Identification of Autistic Risk Candidate Genes and Toxic Chemicals via Multilabel Learning

As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical obs...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 9; pp. 3971 - 3984
Main Authors Huang, Zhi-An, Zhang, Jia, Zhu, Zexuan, Wu, Edmond Q., Tan, Kay Chen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical observations. Without additional support of biochemical markers, the difficulty of diagnosis could impact therapeutic decisions and, therefore, lead to delayed treatments. Recently, accumulating evidence have shown that both genetic abnormalities and chemical toxicants play important roles in the onset of ASD. In this work, a new multilabel classification (MLC) model is proposed to identify the autistic risk genes and toxic chemicals on a large-scale data set. We first construct the feature matrices and partially labeled networks for autistic risk genes and toxic chemicals from multiple heterogeneous biological databases. Based on both global and local measure metrics, the simulation experiments demonstrate that the proposed model achieves superior classification performance in comparison with the other state-of-the-art MLC methods. Through manual validation with existing studies, 60% and 50% out of the top-20 predicted risk genes are confirmed to have associations with ASD and autistic disorder, respectively. To the best of our knowledge, this is the first computational tool to identify ASD-related risk genes and toxic chemicals, which could lead to better therapeutic decisions of ASD.
AbstractList As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical observations. Without additional support of biochemical markers, the difficulty of diagnosis could impact therapeutic decisions and, therefore, lead to delayed treatments. Recently, accumulating evidence have shown that both genetic abnormalities and chemical toxicants play important roles in the onset of ASD. In this work, a new multilabel classification (MLC) model is proposed to identify the autistic risk genes and toxic chemicals on a large-scale data set. We first construct the feature matrices and partially labeled networks for autistic risk genes and toxic chemicals from multiple heterogeneous biological databases. Based on both global and local measure metrics, the simulation experiments demonstrate that the proposed model achieves superior classification performance in comparison with the other state-of-the-art MLC methods. Through manual validation with existing studies, 60% and 50% out of the top-20 predicted risk genes are confirmed to have associations with ASD and autistic disorder, respectively. To the best of our knowledge, this is the first computational tool to identify ASD-related risk genes and toxic chemicals, which could lead to better therapeutic decisions of ASD.
As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical observations. Without additional support of biochemical markers, the difficulty of diagnosis could impact therapeutic decisions and, therefore, lead to delayed treatments. Recently, accumulating evidence have shown that both genetic abnormalities and chemical toxicants play important roles in the onset of ASD. In this work, a new multilabel classification (MLC) model is proposed to identify the autistic risk genes and toxic chemicals on a large-scale data set. We first construct the feature matrices and partially labeled networks for autistic risk genes and toxic chemicals from multiple heterogeneous biological databases. Based on both global and local measure metrics, the simulation experiments demonstrate that the proposed model achieves superior classification performance in comparison with the other state-of-the-art MLC methods. Through manual validation with existing studies, 60% and 50% out of the top-20 predicted risk genes are confirmed to have associations with ASD and autistic disorder, respectively. To the best of our knowledge, this is the first computational tool to identify ASD-related risk genes and toxic chemicals, which could lead to better therapeutic decisions of ASD.As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an unprecedented spurt since 2000. Due to the unclear pathomechanism of ASD, it is challenging to diagnose individuals with ASD merely based on clinical observations. Without additional support of biochemical markers, the difficulty of diagnosis could impact therapeutic decisions and, therefore, lead to delayed treatments. Recently, accumulating evidence have shown that both genetic abnormalities and chemical toxicants play important roles in the onset of ASD. In this work, a new multilabel classification (MLC) model is proposed to identify the autistic risk genes and toxic chemicals on a large-scale data set. We first construct the feature matrices and partially labeled networks for autistic risk genes and toxic chemicals from multiple heterogeneous biological databases. Based on both global and local measure metrics, the simulation experiments demonstrate that the proposed model achieves superior classification performance in comparison with the other state-of-the-art MLC methods. Through manual validation with existing studies, 60% and 50% out of the top-20 predicted risk genes are confirmed to have associations with ASD and autistic disorder, respectively. To the best of our knowledge, this is the first computational tool to identify ASD-related risk genes and toxic chemicals, which could lead to better therapeutic decisions of ASD.
Author Tan, Kay Chen
Huang, Zhi-An
Zhu, Zexuan
Wu, Edmond Q.
Zhang, Jia
Author_xml – sequence: 1
  givenname: Zhi-An
  orcidid: 0000-0001-9974-148X
  surname: Huang
  fullname: Huang, Zhi-An
  email: zahuang2-c@my.cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Jia
  orcidid: 0000-0002-6079-2818
  surname: Zhang
  fullname: Zhang, Jia
  email: j.zhang@stu.xmu.edu.cn
  organization: Department of Artificial Intelligence, Xiamen University, Xiamen, China
– sequence: 3
  givenname: Zexuan
  orcidid: 0000-0001-8479-6904
  surname: Zhu
  fullname: Zhu, Zexuan
  email: zhuzx@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Edmond Q.
  orcidid: 0000-0002-4900-0787
  surname: Wu
  fullname: Wu, Edmond Q.
  email: edmondqwu@gmail.com
  organization: Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  email: kaytan@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32841125$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJqNPEf6CFIsilFzv6WGmlYzDNBzgOJA4EehCyNNsqXWvTlTak_75y7OSQQ3XRiHmeQcz7Ce3FLgJCnymZUkr0yXKxmN9OGWFkygmVXNQf0AGjkk0YV2rvra7vR2ic0gMpRxIhK_0RjThTFaVMHKAflx5iDk1wNocu4q7Bp0MOKQeHb0L6jWc2-uBtBnwOERIuT7zsnkt79gvWRWsTfgoWXw1tDq1dQYvnYPsY4s8jtN-UNox39yG6O_u-nF1M5tfnl7PT-cRxQfNEcllZD45qb5nnYsVrstKlcpoLJRrPmNDUS8kJKOK81op5IawWnjlNLT9E37ZzH_vuzwApm3VIDtrWRuiGZFjF64pUVNOCHr9DH7qhj-V3hgmpSNkj14X6uqOG1Rq8eezD2vZ_zevaCqC2gOu7lHpojAv5ZYG5t6E1lJhNSOYlJLMJyexCKip7p75O_6_0ZSsFAHgTNK1rpmr-Dy6Emxg
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_patcog_2024_110358
crossref_primary_10_1109_TNNLS_2022_3190289
crossref_primary_10_1155_2022_3551528
crossref_primary_10_1109_TNNLS_2022_3208956
crossref_primary_10_1186_s12864_022_08423_w
crossref_primary_10_1016_j_jneumeth_2024_110319
crossref_primary_10_1109_TNNLS_2022_3225179
crossref_primary_10_1016_j_jocs_2024_102447
crossref_primary_10_1016_j_bspc_2022_104548
crossref_primary_10_1007_s00521_022_07924_9
crossref_primary_10_3934_era_2023253
crossref_primary_10_1016_j_compbiomed_2022_105553
crossref_primary_10_1109_TBME_2022_3210940
crossref_primary_10_1109_TNNLS_2021_3133262
crossref_primary_10_1007_s10462_023_10536_x
Cites_doi 10.1016/S0140-6736(06)69665-7
10.1093/bib/bbx158
10.1097/GIM.0b013e31818fd762
10.1109/ICDMW.2015.14
10.1007/s00521-018-3502-5
10.1038/mp.2011.165
10.1371/journal.pbio.0050035
10.1016/j.patcog.2019.06.003
10.1093/bib/bbv078
10.1016/j.biopsych.2014.11.001
10.1145/2716262
10.1016/j.patcog.2015.10.008
10.1016/j.patcog.2006.12.019
10.1109/ICCV.2017.324
10.1002/ajmg.c.31330
10.1109/TNNLS.2019.2899061
10.1109/TIP.2010.2044958
10.1109/CVPR.2016.555
10.1016/j.ajhg.2007.09.005
10.1093/nar/gky868
10.1007/s12640-009-9137-7
10.1093/bioinformatics/btw498
10.1016/j.knosys.2018.07.003
10.1016/j.jaac.2012.08.018
10.1038/nature11405
10.9758/cpn.2017.15.1.47
10.15585/mmwr.ss6706a1
10.1038/srep39663
10.1001/archgenpsychiatry.2011.76
10.1038/tp.2014.4
10.1371/journal.pcbi.1005455
10.1109/TNNLS.2019.2920158
10.1001/jama.2017.12141
10.1007/978-3-642-25566-3_40
10.1016/j.asoc.2018.12.016
10.1002/emmm.201100157
10.1109/TCYB.2016.2549639
10.1016/j.neuro.2006.03.017
10.1146/annurev.med.60.053107.121225
10.1016/j.patrec.2018.08.021
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3016357
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3984
ExternalDocumentID 32841125
10_1109_TNNLS_2020_3016357
9177287
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Shenzhen Scientific Research and Development Funding Program
  grantid: JCYJ20180307123637294; JCYJ20190808173617147
  funderid: 10.13039/501100017622
– fundername: Jiangxi Province Key Research and Development Program
  grantid: 20192BBE50065
  funderid: 10.13039/501100013064
– fundername: City University of Hong Kong Research Fund
  grantid: 9610397
  funderid: 10.13039/100007567
– fundername: Research Grants Council of the Hong Kong SAR
  grantid: CityU11202418; CityU11209219
  funderid: 10.13039/501100002920
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61876162; 61871272; 61671293; U1933125
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-6364adec19da2d35b370b92d3c93585fd22591d6630e80cd9982d55a95d2c91a3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 02:09:43 EDT 2025
Sun Jun 29 16:05:42 EDT 2025
Thu Apr 03 06:58:25 EDT 2025
Tue Jul 01 00:27:35 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Wed Aug 27 02:27:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-6364adec19da2d35b370b92d3c93585fd22591d6630e80cd9982d55a95d2c91a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6079-2818
0000-0001-8479-6904
0000-0002-4900-0787
0000-0002-6802-2463
0000-0001-9974-148X
PMID 32841125
PQID 2568063539
PQPubID 85436
PageCount 14
ParticipantIDs proquest_miscellaneous_2437404191
crossref_citationtrail_10_1109_TNNLS_2020_3016357
crossref_primary_10_1109_TNNLS_2020_3016357
pubmed_primary_32841125
proquest_journals_2568063539
ieee_primary_9177287
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
nie (ref37) 2010; 19
ref14
ref52
ref11
li (ref41) 2017
ref17
ref16
ref19
ref18
bergstra (ref29) 2012; 13
ref51
ref50
ref46
ref45
ref48
ref47
ref44
ref49
snoek (ref32) 2015
ref8
ref7
ref9
ref4
ref3
lipscomb (ref43) 2000; 88
ref6
ref5
ref34
feurer (ref42) 2015
ref30
ref33
ref1
ref39
ref38
ref24
ref23
luo (ref27) 2018; 29
ref26
ref25
ref20
ref22
ref21
belkin (ref35) 2006; 7
ref28
goldman (ref10) 2000; 108
snoek (ref31) 2012
nie (ref36) 2010
simonyan (ref40) 2014
huang (ref2) 2020
References_xml – ident: ref9
  doi: 10.1016/S0140-6736(06)69665-7
– ident: ref17
  doi: 10.1093/bib/bbx158
– ident: ref7
  doi: 10.1097/GIM.0b013e31818fd762
– ident: ref48
  doi: 10.1109/ICDMW.2015.14
– volume: 88
  start-page: 265
  year: 2000
  ident: ref43
  article-title: Medical subject headings (MeSH)
  publication-title: Bull Med Library Assoc
– volume: 13
  start-page: 281
  year: 2012
  ident: ref29
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– ident: ref22
  doi: 10.1007/s00521-018-3502-5
– ident: ref11
  doi: 10.1038/mp.2011.165
– ident: ref12
  doi: 10.1371/journal.pbio.0050035
– ident: ref16
  doi: 10.1016/j.patcog.2019.06.003
– ident: ref18
  doi: 10.1093/bib/bbv078
– ident: ref3
  doi: 10.1016/j.biopsych.2014.11.001
– ident: ref46
  doi: 10.1145/2716262
– ident: ref50
  doi: 10.1016/j.patcog.2015.10.008
– start-page: 1813
  year: 2010
  ident: ref36
  article-title: Efficient and robust feature selection via joint $\ell_{2}$ , 1-norms minimization
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 29
  start-page: 3289
  year: 2018
  ident: ref27
  article-title: Convolutional sparse autoencoders for image classification
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref49
  doi: 10.1016/j.patcog.2006.12.019
– ident: ref39
  doi: 10.1109/ICCV.2017.324
– year: 2020
  ident: ref2
  article-title: Identifying autism spectrum disorder from resting-state fMRI using deep belief network
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref23
  doi: 10.1002/ajmg.c.31330
– ident: ref47
  doi: 10.1109/TNNLS.2019.2899061
– volume: 19
  start-page: 1921
  year: 2010
  ident: ref37
  article-title: Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2044958
– start-page: 2171
  year: 2015
  ident: ref32
  article-title: Scalable Bayesian optimization using deep neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref24
  doi: 10.1109/CVPR.2016.555
– start-page: 1
  year: 2015
  ident: ref42
  article-title: Initializing Bayesian hyperparameter optimization via meta-learning
  publication-title: Proc 29th AAAI Conf Artif Intell
– start-page: 597
  year: 2017
  ident: ref41
  article-title: Convergence analysis of two-layer neural networks with ReLU activation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1016/j.ajhg.2007.09.005
– ident: ref45
  doi: 10.1093/nar/gky868
– ident: ref52
  doi: 10.1007/s12640-009-9137-7
– ident: ref21
  doi: 10.1093/bioinformatics/btw498
– ident: ref26
  doi: 10.1016/j.knosys.2018.07.003
– start-page: 2951
  year: 2012
  ident: ref31
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1016/j.jaac.2012.08.018
– ident: ref44
  doi: 10.1038/nature11405
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref35
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– ident: ref20
  doi: 10.9758/cpn.2017.15.1.47
– volume: 108
  start-page: 443
  year: 2000
  ident: ref10
  article-title: Chemicals in the environment and developmental toxicity to children: A public health and policy perspective
  publication-title: Environ Health Perspect
– year: 2014
  ident: ref40
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref1
  doi: 10.15585/mmwr.ss6706a1
– ident: ref19
  doi: 10.1038/srep39663
– ident: ref8
  doi: 10.1001/archgenpsychiatry.2011.76
– ident: ref14
  doi: 10.1038/tp.2014.4
– ident: ref34
  doi: 10.1371/journal.pcbi.1005455
– ident: ref28
  doi: 10.1109/TNNLS.2019.2920158
– ident: ref5
  doi: 10.1001/jama.2017.12141
– ident: ref30
  doi: 10.1007/978-3-642-25566-3_40
– ident: ref25
  doi: 10.1016/j.asoc.2018.12.016
– ident: ref51
  doi: 10.1002/emmm.201100157
– ident: ref33
  doi: 10.1109/TCYB.2016.2549639
– ident: ref13
  doi: 10.1016/j.neuro.2006.03.017
– ident: ref4
  doi: 10.1146/annurev.med.60.053107.121225
– ident: ref38
  doi: 10.1016/j.patrec.2018.08.021
SSID ssj0000605649
Score 2.4504585
Snippet As a group of complex neurodevelopmental disorders, autism spectrum disorder (ASD) has been reported to have a high overall prevalence, showing an...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3971
SubjectTerms Abnormalities
Algorithms
Autism
Autism Spectrum Disorder - chemically induced
Autism Spectrum Disorder - genetics
Autism spectrum disorders (ASDs)
autistic biomarkers
Autistic Disorder - chemically induced
Autistic Disorder - genetics
Biochemical markers
Biological system modeling
Biomarkers
chemical toxicants
Chemicals
Classification
Computational modeling
Computational neuroscience
Computer Simulation
Data models
Databases, Genetic
Decisions
gene prioritization
Gene-Environment Interaction
Genes
Genetic abnormalities
Genetics
Hazardous Substances - classification
Hazardous Substances - toxicity
Humans
Machine Learning
multilabel classification (MLC)
multilabel learning (MLL)
Neural Networks, Computer
Neurodevelopmental disorders
Risk
Risk Assessment
Software
Toxicants
Title Identification of Autistic Risk Candidate Genes and Toxic Chemicals via Multilabel Learning
URI https://ieeexplore.ieee.org/document/9177287
https://www.ncbi.nlm.nih.gov/pubmed/32841125
https://www.proquest.com/docview/2568063539
https://www.proquest.com/docview/2437404191
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS-RAEC7Uk5f1uWt80YK3NWPSj8zkKKKI6BzcEQb2EPopokzEmRHx11vd6QSUdfGW0J1OQlV1f_UGOGRaZoYpbwLjIuXOWhSpQqWcGiqcFZIHD_71sLi45ZdjMV6Aoy4Xxlobgs9sz18GX76p9dybyo5Rtegjwl-ERVTcmlytzp6SIS4vAtqleUFTyvrjNkcmK49Hw-HVH9QGKSqpCHKY8M33GG7NCDfEhyMp9Fj5Gm6GY-d8Ba7bD26iTR5685nq6bdPtRy_-0er8CPiT3LSMMwaLNjJOqy0vR1IFPUN-Ntk8Lpo0iO1IyfIo76qM7m5nz6QU58P480FxFeunhK8JaP6FYfbGgRT8nIvScjwRVazjyTWcr3bhNvzs9HpRRobMaSaiXyWFqzg0lidl0ZSw4Ri_UyVeKW9F1U4g5tCmRsEL5kdZNqgCkeNELIUhuoyl-wnLE3qid0CgktpPRBSSSc5M0rmeuAKIxyVWhntEshbWlQ6Vin3zTIeq6CtZGUVSFl5UlaRlAn87p55amp0_Hf2hqdDNzOSIIHdluRVFONphXhwgBhOsDKBg24YBdB7VeTE1nOcw1mfZxz13gR-NazSrd1y2Pa_37kDy9SHyISQtV1Ymj3P7R5inJnaD8z9DgKk9UI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RemgvhUIf5lEWqbfWwd6HEx8RAqUlyQGCFKkHa58IgeKqSSrEr2d2vbZE1aLebO16bWtmdr95A3xmWmaGKW8C4yLlzloUqUKlnBoqnBWSBw_-eFIMr_j3mZitwdcuF8ZaG4LPbM9fBl--qfXKm8qOULXoI8J_AS_x3Be0ydbqLCoZIvMi4F2aFzSlrD9rs2Sy8mg6mYwuUR-kqKYizGHCt99juDkj4BBPDqXQZeXfgDMcPGcbMG4_uYk3ue2tlqqnH_6o5vi__7QJbyICJccNy7yFNTvfgo22uwOJwr4NP5ocXheNeqR25Bi51Nd1Jhc3i1ty4jNivMGA-NrVC4K3ZFrf43BbhWBBft9IEnJ8kdnsHYnVXK_fwdXZ6fRkmMZWDKlmIl-mBSu4NFbnpZHUMKFYP1MlXmnvRxXO4LZQ5gbhS2YHmTaoxFEjhCyFobrMJXsP6_N6bj8CwaW0HgippJOcGSVzPXCFEY5KrYx2CeQtLSod65T7dhl3VdBXsrIKpKw8KatIygS-dM_8bKp0PDt729OhmxlJkMBeS_IqCvKiQkQ4QBQnWJnAYTeMIuj9KnJu6xXO4azPM46abwIfGlbp1m45bOfv7zyAV8PpeFSNvk3Od-E19QEzIYBtD9aXv1Z2HxHPUn0KjP4I9rn4jA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Autistic+Risk+Candidate+Genes+and+Toxic+Chemicals+via+Multilabel+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Huang%2C+Zhi-An&rft.au=Zhang%2C+Jia&rft.au=Zhu%2C+Zexuan&rft.au=Wu%2C+Edmond+Q&rft.date=2021-09-01&rft.eissn=2162-2388&rft.volume=32&rft.issue=9&rft.spage=3971&rft_id=info:doi/10.1109%2FTNNLS.2020.3016357&rft_id=info%3Apmid%2F32841125&rft.externalDocID=32841125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon