Topology optimization of plate structures using plate element-based moving morphable component (MMC) approach
A topology optimization approach for designing the layout of plate structures is proposed in this article. In this approach, structural mechanical behavior is analyzed under the framework of Kirchhoff plate theory, and structural topology is described explicitly by a set of moving morphable componen...
Saved in:
Published in | Acta mechanica Sinica Vol. 36; no. 2; pp. 412 - 421 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
01.04.2020
Springer Nature B.V State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,International Research Center for Computational Mechanics,Dalian University of Technology,Dalian 116023,People's Republic of China |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A topology optimization approach for designing the layout of plate structures is proposed in this article. In this approach, structural mechanical behavior is analyzed under the framework of Kirchhoff plate theory, and structural topology is described explicitly by a set of moving morphable components. Compared to the existing treatments where structural topology is generally described in an implicit manner, the adopted explicit geometry/layout description has demonstrated its advantages on several aspects. Firstly, the number of design variables is reduced substantially. Secondly, the obtained optimized designs are pure black-and-white and contain no gray regions. Besides, numerical experiments show that the use of Kirchhoff plate element helps save 95–99% computational time, compared with traditional treatments where solid elements are used for finite element analysis. Moreover the accuracy of the proposed method is also validated through a comparison with the corresponding theoretical solutions. Several numerical examples are also provided to demonstrate the effectiveness of the proposed approach. |
---|---|
AbstractList | A topology optimization approach for designing the layout of plate structures is proposed in this article. In this approach, structural mechanical behavior is analyzed under the framework of Kirchhoff plate theory, and structural topology is described explicitly by a set of moving morphable components. Compared to the existing treatments where structural topology is generally described in an implicit manner, the adopted explicit geometry/layout description has demonstrated its advantages on several aspects. Firstly, the number of design variables is reduced substantially. Secondly, the obtained optimized designs are pure black-and-white and contain no gray regions. Besides, numerical experiments show that the use of Kirchhoff plate element helps save 95–99% computational time, compared with traditional treatments where solid elements are used for finite element analysis. Moreover the accuracy of the proposed method is also validated through a comparison with the corresponding theoretical solutions. Several numerical examples are also provided to demonstrate the effectiveness of the proposed approach. A topology optimization approach for designing the layout of plate structures is proposed in this article. In this approach, structural mechanical behavior is analyzed under the framework of Kirchhoff plate theory, and structural topology is described explicitly by a set of moving morphable components. Compared to the existing treatments where structural topology is generally described in an implicit manner, the adopted explicit geometry/layout description has demonstrated its advantages on several aspects. Firstly, the number of design variables is reduced substantially. Secondly, the obtained optimized designs are pure black-and-white and contain no gray regions. Besides, numerical experiments show that the use of Kirchhoff plate element helps save 95–99% computational time, compared with traditional treatments where solid elements are used for finite element analysis. Moreover the accuracy of the proposed method is also validated through a comparison with the corresponding theoretical solutions. Several numerical examples are also provided to demonstrate the effectiveness of the proposed approach. |
Author | Sun, Zhi Cui, Ronghua Guo, Xu Cui, Tianchen Li, Linyuan Liu, Chang |
AuthorAffiliation | State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,International Research Center for Computational Mechanics,Dalian University of Technology,Dalian 116023,People's Republic of China |
AuthorAffiliation_xml | – name: State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,International Research Center for Computational Mechanics,Dalian University of Technology,Dalian 116023,People's Republic of China |
Author_xml | – sequence: 1 givenname: Tianchen surname: Cui fullname: Cui, Tianchen organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology – sequence: 2 givenname: Zhi surname: Sun fullname: Sun, Zhi email: zhisun@dlut.edu.cn organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology – sequence: 3 givenname: Chang surname: Liu fullname: Liu, Chang organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology – sequence: 4 givenname: Linyuan surname: Li fullname: Li, Linyuan organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology – sequence: 5 givenname: Ronghua surname: Cui fullname: Cui, Ronghua organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology – sequence: 6 givenname: Xu surname: Guo fullname: Guo, Xu email: guoxu@dlut.edu.cn organization: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology |
BookMark | eNp9kUtr3TAQhUVJoTdp_0BXgiySLNSOLEuyl-GSPiChm3QtZFm6cbAlR5Lz6K-PbhwIdBEYEIy-M3OYc4gOfPAWoa8UvlEA-T1RqKElUAEBaOua8A9oQwWtCaNUHKANcCGJlLT5hA5TugVggkq6QdN1mMMYdk84zHmYhn86D8Hj4PA86mxxynExeYk24SUNfvfatqOdrM-k08n2eAr3-68pxPlGd6PFJkxzMegzPr262p5hPc8xaHPzGX10ekz2y-t7hP7-uLje_iKXf37-3p5fEsM4zUQIybhghptOGCOlbRytXVMbkNK0YBopW2d41fdd5TrLe9Mb7vqKUuiE7Aw7Qifr3AftnfY7dRuW6MtGNT4-dspW5VClKCvk8UoWg3eLTfkNrVjbtgBNu6ealTIxpBStU2bIL5fKUQ-joqD2Mag1BlVGq5cYFC_S6j_pHIdJx6f3RWwVpQL7nY1vrt5RPQNoGJ33 |
CitedBy_id | crossref_primary_10_1007_s10409_020_01046_y crossref_primary_10_1007_s00158_023_03719_1 crossref_primary_10_1016_j_engstruct_2022_115454 crossref_primary_10_3390_app14167171 crossref_primary_10_1007_s10409_020_01034_2 crossref_primary_10_1007_s11831_023_10053_8 crossref_primary_10_1016_j_cma_2024_117132 crossref_primary_10_1007_s00158_020_02649_6 crossref_primary_10_1007_s11831_021_09546_1 crossref_primary_10_1007_s40430_022_03496_w |
Cites_doi | 10.1002/nme.694 10.1007/s00466-016-1365-0 10.1007/s00158-013-0978-6 10.1016/j.mechrescom.2011.01.012 10.1115/1.4027609 10.1002/nme.5737 10.1016/j.cma.2017.02.018 10.1007/s11831-015-9151-2 10.1007/s10409-010-0395-7 10.1016/j.cma.2014.01.010 10.1002/nme.5714 10.1016/j.eml.2017.03.004 10.1115/1.4034972 10.1007/s00158-016-1466-6 10.1016/j.cma.2017.05.003 10.1007/s00158-008-0250-7 10.1007/s11431-016-6027-0 10.1016/j.cma.2015.05.005 10.1115/1.1388075 10.1002/nme.1064 10.1038/s41598-018-31763-1 10.1115/1.4036941 10.1016/j.cma.2017.06.025 10.1115/1.4036999 10.1108/02644409910304185 10.1016/j.cma.2018.01.050 10.1016/j.cma.2017.05.002 10.1002/(SICI)1097-0207(19980430)41:8<1417::AID-NME344>3.0.CO;2-N 10.1007/s00158-015-1372-3 10.1016/j.cma.2015.03.007 10.1016/j.cma.2016.08.022 10.1016/S0045-7825(02)00559-5 10.1016/j.jmps.2018.06.014 10.1016/j.cma.2017.04.021 10.1007/s00158-011-0676-1 10.1016/0045-7825(88)90086-2 10.1016/j.cma.2015.07.015 10.1016/j.cma.2014.08.027 10.1016/j.cma.2016.07.018 10.1007/s00158-015-1321-1 10.1115/1.4032432 |
ContentType | Journal Article |
Copyright | The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2020 The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2020. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2020. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s10409-020-00944-5 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1614-3116 |
Edition | English ed. |
EndPage | 421 |
ExternalDocumentID | lxxb_e202002013 10_1007_s10409_020_00944_5 |
GrantInformation_xml | – fundername: The authors are grateful to the financial sup-ports of the National Key Research and Development Plan; the Foundation for Innovative Research Groups of the National Natural Science Foundation of China; the National Natural Science Foundation of China; Program for Changjiang Scholars, Innovative Research Team in University; 111 Project; Young Elite Scientists Sponsorship Program by CAST; Liaoning Nat-ural Science Foundation Guidance Plan; Fundamental Research Funds for the Central Universities, China funderid: (Grant 2016YFB0201601); (Grant 11821202); (Grants 11872138, 11702048, 11872141, 11732004 and 11772076); Program for Changjiang Scholars, Innovative Research Team in University; (Grant B14013); (Grant 2018QNRC001); (Grant 20170520293); Fundamental Research Funds for the Central Universities, China |
GroupedDBID | -5B -5G -BR -EM -SA -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 67Z 6NX 8TC 8UJ 92E 92I 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9P PF0 PT4 Q-- QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCL SCLPG SCV SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGP TSG TSK TSV TUC U1G U2A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ 2B. 4A8 PSX |
ID | FETCH-LOGICAL-c351t-6673563c5cb6cc77e8f14f84c077c90c8779fc52ddb2fbe5dcdc5fd2110b67bc3 |
IEDL.DBID | U2A |
ISSN | 0567-7718 |
IngestDate | Thu May 29 04:10:19 EDT 2025 Fri Jul 25 11:11:42 EDT 2025 Tue Jul 01 01:58:25 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Fri Feb 21 02:44:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Topology optimization Kirchhoff plate theory Plate structure Moving morphable component (MMC) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-6673563c5cb6cc77e8f14f84c077c90c8779fc52ddb2fbe5dcdc5fd2110b67bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2399900893 |
PQPubID | 2043800 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_lxxb_e202002013 proquest_journals_2399900893 crossref_citationtrail_10_1007_s10409_020_00944_5 crossref_primary_10_1007_s10409_020_00944_5 springer_journals_10_1007_s10409_020_00944_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Acta mechanica Sinica |
PublicationTitleAbbrev | Acta Mech. Sin |
PublicationTitle_FL | Acta Mechanica Sinica(English Series) |
PublicationYear | 2020 |
Publisher | The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences Springer Nature B.V State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,International Research Center for Computational Mechanics,Dalian University of Technology,Dalian 116023,People's Republic of China |
Publisher_xml | – name: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences – name: Springer Nature B.V – name: State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,International Research Center for Computational Mechanics,Dalian University of Technology,Dalian 116023,People's Republic of China |
References | Zhang, Yang, Zhou (CR35) 2017; 84 Guo, Zhang, Zhong (CR17) 2014; 272 Li, Zhong, Tian (CR44) 2011; 38 Wang, Wang, Guo (CR7) 2003; 192 Guo, Cheng (CR4) 2010; 26 Guo, Zhang, Zhong (CR21) 2014; 81 Deng, Chen (CR23) 2016; 59 Xue, Li, Du (CR27) 2017; 15 Zhang, Norato, Gain (CR41) 2016; 54 Zhang, Zhong, Guo (CR20) 2015; 290 Zhang, Li, Yuan (CR25) 2016; 59 Zhang, Li, Zhang (CR22) 2016; 311 Petersson, Sigmund (CR8) 1998; 41 Zhang, Gain, Norato (CR42) 2017; 114 Guest, Asadpoure, Ha (CR13) 2011; 44 Zhang, Yuan, Zhang (CR36) 2015; 53 Guest, Prévost, Belytschko (CR11) 2004; 61 Norato, Bell, Tortorelli (CR30) 2015; 293 Zhang, Song, Zhou (CR26) 2018; 113 Guo, Zhou, Zhang (CR24) 2017; 323 Zhang, Gain, Norato (CR31) 2017; 325 Bendsøe, Kikuchi (CR1) 1988; 71 Zhao, Zhou, Feng (CR40) 2018; 119 Xia, Shi (CR19) 2015; 295 Zhang, Norato (CR32) 2017; 139 Guo, Zhao, Wang (CR43) 2004; 34 Sigmund, Maute (CR5) 2013; 48 Lazarov, Wang (CR16) 2017; 318 Zhang, Zhong, Guo (CR18) 2014; 282 Sun, Cui, Zhu (CR39) 2018; 8 Sigmund (CR6) 1997; 25 Bendsoe, Lund, Olhoff (CR3) 2005; 34 Dugré, Vadean, Chaussée (CR14) 2015; 53 Poulsen (CR10) 2001; 57 Zhang, Zhang, Guo (CR37) 2016; 83 Zhang, Chen, Zhu (CR33) 2017; 322 Zhu, Zhang, Xia (CR15) 2015; 23 Belblidia, Afonso, Hinton (CR9) 1999; 16 Guest (CR12) 2009; 37 Eschenauer, Olhoff (CR2) 2001; 54 Zhang, Li, Zhou (CR34) 2018; 334 Zhang, Zhao, Gao (CR38) 2017; 322 Guo, Zhang, Zhang (CR28) 2016; 310 Liu, Du, Zhang (CR29) 2017; 84 SL Zhang (944_CR42) 2017; 114 JH Zhu (944_CR15) 2015; 23 SL Zhang (944_CR32) 2017; 139 ZL Zhao (944_CR40) 2018; 119 WS Zhang (944_CR26) 2018; 113 M Bendsoe (944_CR3) 2005; 34 SL Zhang (944_CR41) 2016; 54 WH Zhang (944_CR38) 2017; 322 JK Guest (944_CR13) 2011; 44 WS Zhang (944_CR36) 2015; 53 MP Bendsøe (944_CR1) 1988; 71 MY Wang (944_CR7) 2003; 192 Q Xia (944_CR19) 2015; 295 X Guo (944_CR4) 2010; 26 A Dugré (944_CR14) 2015; 53 WS Zhang (944_CR20) 2015; 290 X Guo (944_CR28) 2016; 310 X Guo (944_CR17) 2014; 272 TA Poulsen (944_CR10) 2001; 57 WS Zhang (944_CR33) 2017; 322 C Liu (944_CR29) 2017; 84 F Belblidia (944_CR9) 1999; 16 HA Eschenauer (944_CR2) 2001; 54 BS Lazarov (944_CR16) 2017; 318 WS Zhang (944_CR22) 2016; 311 WS Zhang (944_CR37) 2016; 83 X Guo (944_CR21) 2014; 81 JD Deng (944_CR23) 2016; 59 JA Norato (944_CR30) 2015; 293 WS Zhang (944_CR35) 2017; 84 JK Guest (944_CR11) 2004; 61 O Sigmund (944_CR6) 1997; 25 RY Xue (944_CR27) 2017; 15 JK Guest (944_CR12) 2009; 37 WS Zhang (944_CR25) 2016; 59 J Petersson (944_CR8) 1998; 41 WS Zhang (944_CR34) 2018; 334 WS Zhang (944_CR18) 2014; 282 X Guo (944_CR24) 2017; 323 O Sigmund (944_CR5) 2013; 48 R Li (944_CR44) 2011; 38 Z Sun (944_CR39) 2018; 8 SL Zhang (944_CR31) 2017; 325 X Guo (944_CR43) 2004; 34 |
References_xml | – volume: 334 start-page: 381 year: 2018 end-page: 413 ident: CR34 article-title: A Moving Morphable Void (MMV)-based explicit approach for topology optimization considering stress constraints publication-title: Comput. Methods Appl. Mech. Eng. – volume: 38 start-page: 111 year: 2011 end-page: 116 ident: CR44 article-title: On new symplectic superposition method for exact bending solutions of rectangular cantilever thin plates publication-title: Mech. Res. Commun. – volume: 54 start-page: 1173 year: 2016 end-page: 1190 ident: CR41 article-title: A geometry projection method for the topology optimization of plate structures publication-title: Struct. Multidiscip. Optim. – volume: 23 start-page: 595 year: 2015 end-page: 622 ident: CR15 article-title: Topology optimization in aircraft and aerospace structures design publication-title: Arch. Comput. Methods Eng. – volume: 272 start-page: 354 year: 2014 end-page: 378 ident: CR17 article-title: Explicit feature control in structural topology optimization via level set method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 15 start-page: 139 year: 2017 end-page: 144 ident: CR27 article-title: Kirigami pattern design of mechanically driven formation of complex 3D structures through topology optimization publication-title: Extrem. Mech. Lett. – volume: 322 start-page: 1 year: 2017 end-page: 22 ident: CR38 article-title: CBS-based topology optimization including design-dependent body loads publication-title: Comput. Methods Appl. Mech. Eng. – volume: 81 start-page: 081009 year: 2014 ident: CR21 article-title: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework publication-title: J. Appl. Mech. – volume: 54 start-page: 1453 year: 2001 end-page: 1457 ident: CR2 article-title: Topology optimization of continuum structures: a review publication-title: Appl. Mech. Rev. – volume: 25 start-page: 493 year: 1997 end-page: 524 ident: CR6 article-title: On the design of compliant mechanisms using topology optimization publication-title: J. Struct. Mech. – volume: 84 start-page: 011011 year: 2017 ident: CR35 article-title: Structural topology optimization through explicit boundary evolution publication-title: J. Appl. Mech. – volume: 59 start-page: 647 year: 2016 end-page: 665 ident: CR25 article-title: A new three-dimensional topology optimization method based on moving morphable components (MMCs) publication-title: Comput. Mech. – volume: 318 start-page: 826 year: 2017 end-page: 844 ident: CR16 article-title: Maximum length scale in density based topology optimization publication-title: Comput. Methods Appl. Mech. Eng. – volume: 113 start-page: 1653 year: 2018 end-page: 1675 ident: CR26 article-title: Topology optimization with multiple materials via moving morphable component (MMC) method publication-title: Int. J. Numer. Methods Eng. – volume: 119 start-page: 224 year: 2018 end-page: 239 ident: CR40 article-title: On the internal architecture of emergent plants publication-title: J. Mech. Phys. Solids – volume: 192 start-page: 227 year: 2003 end-page: 246 ident: CR7 article-title: A level set method for structural topology optimization publication-title: Comput. Methods Appl. Mech. Eng. – volume: 139 start-page: 081403 year: 2017 ident: CR32 article-title: Optimal design of panel reinforcements with ribs made of plates publication-title: J. Mech. Des. – volume: 53 start-page: 1243 year: 2015 end-page: 1260 ident: CR36 article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model publication-title: Struct. Multidiscip. Optim. – volume: 323 start-page: 27 year: 2017 end-page: 63 ident: CR24 article-title: Self-supporting structure design in additive manufacturing through explicit topology optimization publication-title: Comput. Methods Appl. Mech. Eng. – volume: 44 start-page: 443 year: 2011 end-page: 453 ident: CR13 article-title: Eliminating beta-continuation from Heaviside projection and density filter algorithms publication-title: Struct. Multidiscip. Optim. – volume: 282 start-page: 71 year: 2014 end-page: 86 ident: CR18 article-title: An explicit length scale control approach in SIMP-based topology optimization publication-title: Comput. Methods Appl. Mech. Eng. – volume: 59 start-page: 839 year: 2016 end-page: 851 ident: CR23 article-title: Design for structural flexibility using connected morphable components based topology optimization publication-title: Sci. China Technol. Sci. – volume: 34 start-page: 255 year: 2004 end-page: 282 ident: CR43 article-title: A new approach for simultaneous shape and topology optimization based on dynamic implicit surface function publication-title: Control Cybern. – volume: 26 start-page: 807 year: 2010 end-page: 823 ident: CR4 article-title: Recent development in structural design and optimization publication-title: Acta. Mech. Sin. – volume: 114 start-page: 128 year: 2017 end-page: 146 ident: CR42 article-title: A geometry projection method for the topology optimization of curved plate structures with placement bounds publication-title: Int. J. Numer. Methods Eng. – volume: 61 start-page: 238 year: 2004 end-page: 254 ident: CR11 article-title: Achieving minimum length scale in topology optimization using nodal design variables and projection functions publication-title: Int. J. Numer. Methods Eng. – volume: 293 start-page: 306 year: 2015 end-page: 327 ident: CR30 article-title: A geometry projection method for continuum-based topology optimization with discrete elements publication-title: Comput. Methods Appl. Mech. Eng. – volume: 322 start-page: 590 year: 2017 end-page: 614 ident: CR33 article-title: Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach publication-title: Comput. Methods Appl. Mech. Eng. – volume: 37 start-page: 463 year: 2009 end-page: 473 ident: CR12 article-title: Imposing maximum length scale in topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 48 start-page: 1031 year: 2013 end-page: 1055 ident: CR5 article-title: Topology optimization approaches publication-title: Struct. Multidiscip. Optim. – volume: 57 start-page: 741 year: 2001 end-page: 760 ident: CR10 article-title: A new scheme for imposing a minimum length scale in topology optimization publication-title: Int. J. Numer. Methods Eng. – volume: 290 start-page: 290 year: 2015 end-page: 313 ident: CR20 article-title: Explicit layout control in optimal design of structural systems with multiple embedding components publication-title: Comput. Methods Appl. Mech. Eng. – volume: 325 start-page: 1 year: 2017 end-page: 21 ident: CR31 article-title: Stress-based topology optimization with discrete geometric components publication-title: Comput. Methods Appl. Mech. Eng. – volume: 295 start-page: 525 year: 2015 end-page: 542 ident: CR19 article-title: Constraints of distance from boundary to skeleton: for the control of length scale in level set based structural topology optimization publication-title: Comput. Methods Appl. Mech. Eng. – volume: 311 start-page: 327 year: 2016 end-page: 355 ident: CR22 article-title: Minimum length scale control in structural topology optimization based on the Moving Morphable Components (MMC) approach publication-title: Comput. Methods Appl. Mech. Eng. – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: CR1 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Eng. – volume: 41 start-page: 1417 year: 1998 end-page: 1434 ident: CR8 article-title: Slope constrained topology optimization publication-title: Int. J. Numer. Methods Eng. – volume: 53 start-page: 303 year: 2015 end-page: 320 ident: CR14 article-title: Challenges of using topology optimization for the design of pressurized stiffened panels publication-title: Struct. Multidiscip. Optim. – volume: 310 start-page: 711 year: 2016 end-page: 748 ident: CR28 article-title: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons publication-title: Comput. Methods Appl. Mech. Eng. – volume: 84 start-page: 081008 year: 2017 ident: CR29 article-title: Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization publication-title: J. Appl. Mech. – volume: 83 start-page: 041010 year: 2016 ident: CR37 article-title: Lagrangian description based topology optimization—a revival of shape optimization publication-title: J. Appl. Mech. – volume: 34 start-page: 7 year: 2005 end-page: 35 ident: CR3 article-title: Topology optimization broadening the areas of application publication-title: Control Cybern. – volume: 16 start-page: 934 year: 1999 end-page: 952 ident: CR9 article-title: Integrated design optimization of stiffened plate structures publication-title: Eng. Comput. – volume: 8 start-page: 13859 year: 2018 ident: CR39 article-title: The mechanical principles behind the golden ratio distribution of veins in plant leaves publication-title: Sci. Rep. – volume: 57 start-page: 741 year: 2001 ident: 944_CR10 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.694 – volume: 59 start-page: 647 year: 2016 ident: 944_CR25 publication-title: Comput. Mech. doi: 10.1007/s00466-016-1365-0 – volume: 48 start-page: 1031 year: 2013 ident: 944_CR5 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0978-6 – volume: 38 start-page: 111 year: 2011 ident: 944_CR44 publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2011.01.012 – volume: 81 start-page: 081009 year: 2014 ident: 944_CR21 publication-title: J. Appl. Mech. doi: 10.1115/1.4027609 – volume: 114 start-page: 128 year: 2017 ident: 944_CR42 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5737 – volume: 318 start-page: 826 year: 2017 ident: 944_CR16 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.02.018 – volume: 23 start-page: 595 year: 2015 ident: 944_CR15 publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-015-9151-2 – volume: 26 start-page: 807 year: 2010 ident: 944_CR4 publication-title: Acta. Mech. Sin. doi: 10.1007/s10409-010-0395-7 – volume: 272 start-page: 354 year: 2014 ident: 944_CR17 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.01.010 – volume: 113 start-page: 1653 year: 2018 ident: 944_CR26 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5714 – volume: 15 start-page: 139 year: 2017 ident: 944_CR27 publication-title: Extrem. Mech. Lett. doi: 10.1016/j.eml.2017.03.004 – volume: 84 start-page: 011011 year: 2017 ident: 944_CR35 publication-title: J. Appl. Mech. doi: 10.1115/1.4034972 – volume: 34 start-page: 7 year: 2005 ident: 944_CR3 publication-title: Control Cybern. – volume: 54 start-page: 1173 year: 2016 ident: 944_CR41 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1466-6 – volume: 323 start-page: 27 year: 2017 ident: 944_CR24 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.05.003 – volume: 37 start-page: 463 year: 2009 ident: 944_CR12 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-008-0250-7 – volume: 59 start-page: 839 year: 2016 ident: 944_CR23 publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-016-6027-0 – volume: 293 start-page: 306 year: 2015 ident: 944_CR30 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.05.005 – volume: 54 start-page: 1453 year: 2001 ident: 944_CR2 publication-title: Appl. Mech. Rev. doi: 10.1115/1.1388075 – volume: 61 start-page: 238 year: 2004 ident: 944_CR11 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1064 – volume: 8 start-page: 13859 year: 2018 ident: 944_CR39 publication-title: Sci. Rep. doi: 10.1038/s41598-018-31763-1 – volume: 84 start-page: 081008 year: 2017 ident: 944_CR29 publication-title: J. Appl. Mech. doi: 10.1115/1.4036941 – volume: 325 start-page: 1 year: 2017 ident: 944_CR31 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.06.025 – volume: 139 start-page: 081403 year: 2017 ident: 944_CR32 publication-title: J. Mech. Des. doi: 10.1115/1.4036999 – volume: 16 start-page: 934 year: 1999 ident: 944_CR9 publication-title: Eng. Comput. doi: 10.1108/02644409910304185 – volume: 334 start-page: 381 year: 2018 ident: 944_CR34 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.01.050 – volume: 322 start-page: 590 year: 2017 ident: 944_CR33 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.05.002 – volume: 34 start-page: 255 year: 2004 ident: 944_CR43 publication-title: Control Cybern. – volume: 41 start-page: 1417 year: 1998 ident: 944_CR8 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(19980430)41:8<1417::AID-NME344>3.0.CO;2-N – volume: 25 start-page: 493 year: 1997 ident: 944_CR6 publication-title: J. Struct. Mech. – volume: 53 start-page: 1243 year: 2015 ident: 944_CR36 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1372-3 – volume: 290 start-page: 290 year: 2015 ident: 944_CR20 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.03.007 – volume: 311 start-page: 327 year: 2016 ident: 944_CR22 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.08.022 – volume: 192 start-page: 227 year: 2003 ident: 944_CR7 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(02)00559-5 – volume: 119 start-page: 224 year: 2018 ident: 944_CR40 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.06.014 – volume: 322 start-page: 1 year: 2017 ident: 944_CR38 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.04.021 – volume: 44 start-page: 443 year: 2011 ident: 944_CR13 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-011-0676-1 – volume: 71 start-page: 197 year: 1988 ident: 944_CR1 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(88)90086-2 – volume: 295 start-page: 525 year: 2015 ident: 944_CR19 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.07.015 – volume: 282 start-page: 71 year: 2014 ident: 944_CR18 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.08.027 – volume: 310 start-page: 711 year: 2016 ident: 944_CR28 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.07.018 – volume: 53 start-page: 303 year: 2015 ident: 944_CR14 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1321-1 – volume: 83 start-page: 041010 year: 2016 ident: 944_CR37 publication-title: J. Appl. Mech. doi: 10.1115/1.4032432 |
SSID | ssj0036171 |
Score | 2.2543151 |
Snippet | A topology optimization approach for designing the layout of plate structures is proposed in this article. In this approach, structural mechanical behavior is... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 412 |
SubjectTerms | Classical and Continuum Physics Computational Intelligence Computing time Design Engineering Engineering Fluid Dynamics Finite element method Kirchhoff theory Layouts Mechanical properties Plate theory Research Paper Theoretical and Applied Mechanics Topology optimization |
Title | Topology optimization of plate structures using plate element-based moving morphable component (MMC) approach |
URI | https://link.springer.com/article/10.1007/s10409-020-00944-5 https://www.proquest.com/docview/2399900893 https://d.wanfangdata.com.cn/periodical/lxxb-e202002013 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58XPTgW6yPkoMHRQPbTWbTHFtpLUo9WdDT0mQ3XtqtUAX99052s7aCCJ4Cm2wW9pvMTJL5ZgDOyQaQXZGG6zYaLskmcZMpzQUKiWidNLlnIw8fksFI3j3hUyCFzeto9_pKstTUS2Q36Q_yY8-E1lJyXIV19Ht3kuJR3Kn1ryCbXNbJQ1IBilRvoMr8PsdPc7TwMb-vRUsyT-HGxcuS3envwFZwGFmnQngXVvJiD7aD88jC0pzvweZSZsF9mD5WxQ8-2Yx0wjSQLdnMsdcJeZesShv7Tntt5iPfX8LjvAom5962ZWxanjZQQ1h4hhXz8eezggawi-Hw5pLVCckPYNTvPd4MeKiswK3A1hv3tT4xERatSaxVKm-7lnRtaSOlrI5sWyntLMZZZmJncsxsZtFlfrNoEmWsOIS1gr53BMwaHY2FyBCdkmijsRkrdLFIqMNFuW5Aq_7BqQ1px331i0m6SJjsQUkJlLQEJcUGXH2_81ol3fhz9GmNWxoW4Dz1lF1N_o0WDbiusVx0_zUbC3gvRk8-Pkyak6h557oljv834wlsxKXE-XCfU1gjgPMz8mTeTBPWO_1u98G3t8_3vWYpyF-s6ezI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOACH5bWILi8fOLBiLaWxJ46PCIHKo5xaiZtVOzGXNq1UkNh_v-PEoV0JIXGKlDiOlM-e-WzPNwNwTj6A_Iq0XOdouSSfxG2hNBcoJKLz0pZBjdx_ynpDef-Mz1EUNm-j3dsjydpSL4ndZNjIT4MSWkvJcRXWiQzkIZBrmF619leQT67r5CGZAEWmN0plPu_jf3e04Jgfx6K1mKfyo-plye_c7sCPSBjZVYPwLqyU1R5sR_LI4tSc78HWUmbBfZgMmuIHf9mUbMIkii3Z1LPZmNgla9LGvtFam4XI95d4u2yCyXnwbQWb1LsNdCEsgsKKhfjzaUUN2EW_f_2btQnJf8Lw9mZw3eOxsgJ3AruvPNT6xEw4dDZzTqky913pc-kSpZxOXK6U9g7TorCptyUWrnDoi7BYtJmyThzAWkXfOwTmrE5GQhSIXkl0yciOFPpUZPTAJ6XuQLf9wcbFtOOh-sXYLBImB1AMgWJqUAx24PLjnVmTdOPL1sctbiZOwLkJkl1N_EaLDvxpsVw8_qo3FvFetB6_v1tTpkkIaCHK_Ot7PZ7BRm_QfzSPd08PR7CZ1qMvhP4cwxqBXZ4Qq3m1p_Ug_gcnHuyr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xISE4tOVLLKWtDxyoikU29sTrI6Jd0ZZFHFiJm7W2Yy672ZVYJPj3jBOH3UoVEqdIieNIefa8sT1vBuCYOIB4RVque2i5JE7i1ivNBQqJ6IK0ZVQjD66Ly6H8c4d3Syr-Otq9PZJsNA0xS1M1P5v5cLYkfJNxUz-PqmgtJcdVWCdz3I3jepift7ZYED_XNfOQzIEiM5xkM__v419qWvibr0ektbCnCqPqfomD-p_gQ3Ie2XmD9jaslNUOfEyOJEvT9GEHtpayDO7C5LYphPDMpmQfJkl4yaaBzcbkabImhewjrbtZjIK_T7fLJrCcR57zbFLvPNCFcIlqKxZj0acVNWAng8HFd9YmJ9-DYf_X7cUlT1UWuBPYnfNY9xML4dDZwjmlyl7oytCTLlPK6cz1lNLBYe69zYMt0TvvMPi4cLSFsk7sw1pF3zsA5qzORkJ4xKAkumxkRwpDLgp6ELJSd6Db_mDjUgryWAljbBbJkyMohkAxNSgGO_Dj9Z1Zk4DjzdZHLW4mTcYHE-W7mnwdLTpw2mK5ePxWbyzhvWg9fnqypsyzGNxC7vPh-3r8Bhs3P_vm6vf138-wmdeDL0YBHcEaYV1-IQdnbr_WY_gFyfbw5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+plate+structures+using+plate+element-based+moving+morphable+component+%28MMC%29+approach&rft.jtitle=Acta+mechanica+Sinica&rft.au=Cui+Tianchen&rft.au=Sun%2C+Zhi&rft.au=Liu%2C+Chang&rft.au=Li%2C+Linyuan&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0567-7718&rft.eissn=1614-3116&rft.volume=36&rft.issue=2&rft.spage=412&rft.epage=421&rft_id=info:doi/10.1007%2Fs10409-020-00944-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Flxxb-e%2Flxxb-e.jpg |