Identification of Autistic Risk Candidate Genes and Toxic Chemicals via Multilabel Learning
As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical obs...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 9; pp. 3971 - 3984 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical observations. Without additional support of biochemical markers, the difficulty of diagnosis could impact therapeutic decisions and, therefore, lead to delayed treatments. Recently, accumulating evidence have shown that both genetic abnormalities and chemical toxicants play important roles in the onset of ASD. In this work, a new multilabel classification (MLC) model is proposed to identify the autistic risk genes and toxic chemicals on a large-scale data set. We first construct the feature matrices and partially labeled networks for autistic risk genes and toxic chemicals from multiple heterogeneous biological databases. Based on both global and local measure metrics, the simulation experiments demonstrate that the proposed model achieves superior classification performance in comparison with the other state-of-the-art MLC methods. Through manual validation with existing studies, 60% and 50% out of the top-20 predicted risk genes are confirmed to have associations with ASD and autistic disorder, respectively. To the best of our knowledge, this is the first computational tool to identify ASD-related risk genes and toxic chemicals, which could lead to better therapeutic decisions of ASD. |
---|---|
AbstractList | As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical observations. Without additional support of biochemical markers, the difficulty of diagnosis could impact therapeutic decisions and, therefore, lead to delayed treatments. Recently, accumulating evidence have shown that both genetic abnormalities and chemical toxicants play important roles in the onset of ASD. In this work, a new multilabel classification (MLC) model is proposed to identify the autistic risk genes and toxic chemicals on a large-scale data set. We first construct the feature matrices and partially labeled networks for autistic risk genes and toxic chemicals from multiple heterogeneous biological databases. Based on both global and local measure metrics, the simulation experiments demonstrate that the proposed model achieves superior classification performance in comparison with the other state-of-the-art MLC methods. Through manual validation with existing studies, 60% and 50% out of the top-20 predicted risk genes are confirmed to have associations with ASD and autistic disorder, respectively. To the best of our knowledge, this is the first computational tool to identify ASD-related risk genes and toxic chemicals, which could lead to better therapeutic decisions of ASD. As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical observations. Without additional support of biochemical markers, the difficulty of diagnosis could impact therapeutic decisions and, therefore, lead to delayed treatments. Recently, accumulating evidence have shown that both genetic abnormalities and chemical toxicants play important roles in the onset of ASD. In this work, a new multilabel classification (MLC) model is proposed to identify the autistic risk genes and toxic chemicals on a large-scale data set. We first construct the feature matrices and partially labeled networks for autistic risk genes and toxic chemicals from multiple heterogeneous biological databases. Based on both global and local measure metrics, the simulation experiments demonstrate that the proposed model achieves superior classification performance in comparison with the other state-of-the-art MLC methods. Through manual validation with existing studies, 60% and 50% out of the top-20 predicted risk genes are confirmed to have associations with ASD and autistic disorder, respectively. To the best of our knowledge, this is the first computational tool to identify ASD-related risk genes and toxic chemicals, which could lead to better therapeutic decisions of ASD.As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical observations. Without additional support of biochemical markers, the difficulty of diagnosis could impact therapeutic decisions and, therefore, lead to delayed treatments. Recently, accumulating evidence have shown that both genetic abnormalities and chemical toxicants play important roles in the onset of ASD. In this work, a new multilabel classification (MLC) model is proposed to identify the autistic risk genes and toxic chemicals on a large-scale data set. We first construct the feature matrices and partially labeled networks for autistic risk genes and toxic chemicals from multiple heterogeneous biological databases. Based on both global and local measure metrics, the simulation experiments demonstrate that the proposed model achieves superior classification performance in comparison with the other state-of-the-art MLC methods. Through manual validation with existing studies, 60% and 50% out of the top-20 predicted risk genes are confirmed to have associations with ASD and autistic disorder, respectively. To the best of our knowledge, this is the first computational tool to identify ASD-related risk genes and toxic chemicals, which could lead to better therapeutic decisions of ASD. |
Author | Tan, Kay Chen Huang, Zhi-An Zhu, Zexuan Wu, Edmond Q. Zhang, Jia |
Author_xml | – sequence: 1 givenname: Zhi-An orcidid: 0000-0001-9974-148X surname: Huang fullname: Huang, Zhi-An email: zahuang2-c@my.cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 2 givenname: Jia orcidid: 0000-0002-6079-2818 surname: Zhang fullname: Zhang, Jia email: j.zhang@stu.xmu.edu.cn organization: Department of Artificial Intelligence, Xiamen University, Xiamen, China – sequence: 3 givenname: Zexuan orcidid: 0000-0001-8479-6904 surname: Zhu fullname: Zhu, Zexuan email: zhuzx@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Edmond Q. orcidid: 0000-0002-4900-0787 surname: Wu fullname: Wu, Edmond Q. email: edmondqwu@gmail.com organization: Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen email: kaytan@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32841125$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rGzEQhkVJqNPEf6CFIsilFzv6WGmlYzDNBzgOJA4EehCyNNsqXWvTlTak_75y7OSQQ3XRiHmeQcz7Ce3FLgJCnymZUkr0yXKxmN9OGWFkygmVXNQf0AGjkk0YV2rvra7vR2ic0gMpRxIhK_0RjThTFaVMHKAflx5iDk1wNocu4q7Bp0MOKQeHb0L6jWc2-uBtBnwOERIuT7zsnkt79gvWRWsTfgoWXw1tDq1dQYvnYPsY4s8jtN-UNox39yG6O_u-nF1M5tfnl7PT-cRxQfNEcllZD45qb5nnYsVrstKlcpoLJRrPmNDUS8kJKOK81op5IawWnjlNLT9E37ZzH_vuzwApm3VIDtrWRuiGZFjF64pUVNOCHr9DH7qhj-V3hgmpSNkj14X6uqOG1Rq8eezD2vZ_zevaCqC2gOu7lHpojAv5ZYG5t6E1lJhNSOYlJLMJyexCKip7p75O_6_0ZSsFAHgTNK1rpmr-Dy6Emxg |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_patcog_2024_110358 crossref_primary_10_1109_TNNLS_2022_3190289 crossref_primary_10_1155_2022_3551528 crossref_primary_10_1109_TNNLS_2022_3208956 crossref_primary_10_1186_s12864_022_08423_w crossref_primary_10_1016_j_jneumeth_2024_110319 crossref_primary_10_1109_TNNLS_2022_3225179 crossref_primary_10_1016_j_jocs_2024_102447 crossref_primary_10_1016_j_bspc_2022_104548 crossref_primary_10_1007_s00521_022_07924_9 crossref_primary_10_3934_era_2023253 crossref_primary_10_1016_j_compbiomed_2022_105553 crossref_primary_10_1109_TBME_2022_3210940 crossref_primary_10_1109_TNNLS_2021_3133262 crossref_primary_10_1007_s10462_023_10536_x |
Cites_doi | 10.1016/S0140-6736(06)69665-7 10.1093/bib/bbx158 10.1097/GIM.0b013e31818fd762 10.1109/ICDMW.2015.14 10.1007/s00521-018-3502-5 10.1038/mp.2011.165 10.1371/journal.pbio.0050035 10.1016/j.patcog.2019.06.003 10.1093/bib/bbv078 10.1016/j.biopsych.2014.11.001 10.1145/2716262 10.1016/j.patcog.2015.10.008 10.1016/j.patcog.2006.12.019 10.1109/ICCV.2017.324 10.1002/ajmg.c.31330 10.1109/TNNLS.2019.2899061 10.1109/TIP.2010.2044958 10.1109/CVPR.2016.555 10.1016/j.ajhg.2007.09.005 10.1093/nar/gky868 10.1007/s12640-009-9137-7 10.1093/bioinformatics/btw498 10.1016/j.knosys.2018.07.003 10.1016/j.jaac.2012.08.018 10.1038/nature11405 10.9758/cpn.2017.15.1.47 10.15585/mmwr.ss6706a1 10.1038/srep39663 10.1001/archgenpsychiatry.2011.76 10.1038/tp.2014.4 10.1371/journal.pcbi.1005455 10.1109/TNNLS.2019.2920158 10.1001/jama.2017.12141 10.1007/978-3-642-25566-3_40 10.1016/j.asoc.2018.12.016 10.1002/emmm.201100157 10.1109/TCYB.2016.2549639 10.1016/j.neuro.2006.03.017 10.1146/annurev.med.60.053107.121225 10.1016/j.patrec.2018.08.021 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2020.3016357 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 3984 |
ExternalDocumentID | 32841125 10_1109_TNNLS_2020_3016357 9177287 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Shenzhen Scientific Research and Development Funding Program grantid: JCYJ20180307123637294; JCYJ20190808173617147 funderid: 10.13039/501100017622 – fundername: Jiangxi Province Key Research and Development Program grantid: 20192BBE50065 funderid: 10.13039/501100013064 – fundername: City University of Hong Kong Research Fund grantid: 9610397 funderid: 10.13039/100007567 – fundername: Research Grants Council of the Hong Kong SAR grantid: CityU11202418; CityU11209219 funderid: 10.13039/501100002920 – fundername: National Natural Science Foundation of China (NSFC) grantid: 61876162; 61871272; 61671293; U1933125 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-6364adec19da2d35b370b92d3c93585fd22591d6630e80cd9982d55a95d2c91a3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 02:09:43 EDT 2025 Sun Jun 29 16:05:42 EDT 2025 Thu Apr 03 06:58:25 EDT 2025 Tue Jul 01 00:27:35 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Wed Aug 27 02:27:33 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-6364adec19da2d35b370b92d3c93585fd22591d6630e80cd9982d55a95d2c91a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6079-2818 0000-0001-8479-6904 0000-0002-4900-0787 0000-0002-6802-2463 0000-0001-9974-148X |
PMID | 32841125 |
PQID | 2568063539 |
PQPubID | 85436 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2437404191 crossref_citationtrail_10_1109_TNNLS_2020_3016357 crossref_primary_10_1109_TNNLS_2020_3016357 pubmed_primary_32841125 proquest_journals_2568063539 ieee_primary_9177287 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 nie (ref37) 2010; 19 ref14 ref52 ref11 li (ref41) 2017 ref17 ref16 ref19 ref18 bergstra (ref29) 2012; 13 ref51 ref50 ref46 ref45 ref48 ref47 ref44 ref49 snoek (ref32) 2015 ref8 ref7 ref9 ref4 ref3 lipscomb (ref43) 2000; 88 ref6 ref5 ref34 feurer (ref42) 2015 ref30 ref33 ref1 ref39 ref38 ref24 ref23 luo (ref27) 2018; 29 ref26 ref25 ref20 ref22 ref21 belkin (ref35) 2006; 7 ref28 goldman (ref10) 2000; 108 snoek (ref31) 2012 nie (ref36) 2010 simonyan (ref40) 2014 huang (ref2) 2020 |
References_xml | – ident: ref9 doi: 10.1016/S0140-6736(06)69665-7 – ident: ref17 doi: 10.1093/bib/bbx158 – ident: ref7 doi: 10.1097/GIM.0b013e31818fd762 – ident: ref48 doi: 10.1109/ICDMW.2015.14 – volume: 88 start-page: 265 year: 2000 ident: ref43 article-title: Medical subject headings (MeSH) publication-title: Bull Med Library Assoc – volume: 13 start-page: 281 year: 2012 ident: ref29 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – ident: ref22 doi: 10.1007/s00521-018-3502-5 – ident: ref11 doi: 10.1038/mp.2011.165 – ident: ref12 doi: 10.1371/journal.pbio.0050035 – ident: ref16 doi: 10.1016/j.patcog.2019.06.003 – ident: ref18 doi: 10.1093/bib/bbv078 – ident: ref3 doi: 10.1016/j.biopsych.2014.11.001 – ident: ref46 doi: 10.1145/2716262 – ident: ref50 doi: 10.1016/j.patcog.2015.10.008 – start-page: 1813 year: 2010 ident: ref36 article-title: Efficient and robust feature selection via joint $\ell_{2}$ , 1-norms minimization publication-title: Proc Adv Neural Inf Process Syst – volume: 29 start-page: 3289 year: 2018 ident: ref27 article-title: Convolutional sparse autoencoders for image classification publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref49 doi: 10.1016/j.patcog.2006.12.019 – ident: ref39 doi: 10.1109/ICCV.2017.324 – year: 2020 ident: ref2 article-title: Identifying autism spectrum disorder from resting-state fMRI using deep belief network publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref23 doi: 10.1002/ajmg.c.31330 – ident: ref47 doi: 10.1109/TNNLS.2019.2899061 – volume: 19 start-page: 1921 year: 2010 ident: ref37 article-title: Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2044958 – start-page: 2171 year: 2015 ident: ref32 article-title: Scalable Bayesian optimization using deep neural networks publication-title: Proc Int Conf Mach Learn – ident: ref24 doi: 10.1109/CVPR.2016.555 – start-page: 1 year: 2015 ident: ref42 article-title: Initializing Bayesian hyperparameter optimization via meta-learning publication-title: Proc 29th AAAI Conf Artif Intell – start-page: 597 year: 2017 ident: ref41 article-title: Convergence analysis of two-layer neural networks with ReLU activation publication-title: Proc Adv Neural Inf Process Syst – ident: ref6 doi: 10.1016/j.ajhg.2007.09.005 – ident: ref45 doi: 10.1093/nar/gky868 – ident: ref52 doi: 10.1007/s12640-009-9137-7 – ident: ref21 doi: 10.1093/bioinformatics/btw498 – ident: ref26 doi: 10.1016/j.knosys.2018.07.003 – start-page: 2951 year: 2012 ident: ref31 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Proc Adv Neural Inf Process Syst – ident: ref15 doi: 10.1016/j.jaac.2012.08.018 – ident: ref44 doi: 10.1038/nature11405 – volume: 7 start-page: 2399 year: 2006 ident: ref35 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples publication-title: J Mach Learn Res – ident: ref20 doi: 10.9758/cpn.2017.15.1.47 – volume: 108 start-page: 443 year: 2000 ident: ref10 article-title: Chemicals in the environment and developmental toxicity to children: A public health and policy perspective publication-title: Environ Health Perspect – year: 2014 ident: ref40 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref1 doi: 10.15585/mmwr.ss6706a1 – ident: ref19 doi: 10.1038/srep39663 – ident: ref8 doi: 10.1001/archgenpsychiatry.2011.76 – ident: ref14 doi: 10.1038/tp.2014.4 – ident: ref34 doi: 10.1371/journal.pcbi.1005455 – ident: ref28 doi: 10.1109/TNNLS.2019.2920158 – ident: ref5 doi: 10.1001/jama.2017.12141 – ident: ref30 doi: 10.1007/978-3-642-25566-3_40 – ident: ref25 doi: 10.1016/j.asoc.2018.12.016 – ident: ref51 doi: 10.1002/emmm.201100157 – ident: ref33 doi: 10.1109/TCYB.2016.2549639 – ident: ref13 doi: 10.1016/j.neuro.2006.03.017 – ident: ref4 doi: 10.1146/annurev.med.60.053107.121225 – ident: ref38 doi: 10.1016/j.patrec.2018.08.021 |
SSID | ssj0000605649 |
Score | 2.4504585 |
Snippet | As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3971 |
SubjectTerms | Abnormalities Algorithms Autism Autism Spectrum Disorder - chemically induced Autism Spectrum Disorder - genetics Autism spectrum disorders (ASDs) autistic biomarkers Autistic Disorder - chemically induced Autistic Disorder - genetics Biochemical markers Biological system modeling Biomarkers chemical toxicants Chemicals Classification Computational modeling Computational neuroscience Computer Simulation Data models Databases, Genetic Decisions gene prioritization Gene-Environment Interaction Genes Genetic abnormalities Genetics Hazardous Substances - classification Hazardous Substances - toxicity Humans Machine Learning multilabel classification (MLC) multilabel learning (MLL) Neural Networks, Computer Neurodevelopmental disorders Risk Risk Assessment Software Toxicants |
Title | Identification of Autistic Risk Candidate Genes and Toxic Chemicals via Multilabel Learning |
URI | https://ieeexplore.ieee.org/document/9177287 https://www.ncbi.nlm.nih.gov/pubmed/32841125 https://www.proquest.com/docview/2568063539 https://www.proquest.com/docview/2437404191 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC7Uk5f1uWt80YK3NWPSj8zkKKKI6BzcEQb2EPopokzEmRHx11vd6QSUdfGW0J1OQlV1f_UGOGRaZoYpbwLjIuXOWhSpQqWcGiqcFZIHD_71sLi45ZdjMV6Aoy4Xxlobgs9sz18GX76p9dybyo5Rtegjwl-ERVTcmlytzp6SIS4vAtqleUFTyvrjNkcmK49Hw-HVH9QGKSqpCHKY8M33GG7NCDfEhyMp9Fj5Gm6GY-d8Ba7bD26iTR5685nq6bdPtRy_-0er8CPiT3LSMMwaLNjJOqy0vR1IFPUN-Ntk8Lpo0iO1IyfIo76qM7m5nz6QU58P480FxFeunhK8JaP6FYfbGgRT8nIvScjwRVazjyTWcr3bhNvzs9HpRRobMaSaiXyWFqzg0lidl0ZSw4Ri_UyVeKW9F1U4g5tCmRsEL5kdZNqgCkeNELIUhuoyl-wnLE3qid0CgktpPRBSSSc5M0rmeuAKIxyVWhntEshbWlQ6Vin3zTIeq6CtZGUVSFl5UlaRlAn87p55amp0_Hf2hqdDNzOSIIHdluRVFONphXhwgBhOsDKBg24YBdB7VeTE1nOcw1mfZxz13gR-NazSrd1y2Pa_37kDy9SHyISQtV1Ymj3P7R5inJnaD8z9DgKk9UI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RemgvhUIf5lEWqbfWwd6HEx8RAqUlyQGCFKkHa58IgeKqSSrEr2d2vbZE1aLebO16bWtmdr95A3xmWmaGKW8C4yLlzloUqUKlnBoqnBWSBw_-eFIMr_j3mZitwdcuF8ZaG4LPbM9fBl--qfXKm8qOULXoI8J_AS_x3Be0ydbqLCoZIvMi4F2aFzSlrD9rs2Sy8mg6mYwuUR-kqKYizGHCt99juDkj4BBPDqXQZeXfgDMcPGcbMG4_uYk3ue2tlqqnH_6o5vi__7QJbyICJccNy7yFNTvfgo22uwOJwr4NP5ocXheNeqR25Bi51Nd1Jhc3i1ty4jNivMGA-NrVC4K3ZFrf43BbhWBBft9IEnJ8kdnsHYnVXK_fwdXZ6fRkmMZWDKlmIl-mBSu4NFbnpZHUMKFYP1MlXmnvRxXO4LZQ5gbhS2YHmTaoxFEjhCyFobrMJXsP6_N6bj8CwaW0HgippJOcGSVzPXCFEY5KrYx2CeQtLSod65T7dhl3VdBXsrIKpKw8KatIygS-dM_8bKp0PDt729OhmxlJkMBeS_IqCvKiQkQ4QBQnWJnAYTeMIuj9KnJu6xXO4azPM46abwIfGlbp1m45bOfv7zyAV8PpeFSNvk3Od-E19QEzIYBtD9aXv1Z2HxHPUn0KjP4I9rn4jA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Autistic+Risk+Candidate+Genes+and+Toxic+Chemicals+via+Multilabel+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Huang%2C+Zhi-An&rft.au=Zhang%2C+Jia&rft.au=Zhu%2C+Zexuan&rft.au=Wu%2C+Edmond+Q&rft.date=2021-09-01&rft.eissn=2162-2388&rft.volume=32&rft.issue=9&rft.spage=3971&rft_id=info:doi/10.1109%2FTNNLS.2020.3016357&rft_id=info%3Apmid%2F32841125&rft.externalDocID=32841125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |