Path Tracking Control of Autonomous Vehicles Subject to Deception Attacks via a Learning-Based Event-Triggered Mechanism
This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve the burden of the shareable vehicle communication network and to improve the tracking performance in the presence of deception attacks, a lea...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 12; pp. 5644 - 5653 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve the burden of the shareable vehicle communication network and to improve the tracking performance in the presence of deception attacks, a learning-based event-triggered mechanism (ETM) is proposed. Different from existing ETMs, the triggering threshold of the proposed mechanism can be dynamically adjusted with conditions of the latest vehicle state. Each vehicle in this study is deemed as an agent, under which a novel control strategy is developed for these autonomous agents with deception attacks. With the assistance of Lyapunov stability theory, sufficient conditions are obtained to guarantee the stability and stabilization of the overall system. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed theoretical results. |
---|---|
AbstractList | This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve the burden of the shareable vehicle communication network and to improve the tracking performance in the presence of deception attacks, a learning-based event-triggered mechanism (ETM) is proposed. Different from existing ETMs, the triggering threshold of the proposed mechanism can be dynamically adjusted with conditions of the latest vehicle state. Each vehicle in this study is deemed as an agent, under which a novel control strategy is developed for these autonomous agents with deception attacks. With the assistance of Lyapunov stability theory, sufficient conditions are obtained to guarantee the stability and stabilization of the overall system. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed theoretical results. This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve the burden of the shareable vehicle communication network and to improve the tracking performance in the presence of deception attacks, a learning-based event-triggered mechanism (ETM) is proposed. Different from existing ETMs, the triggering threshold of the proposed mechanism can be dynamically adjusted with conditions of the latest vehicle state. Each vehicle in this study is deemed as an agent, under which a novel control strategy is developed for these autonomous agents with deception attacks. With the assistance of Lyapunov stability theory, sufficient conditions are obtained to guarantee the stability and stabilization of the overall system. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed theoretical results.This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve the burden of the shareable vehicle communication network and to improve the tracking performance in the presence of deception attacks, a learning-based event-triggered mechanism (ETM) is proposed. Different from existing ETMs, the triggering threshold of the proposed mechanism can be dynamically adjusted with conditions of the latest vehicle state. Each vehicle in this study is deemed as an agent, under which a novel control strategy is developed for these autonomous agents with deception attacks. With the assistance of Lyapunov stability theory, sufficient conditions are obtained to guarantee the stability and stabilization of the overall system. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed theoretical results. |
Author | Gu, Zhou Yin, Tingting Ding, Zhengtao |
Author_xml | – sequence: 1 givenname: Zhou orcidid: 0000-0002-0342-1658 surname: Gu fullname: Gu, Zhou email: gzh1808@163.com organization: College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China – sequence: 2 givenname: Tingting orcidid: 0000-0001-6645-8709 surname: Yin fullname: Yin, Tingting email: yttangle@163.com organization: College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China – sequence: 3 givenname: Zhengtao orcidid: 0000-0003-0690-7853 surname: Ding fullname: Ding, Zhengtao email: zhengtao.ding@manchester.ac.uk organization: School of Electrical and Electronic Engineering, The University of Manchester, Manchester, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33587721$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1UREvpHwAJWWLDZoIf47FnGUJ5SKEgdYTYjTzOncRhxg62p2r_PQ4JWXSBN9eWvnOv7znP0ZnzDhB6ScmMUlK_a25ulrczRhidcSIqWZVP0AWjFSsYV-rsdJc_z9FVjFuST5XBsn6GzjkXSkpGL9D9d502uAna_LJujRfepeAH7Hs8n5J3fvRTxD9gY80AEd9O3RZMwsnjD2Bgl6x3eJ5SVkd8ZzXWeAk6uNyqeK8jrPD1HbhUNMGu1xDy-yuYjXY2ji_Q014PEa6O9RI1H6-bxedi-e3Tl8V8WRguaCoqygToXpRipWhfU626iklZGkFkrfVKsa7jDCrQRlRa1YYYRQRQamohFeGX6O2h7S743xPE1I42GhgG7SCv1rKyJpSVJZUZffMI3fopuPy5llWkrKlUJcvU6yM1dSOs2l2wow4P7T9LM8AOgAk-xgD9CaGk3UfX_o2u3UfXHqPLIvVIZGzSe3tT0Hb4v_TVQWoB4DSr5tkyyvgf9E-log |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3440926 crossref_primary_10_1109_TITS_2024_3355411 crossref_primary_10_1109_TNNLS_2022_3227101 crossref_primary_10_1016_j_automatica_2022_110535 crossref_primary_10_1016_j_tranpol_2022_04_011 crossref_primary_10_1002_rnc_6591 crossref_primary_10_1016_j_isatra_2023_01_018 crossref_primary_10_1016_j_jfranklin_2023_06_009 crossref_primary_10_1109_TII_2022_3206354 crossref_primary_10_59782_sidr_v5i1_157 crossref_primary_10_1016_j_chaos_2024_114584 crossref_primary_10_1016_j_ifacol_2023_02_053 crossref_primary_10_3390_s22124467 crossref_primary_10_1109_TNSE_2024_3359180 crossref_primary_10_1109_TIV_2024_3372522 crossref_primary_10_1109_TSMC_2024_3406563 crossref_primary_10_1109_ACCESS_2022_3191801 crossref_primary_10_1007_s40815_022_01346_4 crossref_primary_10_1016_j_amc_2023_128337 crossref_primary_10_1109_TSMC_2024_3378773 crossref_primary_10_1109_TVT_2024_3387737 crossref_primary_10_1177_01423312241267062 crossref_primary_10_1109_TNNLS_2022_3222206 crossref_primary_10_1002_rnc_6819 crossref_primary_10_1002_rnc_6580 crossref_primary_10_1002_rnc_7590 crossref_primary_10_1109_TII_2023_3335996 crossref_primary_10_1109_TVT_2024_3436052 crossref_primary_10_1007_s11431_022_2173_7 crossref_primary_10_1109_TNSE_2022_3223978 crossref_primary_10_1109_TVT_2023_3287272 crossref_primary_10_1016_j_jfranklin_2024_107358 crossref_primary_10_1109_TIV_2023_3317238 crossref_primary_10_1109_TFUZZ_2023_3300882 crossref_primary_10_1109_TITS_2023_3240731 crossref_primary_10_1109_TIV_2023_3278697 crossref_primary_10_1080_00207721_2022_2083260 crossref_primary_10_1002_rnc_5957 crossref_primary_10_1016_j_apenergy_2022_119948 crossref_primary_10_1016_j_neucom_2022_05_096 crossref_primary_10_1080_00423114_2024_2407181 crossref_primary_10_1109_ACCESS_2022_3225659 crossref_primary_10_1016_j_jfranklin_2022_10_046 crossref_primary_10_1109_ACCESS_2023_3270924 crossref_primary_10_1109_TASE_2024_3465439 crossref_primary_10_3390_s23115033 crossref_primary_10_1109_TVT_2023_3250709 crossref_primary_10_1016_j_jfranklin_2021_04_012 crossref_primary_10_1007_s12555_022_0502_0 crossref_primary_10_1080_23307706_2023_2238719 crossref_primary_10_1109_TSMC_2022_3223148 crossref_primary_10_1109_TII_2024_3495763 crossref_primary_10_1109_TKDE_2022_3162220 crossref_primary_10_1109_TVT_2024_3458994 crossref_primary_10_1109_TSMC_2024_3373408 crossref_primary_10_1109_ACCESS_2024_3455329 crossref_primary_10_1007_s41870_023_01712_x crossref_primary_10_1016_j_jfranklin_2024_107502 crossref_primary_10_1016_j_isatra_2025_02_007 crossref_primary_10_1109_ACCESS_2022_3161672 crossref_primary_10_1016_j_jfranklin_2021_09_021 crossref_primary_10_1109_TFUZZ_2021_3133892 crossref_primary_10_1109_JSYST_2021_3079460 crossref_primary_10_1109_TITS_2024_3350536 crossref_primary_10_1016_j_conengprac_2023_105626 crossref_primary_10_1016_j_neunet_2024_106249 crossref_primary_10_1002_rnc_7052 crossref_primary_10_1016_j_cnsns_2025_108803 crossref_primary_10_1016_j_isatra_2023_04_028 crossref_primary_10_1109_TIFS_2024_3352404 crossref_primary_10_1002_rnc_5794 crossref_primary_10_1002_rnc_7851 crossref_primary_10_1002_rnc_6243 |
Cites_doi | 10.1109/TNNLS.2019.2955132 10.1007/s11432-019-2714-7 10.1109/TCYB.2019.2931770 10.1109/TAC.2007.904284 10.1049/cth2.12059 10.1109/TCYB.2020.2972384 10.1109/TVT.2015.2472975 10.1109/TCYB.2019.2917179 10.1109/TSMCB.2009.2024408 10.1080/00207179.2015.1088967 10.1016/j.ins.2018.04.020 10.1109/TAC.2007.902731 10.1109/TAC.2014.2366855 10.1109/TCYB.2018.2802044 10.1109/TITS.2015.2498172 10.1023/A:1008942012299 10.1016/j.jfranklin.2020.09.020 10.1109/TCYB.2014.2371814 10.1109/TVT.2016.2555853 10.1016/j.jfranklin.2017.02.020 10.1109/TCYB.2019.2946122 10.1109/TMECH.2014.2301459 10.1109/TITS.2015.2498157 10.1109/TCYB.2020.2970556 10.1109/TITS.2019.2924937 10.1109/TTE.2015.2512237 10.1016/j.ymssp.2020.106798 10.1109/TNNLS.2019.2946290 10.1109/TCST.2016.2642164 10.1109/TNNLS.2019.2919641 10.1109/TCYB.2020.3030028 10.1109/TNNLS.2019.2951709 10.1109/TAC.2012.2206694 10.1007/s10458-005-2631-2 10.1155/2017/8132769 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3056764 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 5653 |
ExternalDocumentID | 33587721 10_1109_TNNLS_2021_3056764 9354512 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62022044; 61473156 funderid: 10.13039/501100001809 – fundername: Jiangsu Natural Science Foundation for Distinguished Young Scholars grantid: BK20190039 funderid: 10.13039/501100018541 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-6125eaf545d81f91a8b62774c5079aad82bb32e6eac56a89c0c805e11c957803 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 15:03:41 EDT 2025 Sun Jun 29 15:27:10 EDT 2025 Thu Jan 02 22:57:09 EST 2025 Thu Apr 24 22:57:05 EDT 2025 Tue Jul 01 00:27:37 EDT 2025 Wed Aug 27 05:01:07 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-6125eaf545d81f91a8b62774c5079aad82bb32e6eac56a89c0c805e11c957803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0342-1658 0000-0003-0690-7853 0000-0001-6645-8709 |
PMID | 33587721 |
PQID | 2604917842 |
PQPubID | 85436 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2490124417 pubmed_primary_33587721 proquest_journals_2604917842 crossref_citationtrail_10_1109_TNNLS_2021_3056764 crossref_primary_10_1109_TNNLS_2021_3056764 ieee_primary_9354512 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 gu (ref25) 2020 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref30 doi: 10.1109/TNNLS.2019.2955132 – ident: ref19 doi: 10.1007/s11432-019-2714-7 – ident: ref20 doi: 10.1109/TCYB.2019.2931770 – ident: ref15 doi: 10.1109/TAC.2007.904284 – ident: ref21 doi: 10.1049/cth2.12059 – ident: ref26 doi: 10.1109/TCYB.2020.2972384 – ident: ref6 doi: 10.1109/TVT.2015.2472975 – ident: ref24 doi: 10.1109/TCYB.2019.2917179 – ident: ref13 doi: 10.1109/TSMCB.2009.2024408 – ident: ref16 doi: 10.1080/00207179.2015.1088967 – ident: ref31 doi: 10.1016/j.ins.2018.04.020 – ident: ref4 doi: 10.1109/TAC.2007.902731 – ident: ref22 doi: 10.1109/TAC.2014.2366855 – ident: ref33 doi: 10.1109/TCYB.2018.2802044 – ident: ref7 doi: 10.1109/TITS.2015.2498172 – year: 2020 ident: ref25 article-title: Memory-based continuous event-triggered control for networked T-S fuzzy systems against cyber-attacks publication-title: IEEE Trans Fuzzy Syst – ident: ref10 doi: 10.1023/A:1008942012299 – ident: ref35 doi: 10.1016/j.jfranklin.2020.09.020 – ident: ref14 doi: 10.1109/TCYB.2014.2371814 – ident: ref2 doi: 10.1109/TVT.2016.2555853 – ident: ref27 doi: 10.1016/j.jfranklin.2017.02.020 – ident: ref36 doi: 10.1109/TCYB.2019.2946122 – ident: ref8 doi: 10.1109/TMECH.2014.2301459 – ident: ref5 doi: 10.1109/TITS.2015.2498157 – ident: ref32 doi: 10.1109/TCYB.2020.2970556 – ident: ref3 doi: 10.1109/TITS.2019.2924937 – ident: ref12 doi: 10.1109/TTE.2015.2512237 – ident: ref28 doi: 10.1016/j.ymssp.2020.106798 – ident: ref29 doi: 10.1109/TNNLS.2019.2946290 – ident: ref1 doi: 10.1109/TCST.2016.2642164 – ident: ref17 doi: 10.1109/TNNLS.2019.2919641 – ident: ref18 doi: 10.1109/TCYB.2020.3030028 – ident: ref34 doi: 10.1109/TNNLS.2019.2951709 – ident: ref23 doi: 10.1109/TAC.2012.2206694 – ident: ref11 doi: 10.1007/s10458-005-2631-2 – ident: ref9 doi: 10.1155/2017/8132769 |
SSID | ssj0000605649 |
Score | 2.6020894 |
Snippet | This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5644 |
SubjectTerms | Autonomous ground vehicles (AGVs) Autonomous vehicles Axles Communication networks Data models Deception deception attacks Denial-of-service attack Learning learning-based event-triggered control Mathematical model Path tracking Stability Symmetric matrices Tracking control Unmanned ground vehicles Vehicles |
Title | Path Tracking Control of Autonomous Vehicles Subject to Deception Attacks via a Learning-Based Event-Triggered Mechanism |
URI | https://ieeexplore.ieee.org/document/9354512 https://www.ncbi.nlm.nih.gov/pubmed/33587721 https://www.proquest.com/docview/2604917842 https://www.proquest.com/docview/2490124417 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGTrswYAMKG_IkbuDOdhI3PnZj0zStFdIK6i2yHbergAatCZr21_Oe40QCwbRLFClOYus9-_ue_X4Q8h4gzDufpwzQXLFUlJZptFIMJqNTxi10iIWZTNXFl_Ryns23yMc-FsZ7H5zP_BBvw1l-WbkGt8qOdQJ4jyWFn4Dh1sZq9fspHHi5CmxXCiWZTEbzLkaG6-PZdHp1DdagFEPkzCOF9XiSJMuBXIo_ICnUWPk_3Qywc75LJl2HW2-Tb8OmtkN3_1cux8eO6Bl5GvknHbcK85xs-fULstvVdqBxqu-Ru89ADSkgmcO9dHraerTTakHHTY2BEFWzoV_9TfCqo7D84H4OrSv6yUdHGTquawzgp79WhhoaE7ku2QngZknP0M-SzW5XyyVWC6UTjyHIq82PfTI7P5udXrBYpYG5JBM1Q4rkzQLGUeZioYXJrZJAKh0wTW1MmUtrE-kVrPCZMrl23OU880I4DasFT16S7XW19q8JtVI6A7Bp4JpqyS3IxpuMuxSZiB0NiOjkVLiYwRwLaXwvgiXDdRHEXKCYiyjmAfnQv_Ozzd_xYOs9lFHfMopnQA46dSjiFN8UYAimYOvmKTw-6h_D5MQTF7P2IIYCbFuOBEpA31-1atR_u9O-N__-51uygz1rPWcOyHZ92_hD4D-1fRcU_zcrtf07 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lj9MwEB4tywEuLLCwFBYwEpxQurHzaHzgUPahLttWSATUm-U4bqmAFm0TXn-Fv8KPY8ZxIoGA20pcokiJEyf-PPONPQ-Ax6jCrLFZHKA2T4OYl0UgyUrRlIwu1WYuXSzMZJqOXscvZslsC753sTDWWud8Zvt06vbyy7WpaansQEao77nwLpRn9utnNNA2z06PcDSfCHFynB-OAl9DIDBRwquAFLjVc2xXZnwuuc6KVCDlMciDpNZlJooiEjZF-ZOkOpMmNFmYWM6NRCyHET72ElzG5ologsO6BZwQDYHU0WvBUxGIaDBrg3JCeZBPp-NXaH4K3ieSPkipAFAUJRmyWf6LDnRFXf7Ob52eO9mBH-0fatxb3vXrquibb78lj_xPf-F1uOb5NRs2E-IGbNnVTdhpa1cwL8p24ctLpL4MNbWhvQJ22Hjss_WcDeuKAj3W9Ya9sW-d1yBD8UrrVaxasyPrHYHYsKooQQH7tNRMM5-odhE8R15QsmPyIw3y8-ViQdVQ2cRSiPVy8-EW5Bfx-bdhe7Ve2TvACiGMRlqg8RhLERYIBauT0MTEtIpBD3gLC2V8hnYqFPJeOUstlMqhShGqlEdVD552bT42-Un-efcuQaK706OhB_st-pQXYRuFhm6MtnwW4-VH3WUUPrSjpFcWh0Gh7R4SQeTY970Gtd2zW7Df_fM7H8KVUT4Zq_Hp9OweXKVeNl5C-7Bdndf2PnK9qnjg5hwDdcEA_QlN81i8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+Tracking+Control+of+Autonomous+Vehicles+Subject+to+Deception+Attacks+via+a+Learning-Based+Event-Triggered+Mechanism&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Gu%2C+Zhou&rft.au=Yin%2C+Tingting&rft.au=Ding%2C+Zhengtao&rft.date=2021-12-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2021.3056764&rft_id=info%3Apmid%2F33587721&rft.externalDocID=33587721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |