7wBAeELraI2qn3u1k6fRC_H-XjFlwMszDcVtnn_i6nt9m6fzLpvTmp5_PJnzChYDvjGEqYFTP_ANvMTiVHsH1-fTOdPSdkFldpfybQgYkNNgaFF6eLulrzPTl3eeUtg2crwvIKRm3gztUe7PYFI5533_QZtlz5BT5t0Ah-hRXtNa5Z6Bbrru__F5qVMbS2neA86p57BOclNusqqJ8IvbAZmM2x8kiVINZUSlP6QyYcaRk_sXMPstC0Lqsl-pVbIt_2_9uHh6vL-4tp0MspBEUioyZIrTGZFamR0nmjbZEmTggrhHS5TzIZutiH2jiCL5PavBDOhXT8i32keZgnTg5gVFalOwTMvChEHPrMWy-8LXSmaQeEo5WJCxuNQQ4OVEXPNc6SF0s1NJUt1OB4xY5XYaTI8WOYPNvVHdvGmxb5sD_qRdwogoQ3bL-9w_YH7Ezv727V7fXs5jt85DfcmRbJIxg1f1fumEqVxpz0ofgfmGbslQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+whole+process%2C+bubble+dynamic+analysis+in+two-phase+transport+of+the+passive+miniature+direct+methanol+fuel+cells&rft.jtitle=Journal+of+power+sources&rft.au=Yuan%2C+Zhenyu&rft.au=Zuo%2C+Kaiyuan&rft.au=Cao%2C+Cheng&rft.au=Chen%2C+Shuxuan&rft.date=2019-03-15&rft.issn=0378-7753&rft.volume=416&rft.spage=9&rft.epage=20&rft_id=info:doi/10.1016%2Fj.jpowsour.2019.01.088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2019_01_088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |