The whole process, bubble dynamic analysis in two-phase transport of the passive miniature direct methanol fuel cells

In this paper, the force controlling bubble formation is calculated in anode reaction region by establishing a two-phase dynamic model. The whole dynamic process of bubble generation, growth, merging and detachment in porous media and microchannels are analyzed in depth. The effects of methanol conc...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 416; pp. 9 - 20
Main Authors Yuan, Zhenyu, Zuo, Kaiyuan, Cao, Cheng, Chen, Shuxuan, Chuai, Wenhui, Guo, Zhongming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the force controlling bubble formation is calculated in anode reaction region by establishing a two-phase dynamic model. The whole dynamic process of bubble generation, growth, merging and detachment in porous media and microchannels are analyzed in depth. The effects of methanol concentration and discharge current on the bubble in the pores of the diffusion layer are analyzed, and the cross-section effect and hydrophobic effect of the flow channel are simulated. Besides, through visual experiments, a further understanding of cell performance, anode bubble growth characteristics and the behavior of bubbles are established to verify the simulation. Simulation and experimental results both show that the size and number of anode CO2 bubbles are highly correlated with cell operating conditions. More and smaller bubbles are easily generated when the anode reaction is more intense. •The force on process of bubble formation is calculated by dynamic model.•The whole bubble dynamic process are analyzed.•The effects of parameters on the bubble are simulated.•More but smaller CO2 bubbles appear with better operating conditions.
AbstractList In this paper, the force controlling bubble formation is calculated in anode reaction region by establishing a two-phase dynamic model. The whole dynamic process of bubble generation, growth, merging and detachment in porous media and microchannels are analyzed in depth. The effects of methanol concentration and discharge current on the bubble in the pores of the diffusion layer are analyzed, and the cross-section effect and hydrophobic effect of the flow channel are simulated. Besides, through visual experiments, a further understanding of cell performance, anode bubble growth characteristics and the behavior of bubbles are established to verify the simulation. Simulation and experimental results both show that the size and number of anode CO2 bubbles are highly correlated with cell operating conditions. More and smaller bubbles are easily generated when the anode reaction is more intense. •The force on process of bubble formation is calculated by dynamic model.•The whole bubble dynamic process are analyzed.•The effects of parameters on the bubble are simulated.•More but smaller CO2 bubbles appear with better operating conditions.
Author Zuo, Kaiyuan
Cao, Cheng
Guo, Zhongming
Yuan, Zhenyu
Chuai, Wenhui
Chen, Shuxuan
Author_xml – sequence: 1
  givenname: Zhenyu
  orcidid: 0000-0003-2988-2214
  surname: Yuan
  fullname: Yuan, Zhenyu
  email: yuanzhenyu@ise.neu.edu.cn
– sequence: 2
  givenname: Kaiyuan
  surname: Zuo
  fullname: Zuo, Kaiyuan
– sequence: 3
  givenname: Cheng
  surname: Cao
  fullname: Cao, Cheng
– sequence: 4
  givenname: Shuxuan
  surname: Chen
  fullname: Chen, Shuxuan
– sequence: 5
  givenname: Wenhui
  surname: Chuai
  fullname: Chuai, Wenhui
– sequence: 6
  givenname: Zhongming
  surname: Guo
  fullname: Guo, Zhongming
BookMark eNqFkMtqwzAQRUVJoUnaXyj6gNod-R3ooiX0BYFu0rWQ5DGWcSQjyQn5-zqk3XST1TCLc-CeBZkZa5CQewYxA1Y8dnE32IO3o4sTYKsYWAxVdUXmrCrTKCnzfEbmkJZVVJZ5ekMW3ncAwFgJczJuW6SH1vZIB2cVev9A5Sjl9NdHI3ZaUWFEf_TaU21oONhoaIVHGpwwfrAuUNvQMEkG4b3eI91po0UY3STQDlWgOwytMLanzYg9Vdj3_pZcN6L3ePd7l-T77XW7_og2X--f65dNpNKchaiopazqrJB5jo0UtSpSzLI6y3JcNWmVAyYNCIlFWcmiXqkMEaoMkoYJKEpI0iUpzl7lrPcOGz44vRPuyBnwUzze8b94_BSPA-NTvAl8-gcqHUTQ1ky7dX8Zfz7jOI3ba3TcK41G4TkJr62-pPgBflWWag
CitedBy_id crossref_primary_10_1063_5_0252946
crossref_primary_10_1016_j_jpowsour_2020_228018
crossref_primary_10_3390_en15103787
crossref_primary_10_1016_j_rineng_2023_101439
crossref_primary_10_1126_sciadv_ade3262
crossref_primary_10_1021_acssuschemeng_9b01665
crossref_primary_10_1016_j_electacta_2021_137751
crossref_primary_10_1039_D3TA02782A
crossref_primary_10_1016_j_ijhydene_2022_04_154
crossref_primary_10_1088_1361_6439_ab1db7
crossref_primary_10_1016_j_applthermaleng_2022_118639
crossref_primary_10_1016_j_energy_2025_134361
crossref_primary_10_1016_j_enconman_2024_118150
crossref_primary_10_1016_j_energy_2023_129670
crossref_primary_10_1016_j_rser_2024_115049
crossref_primary_10_1002_apj_2596
crossref_primary_10_1016_j_energy_2020_119543
crossref_primary_10_1016_j_energy_2023_127276
crossref_primary_10_1063_5_0089348
crossref_primary_10_1016_j_energy_2021_119907
crossref_primary_10_1016_j_jclepro_2020_125211
crossref_primary_10_1016_j_energy_2021_122098
crossref_primary_10_1016_j_jpowsour_2021_230260
crossref_primary_10_1016_j_renene_2022_03_067
crossref_primary_10_1021_acsami_9b09713
crossref_primary_10_3390_s24030969
crossref_primary_10_3390_mi10100641
crossref_primary_10_1016_j_jpowsour_2019_227669
crossref_primary_10_1002_er_6158
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122749
Cites_doi 10.1016/j.jpowsour.2011.05.070
10.1016/j.ijhydene.2016.05.059
10.1016/j.energy.2015.01.071
10.1007/s10404-007-0232-x
10.1016/S0378-7753(03)00824-3
10.1016/j.ijhydene.2016.03.164
10.1007/s11581-013-0889-y
10.1016/S0927-7757(02)00592-7
10.1149/1.3603974
10.1007/s00348-013-1513-7
10.1016/j.electacta.2014.10.080
10.1016/j.energy.2016.02.010
10.1016/j.apenergy.2010.11.012
10.1016/j.ijhydene.2014.02.002
10.1016/j.jcis.2009.08.005
10.1016/j.jpowsour.2007.06.257
10.1016/j.ijhydene.2017.06.149
10.1016/j.ijhydene.2016.05.116
10.1016/j.ijhydene.2014.01.117
10.1016/j.energy.2010.02.044
10.1016/j.jpowsour.2017.03.099
10.1016/j.jpowsour.2009.03.008
10.1016/j.jpowsour.2009.10.025
10.1016/j.ijhydene.2017.03.144
10.1016/j.jpowsour.2004.09.036
10.3390/s90503314
10.1115/1.4005384
10.1007/s11581-015-1479-y
10.1016/j.energy.2011.10.023
10.1016/j.ijhydene.2016.02.057
10.1016/j.apenergy.2016.01.042
10.4028/www.scientific.net/AMM.635-637.346
10.1016/j.energy.2010.11.034
10.1007/s10948-010-0723-y
10.1016/j.fuel.2014.08.066
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2019.01.088
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 20
ExternalDocumentID 10_1016_j_jpowsour_2019_01_088
S0378775319300989
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c351t-6dbb8d46b55efbadc63e44d445e9f3850e2f0abe678b6d9c4ee08402f1a067023
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Tue Jul 01 01:40:14 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Fri Feb 23 02:28:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Passive micro direct methanol fuel cells
Transport optimization
Bubbles
Whole dynamic process
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-6dbb8d46b55efbadc63e44d445e9f3850e2f0abe678b6d9c4ee08402f1a067023
ORCID 0000-0003-2988-2214
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_jpowsour_2019_01_088
crossref_citationtrail_10_1016_j_jpowsour_2019_01_088
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2019_01_088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-15
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Zhao, Ye (bib17) 2005; 142
Shrivastava, Thombre, Mallick (bib13) 2014; 149
Alaswad, Baroutaji, Achour, Carton, Makky (bib16) 2016; 41
Bewer, Beckmann, Dohle, Mergel, Stolten (bib22) 2004; 125
Achmad, Kamarudin, Daud, Majlan (bib2) 2011; 88
Li, Liang, Liu, Sun, Zhao (bib19) 2009; 9
Burgmann, Blank, Panchenko (bib9) 2013; 54
Ye, Zhu, Liao, Li, Fu (bib14) 2009; 192
Zheng, Suominen, Lagercrantz, Tuominen (bib32) 2012; 9
Fei, Chen, Hong (bib35) 2008; 5
Garvina, Meyers (bib34) 2011; 158
Liu, Cai, Liu, Sun, Xing (bib18) 2015; 139
Carton, Olabi (bib10) 2010; 35
Carton, Lawlor, Olabi, Hochenauer, Zauner (bib11) 2012; 39
Yousefi, Zohoor (bib15) 2014; 39
Falcao, Pereira, Pinto (bib24) 2016; 41
Liao, Zhu, Zheng, Ding (bib20) 2007; 171
Kang, Zhou, Jiang (bib33) 2017; 42
Hashemi, Yousefi, Faraji (bib12) 2015; 21
Gnyloskurenko, Byakova, Raychenko, Nakamura (bib25) 2003; 218
Vafaei, Wen (bib27) 2010; 343
Li, Geng, Zhu (bib31) 2014; 635–637
Meng, Kim, Kim (bib29) 2003
Wang, Jing, Mao, Xie (bib3) 2016; 41
Hutzenlaub, Paust, Zengerle, Ziegler (bib21) 2011; 196
Liang, Luo, Zheng, Wang (bib23) 2017; 351
Yousefi, Shakeri, Sedighi (bib6) 2013; 19
Deodath, Jhingoorie, Riverol (bib1) 2017; 42
Carton, Olabi (bib5) 2017; 136
Fei, Chen, Hong (bib36) 2010; 195
Taymaz, Akgun, Benli (bib4) 2011; 36
Yuan, Zhou, Deng, Tang, Zhang, Li (bib7) 2014; 39
Zhu, Liao, Wang, Bao, Xie, Lin (bib26) 2010; 23
Calabriso, Borello, Romano (bib28) 2017; 185
Ferreira, Falcao, Oliveira, Pinto (bib30) 2015; 82
Wilberforce, Alaswad, Palumbo, Dassisti, Olabi (bib8) 2016; 41
Bewer (10.1016/j.jpowsour.2019.01.088_bib22) 2004; 125
Yousefi (10.1016/j.jpowsour.2019.01.088_bib6) 2013; 19
Carton (10.1016/j.jpowsour.2019.01.088_bib10) 2010; 35
Fei (10.1016/j.jpowsour.2019.01.088_bib36) 2010; 195
Liu (10.1016/j.jpowsour.2019.01.088_bib18) 2015; 139
Falcao (10.1016/j.jpowsour.2019.01.088_bib24) 2016; 41
Li (10.1016/j.jpowsour.2019.01.088_bib31) 2014; 635–637
Shrivastava (10.1016/j.jpowsour.2019.01.088_bib13) 2014; 149
Burgmann (10.1016/j.jpowsour.2019.01.088_bib9) 2013; 54
Carton (10.1016/j.jpowsour.2019.01.088_bib11) 2012; 39
Calabriso (10.1016/j.jpowsour.2019.01.088_bib28) 2017; 185
Liang (10.1016/j.jpowsour.2019.01.088_bib23) 2017; 351
Fei (10.1016/j.jpowsour.2019.01.088_bib35) 2008; 5
Zheng (10.1016/j.jpowsour.2019.01.088_bib32) 2012; 9
Wilberforce (10.1016/j.jpowsour.2019.01.088_bib8) 2016; 41
Gnyloskurenko (10.1016/j.jpowsour.2019.01.088_bib25) 2003; 218
Hashemi (10.1016/j.jpowsour.2019.01.088_bib12) 2015; 21
Yang (10.1016/j.jpowsour.2019.01.088_bib17) 2005; 142
Alaswad (10.1016/j.jpowsour.2019.01.088_bib16) 2016; 41
Achmad (10.1016/j.jpowsour.2019.01.088_bib2) 2011; 88
Zhu (10.1016/j.jpowsour.2019.01.088_bib26) 2010; 23
Yousefi (10.1016/j.jpowsour.2019.01.088_bib15) 2014; 39
Deodath (10.1016/j.jpowsour.2019.01.088_bib1) 2017; 42
Yuan (10.1016/j.jpowsour.2019.01.088_bib7) 2014; 39
Hutzenlaub (10.1016/j.jpowsour.2019.01.088_bib21) 2011; 196
Vafaei (10.1016/j.jpowsour.2019.01.088_bib27) 2010; 343
Garvina (10.1016/j.jpowsour.2019.01.088_bib34) 2011; 158
Ferreira (10.1016/j.jpowsour.2019.01.088_bib30) 2015; 82
Liao (10.1016/j.jpowsour.2019.01.088_bib20) 2007; 171
Taymaz (10.1016/j.jpowsour.2019.01.088_bib4) 2011; 36
Carton (10.1016/j.jpowsour.2019.01.088_bib5) 2017; 136
Ye (10.1016/j.jpowsour.2019.01.088_bib14) 2009; 192
Wang (10.1016/j.jpowsour.2019.01.088_bib3) 2016; 41
Meng (10.1016/j.jpowsour.2019.01.088_bib29) 2003
Li (10.1016/j.jpowsour.2019.01.088_bib19) 2009; 9
Kang (10.1016/j.jpowsour.2019.01.088_bib33) 2017; 42
References_xml – volume: 23
  start-page: 1141
  year: 2010
  end-page: 1145
  ident: bib26
  article-title: Experimental Study of bubble growth and departure at the tip of capillary tubes with various wettabilities in a stagnant liquid
  publication-title: J. Supercond. Nov. Magnetism
– volume: 5
  start-page: 119
  year: 2008
  end-page: 129
  ident: bib35
  article-title: Microfluidic analysis of CO
  publication-title: Microfluid. Nanofluidics
– volume: 42
  start-page: 12032
  year: 2017
  end-page: 12045
  ident: bib1
  article-title: Direct methanol fuel cell system reliability analysis
  publication-title: Int. J. Hydrogen Energy
– volume: 9
  year: 2012
  ident: bib32
  article-title: A two-dimensional model for CO
  publication-title: J. Fuel Cell Sci. Technol.
– volume: 196
  start-page: 8048
  year: 2011
  end-page: 8056
  ident: bib21
  article-title: The effect of wetting properties on bubble dynamics and fuel distribution in the flow field of direct methanol fuel cells
  publication-title: J. Power Sources
– volume: 158
  start-page: B1119
  year: 2011
  end-page: B1127
  ident: bib34
  article-title: Modeling of coupled multiphase transport in direct methanol fuel cell diffusion layers
  publication-title: J. Electrochem. Soc.
– volume: 82
  start-page: 619
  year: 2015
  end-page: 628
  ident: bib30
  article-title: Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell
  publication-title: Energy
– volume: 39
  start-page: 5972
  year: 2014
  end-page: 5980
  ident: bib15
  article-title: Conceptual design and statistical overview on the design of a passive DMFC single cell
  publication-title: Int. J. Hydrogen Energy
– volume: 88
  start-page: 1681
  year: 2011
  end-page: 1689
  ident: bib2
  article-title: Passive direct methanol fuel cells for portable electronic devices
  publication-title: Appl. Energy
– volume: 136
  start-page: 185
  year: 2017
  end-page: 195
  ident: bib5
  article-title: Three-dimensional proton exchange membrane fuel cell model: comparison of double channel and open pore cellular foam flow plates
  publication-title: Energy
– volume: 218
  start-page: 73
  year: 2003
  end-page: 87
  ident: bib25
  article-title: Influence of wetting conditions on bubble formation at orifice in an inviscid liquid. Transformation of bubble shape and size
  publication-title: Colloid. Surface. Physicochem. Eng. Aspect.
– start-page: 534
  year: 2003
  end-page: 537
  ident: bib29
  article-title: A distributed gas breather for micro direct methanol fuel cell
  publication-title: Proc. IEEE Int. Conf. On Micor Electro Mechanical System, Kyoto, Japan
– volume: 41
  start-page: 16247
  year: 2016
  end-page: 16253
  ident: bib3
  article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 13859
  year: 2016
  end-page: 13867
  ident: bib24
  article-title: Effect of stainless steel meshes on the performance of passive micro direct methanol fuel cells
  publication-title: Int. J. Hydrogen Energy
– volume: 185
  start-page: 1245
  year: 2017
  end-page: 1255
  ident: bib28
  article-title: Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation
  publication-title: Appl. Energy
– volume: 35
  start-page: 2796
  year: 2010
  end-page: 2806
  ident: bib10
  article-title: Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell
  publication-title: Energy
– volume: 39
  start-page: 63
  year: 2012
  end-page: 73
  ident: bib11
  article-title: Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels
  publication-title: Energy
– volume: 149
  start-page: 167
  year: 2014
  end-page: 175
  ident: bib13
  article-title: Effect of diffusion layer compression on passive DMFC performance
  publication-title: Electrochim. Acta
– volume: 39
  start-page: 6689
  year: 2014
  end-page: 6704
  ident: bib7
  article-title: Overview on the developments of vapor-feed direct methanol fuel cells
  publication-title: Int. J. Hydrogen Energy
– volume: 171
  start-page: 644
  year: 2007
  end-page: 651
  ident: bib20
  article-title: Visualization study on the dynamics of CO
  publication-title: J. Power Sources
– volume: 192
  start-page: 502
  year: 2009
  end-page: 514
  ident: bib14
  article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells
  publication-title: J. Power Sources
– volume: 41
  start-page: 16509
  year: 2016
  end-page: 16522
  ident: bib8
  article-title: Advances in stationary and portable fuel cell applications
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 16499
  year: 2016
  end-page: 16508
  ident: bib16
  article-title: Developments in fuel cell technologies in the transport sector
  publication-title: Int. J. Hydrogen Energy
– volume: 21
  start-page: 2851
  year: 2015
  end-page: 2862
  ident: bib12
  article-title: Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell
  publication-title: Ionics
– volume: 9
  start-page: 3314
  year: 2009
  end-page: 3324
  ident: bib19
  article-title: Effects of anode flow field design on CO
  publication-title: Sensors
– volume: 125
  start-page: 1
  year: 2004
  end-page: 9
  ident: bib22
  article-title: Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H
  publication-title: J. Power Sources
– volume: 19
  start-page: 1637
  year: 2013
  end-page: 1647
  ident: bib6
  article-title: The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell
  publication-title: Ionics
– volume: 142
  start-page: 117
  year: 2005
  end-page: 124
  ident: bib17
  article-title: Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells
  publication-title: J. Power Sources
– volume: 351
  start-page: 86
  year: 2017
  end-page: 95
  ident: bib23
  article-title: Enhance performance of micro direct methanol fuel cell by in situ CO2 removal using novel anode flow field with superhydrophobic degassing channels
  publication-title: J. Power Sources
– volume: 139
  start-page: 308
  year: 2015
  end-page: 313
  ident: bib18
  article-title: Magnetic coupled passive direct methanol fuel cell: promoted CO
  publication-title: Fuel
– volume: 195
  start-page: 1940
  year: 2010
  end-page: 1945
  ident: bib36
  article-title: Direct methanol fuel cell bubble transport simulations via thermal lattice Boltzmann and volume of fluid methods
  publication-title: J. Power Sources
– volume: 343
  start-page: 291
  year: 2010
  end-page: 297
  ident: bib27
  article-title: Bubble formation on a submerged micronozzle
  publication-title: J. Colloid Interface Sci.
– volume: 54
  start-page: 1513
  year: 2013
  end-page: 1526
  ident: bib9
  article-title: μPIV measurements of two-phase flows of an operated direct methanol fuel cell
  publication-title: Exp. Fluid
– volume: 42
  start-page: 20201
  year: 2017
  end-page: 20215
  ident: bib33
  article-title: Bubble behaviors in direct methanol fuel cell anode with parallel design
  publication-title: Int. J. Hydrogen Energy
– volume: 36
  start-page: 1155
  year: 2011
  end-page: 1160
  ident: bib4
  article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC
  publication-title: Energy
– volume: 635–637
  start-page: 346
  year: 2014
  end-page: 353
  ident: bib31
  article-title: Theoretical analysis of CO
  publication-title: Appl. Mech. Mater.
– volume: 196
  start-page: 8048
  issue: 19
  year: 2011
  ident: 10.1016/j.jpowsour.2019.01.088_bib21
  article-title: The effect of wetting properties on bubble dynamics and fuel distribution in the flow field of direct methanol fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.05.070
– volume: 41
  start-page: 13859
  issue: 31
  year: 2016
  ident: 10.1016/j.jpowsour.2019.01.088_bib24
  article-title: Effect of stainless steel meshes on the performance of passive micro direct methanol fuel cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.059
– volume: 82
  start-page: 619
  year: 2015
  ident: 10.1016/j.jpowsour.2019.01.088_bib30
  article-title: Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.071
– volume: 5
  start-page: 119
  issue: 1
  year: 2008
  ident: 10.1016/j.jpowsour.2019.01.088_bib35
  article-title: Microfluidic analysis of CO2 bubble dynamics using thermal lattice-Boltzmann method
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-007-0232-x
– volume: 125
  start-page: 1
  year: 2004
  ident: 10.1016/j.jpowsour.2019.01.088_bib22
  article-title: Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00824-3
– volume: 41
  start-page: 16499
  issue: 37
  year: 2016
  ident: 10.1016/j.jpowsour.2019.01.088_bib16
  article-title: Developments in fuel cell technologies in the transport sector
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.164
– volume: 19
  start-page: 1637
  year: 2013
  ident: 10.1016/j.jpowsour.2019.01.088_bib6
  article-title: The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell
  publication-title: Ionics
  doi: 10.1007/s11581-013-0889-y
– volume: 218
  start-page: 73
  issue: 1–3
  year: 2003
  ident: 10.1016/j.jpowsour.2019.01.088_bib25
  article-title: Influence of wetting conditions on bubble formation at orifice in an inviscid liquid. Transformation of bubble shape and size
  publication-title: Colloid. Surface. Physicochem. Eng. Aspect.
  doi: 10.1016/S0927-7757(02)00592-7
– volume: 158
  start-page: B1119
  issue: 9
  year: 2011
  ident: 10.1016/j.jpowsour.2019.01.088_bib34
  article-title: Modeling of coupled multiphase transport in direct methanol fuel cell diffusion layers
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3603974
– volume: 54
  start-page: 1513
  year: 2013
  ident: 10.1016/j.jpowsour.2019.01.088_bib9
  article-title: μPIV measurements of two-phase flows of an operated direct methanol fuel cell
  publication-title: Exp. Fluid
  doi: 10.1007/s00348-013-1513-7
– start-page: 534
  year: 2003
  ident: 10.1016/j.jpowsour.2019.01.088_bib29
  article-title: A distributed gas breather for micro direct methanol fuel cell
– volume: 149
  start-page: 167
  year: 2014
  ident: 10.1016/j.jpowsour.2019.01.088_bib13
  article-title: Effect of diffusion layer compression on passive DMFC performance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.10.080
– volume: 136
  start-page: 185
  year: 2017
  ident: 10.1016/j.jpowsour.2019.01.088_bib5
  article-title: Three-dimensional proton exchange membrane fuel cell model: comparison of double channel and open pore cellular foam flow plates
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.010
– volume: 88
  start-page: 1681
  year: 2011
  ident: 10.1016/j.jpowsour.2019.01.088_bib2
  article-title: Passive direct methanol fuel cells for portable electronic devices
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.11.012
– volume: 39
  start-page: 6689
  year: 2014
  ident: 10.1016/j.jpowsour.2019.01.088_bib7
  article-title: Overview on the developments of vapor-feed direct methanol fuel cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.02.002
– volume: 343
  start-page: 291
  year: 2010
  ident: 10.1016/j.jpowsour.2019.01.088_bib27
  article-title: Bubble formation on a submerged micronozzle
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.08.005
– volume: 171
  start-page: 644
  issue: 2
  year: 2007
  ident: 10.1016/j.jpowsour.2019.01.088_bib20
  article-title: Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.06.257
– volume: 42
  start-page: 20201
  issue: 31
  year: 2017
  ident: 10.1016/j.jpowsour.2019.01.088_bib33
  article-title: Bubble behaviors in direct methanol fuel cell anode with parallel design
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.149
– volume: 41
  start-page: 16247
  issue: 36
  year: 2016
  ident: 10.1016/j.jpowsour.2019.01.088_bib3
  article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.116
– volume: 39
  start-page: 5972
  year: 2014
  ident: 10.1016/j.jpowsour.2019.01.088_bib15
  article-title: Conceptual design and statistical overview on the design of a passive DMFC single cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.117
– volume: 35
  start-page: 2796
  year: 2010
  ident: 10.1016/j.jpowsour.2019.01.088_bib10
  article-title: Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell
  publication-title: Energy
  doi: 10.1016/j.energy.2010.02.044
– volume: 351
  start-page: 86
  year: 2017
  ident: 10.1016/j.jpowsour.2019.01.088_bib23
  article-title: Enhance performance of micro direct methanol fuel cell by in situ CO2 removal using novel anode flow field with superhydrophobic degassing channels
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.099
– volume: 192
  start-page: 502
  year: 2009
  ident: 10.1016/j.jpowsour.2019.01.088_bib14
  article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.03.008
– volume: 195
  start-page: 1940
  issue: 7
  year: 2010
  ident: 10.1016/j.jpowsour.2019.01.088_bib36
  article-title: Direct methanol fuel cell bubble transport simulations via thermal lattice Boltzmann and volume of fluid methods
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.10.025
– volume: 42
  start-page: 12032
  issue: 16
  year: 2017
  ident: 10.1016/j.jpowsour.2019.01.088_bib1
  article-title: Direct methanol fuel cell system reliability analysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.03.144
– volume: 142
  start-page: 117
  year: 2005
  ident: 10.1016/j.jpowsour.2019.01.088_bib17
  article-title: Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.09.036
– volume: 9
  start-page: 3314
  year: 2009
  ident: 10.1016/j.jpowsour.2019.01.088_bib19
  article-title: Effects of anode flow field design on CO2 bubble behavior in μDMFC
  publication-title: Sensors
  doi: 10.3390/s90503314
– volume: 9
  issue: 1
  year: 2012
  ident: 10.1016/j.jpowsour.2019.01.088_bib32
  article-title: A two-dimensional model for CO2/fuel multiphase flow on the anode side of a DMFC
  publication-title: J. Fuel Cell Sci. Technol.
  doi: 10.1115/1.4005384
– volume: 21
  start-page: 2851
  year: 2015
  ident: 10.1016/j.jpowsour.2019.01.088_bib12
  article-title: Experimental studying of the effect of active area on the performance of passive direct methanol fuel cell
  publication-title: Ionics
  doi: 10.1007/s11581-015-1479-y
– volume: 39
  start-page: 63
  issue: 1
  year: 2012
  ident: 10.1016/j.jpowsour.2019.01.088_bib11
  article-title: Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels
  publication-title: Energy
  doi: 10.1016/j.energy.2011.10.023
– volume: 41
  start-page: 16509
  issue: 37
  year: 2016
  ident: 10.1016/j.jpowsour.2019.01.088_bib8
  article-title: Advances in stationary and portable fuel cell applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.02.057
– volume: 185
  start-page: 1245
  year: 2017
  ident: 10.1016/j.jpowsour.2019.01.088_bib28
  article-title: Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.042
– volume: 635–637
  start-page: 346
  year: 2014
  ident: 10.1016/j.jpowsour.2019.01.088_bib31
  article-title: Theoretical analysis of CO2 bubble formation in anode flow field of μDMFC
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.635-637.346
– volume: 36
  start-page: 1155
  year: 2011
  ident: 10.1016/j.jpowsour.2019.01.088_bib4
  article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC
  publication-title: Energy
  doi: 10.1016/j.energy.2010.11.034
– volume: 23
  start-page: 1141
  issue: 6
  year: 2010
  ident: 10.1016/j.jpowsour.2019.01.088_bib26
  article-title: Experimental Study of bubble growth and departure at the tip of capillary tubes with various wettabilities in a stagnant liquid
  publication-title: J. Supercond. Nov. Magnetism
  doi: 10.1007/s10948-010-0723-y
– volume: 139
  start-page: 308
  year: 2015
  ident: 10.1016/j.jpowsour.2019.01.088_bib18
  article-title: Magnetic coupled passive direct methanol fuel cell: promoted CO2 removal and enhanced catalyst utilization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.08.066
SSID ssj0001170
Score 2.4362466
Snippet In this paper, the force controlling bubble formation is calculated in anode reaction region by establishing a two-phase dynamic model. The whole dynamic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 9
SubjectTerms Bubbles
Passive micro direct methanol fuel cells
Transport optimization
Whole dynamic process
Title The whole process, bubble dynamic analysis in two-phase transport of the passive miniature direct methanol fuel cells
URI https://dx.doi.org/10.1016/j.jpowsour.2019.01.088
Volume 416
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lDl4NG0emzQ5lmKpir1oobewm93FlpIETenN3-5MHlpB6MHjhgyEb4f5Zjcz3zB2K4ThQipjedIM8IBiCyt0HG0ZpANkF5U4Zdf78zSYzPjj3J-32KjphaGyyjr2VzG9jNb1k36NZj9fLPovtofONiAf8kgVk5r4OB-Ql_c-f8o8aLJK-ScBT0v09laX8LK3zLMNXZJTiVdUyneWE1j-IKgt0hkfscM6W4Rh9UHHrKXTE3awpSF4yta40bChKbeQV0X_dyDXUuJaVdPmQdTCI7BIodhkVv6G1AVFI2sOmQFMAyHHPBpjH5DaSCn3CRU2QFOmRZqtwKz1Cuiq_-OMzcb3r6OJVc9SsBLPdworUFKGigfS97WRQiWBpzlXnPs6Ml7o29o1tpAauUsGKkq41jae_VzjCOrkcb1z1k6zVF8wCA1PuGub0CjDjUpEKBB-rnEl3UQ5HeY3AMZJLTRO8y5WcVNRtowb4GMCPradGIHvsP63XV5Jbey0iJr9iX85TYx8sMP28h-2V2yfVlSK5vjXrF28r_UN5iaF7JbO12V7w4enyfQLnXTp5A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UB7QLQFsS3QOfTYsPmwQ3JECLQU2EtB4mbZsS12tUqiNqv9-53JB1okJA4cnWikaDyaN3Zm3gP4qbUX2lgfJMaf0QEl1EEWRS7wBAeELraI2qn3u1k6fRC_H-XjFlwMszDcVtnn_i6nt9m6fzLpvTmp5_PJnzChYDvjGEqYFTP_ANvMTiVHsH1-fTOdPSdkFldpfybQgYkNNgaFF6eLulrzPTl3eeUtg2crwvIKRm3gztUe7PYFI5533_QZtlz5BT5t0Ah-hRXtNa5Z6Bbrru__F5qVMbS2neA86p57BOclNusqqJ8IvbAZmM2x8kiVINZUSlP6QyYcaRk_sXMPstC0Lqsl-pVbIt_2_9uHh6vL-4tp0MspBEUioyZIrTGZFamR0nmjbZEmTggrhHS5TzIZutiH2jiCL5PavBDOhXT8i32keZgnTg5gVFalOwTMvChEHPrMWy-8LXSmaQeEo5WJCxuNQQ4OVEXPNc6SF0s1NJUt1OB4xY5XYaTI8WOYPNvVHdvGmxb5sD_qRdwogoQ3bL-9w_YH7Ezv727V7fXs5jt85DfcmRbJIxg1f1fumEqVxpz0ofgfmGbslQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+whole+process%2C+bubble+dynamic+analysis+in+two-phase+transport+of+the+passive+miniature+direct+methanol+fuel+cells&rft.jtitle=Journal+of+power+sources&rft.au=Yuan%2C+Zhenyu&rft.au=Zuo%2C+Kaiyuan&rft.au=Cao%2C+Cheng&rft.au=Chen%2C+Shuxuan&rft.date=2019-03-15&rft.issn=0378-7753&rft.volume=416&rft.spage=9&rft.epage=20&rft_id=info:doi/10.1016%2Fj.jpowsour.2019.01.088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2019_01_088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon