Path Tracking Control of Autonomous Vehicles Subject to Deception Attacks via a Learning-Based Event-Triggered Mechanism

This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve the burden of the shareable vehicle communication network and to improve the tracking performance in the presence of deception attacks, a lea...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 12; pp. 5644 - 5653
Main Authors Gu, Zhou, Yin, Tingting, Ding, Zhengtao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve the burden of the shareable vehicle communication network and to improve the tracking performance in the presence of deception attacks, a learning-based event-triggered mechanism (ETM) is proposed. Different from existing ETMs, the triggering threshold of the proposed mechanism can be dynamically adjusted with conditions of the latest vehicle state. Each vehicle in this study is deemed as an agent, under which a novel control strategy is developed for these autonomous agents with deception attacks. With the assistance of Lyapunov stability theory, sufficient conditions are obtained to guarantee the stability and stabilization of the overall system. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed theoretical results.
AbstractList This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve the burden of the shareable vehicle communication network and to improve the tracking performance in the presence of deception attacks, a learning-based event-triggered mechanism (ETM) is proposed. Different from existing ETMs, the triggering threshold of the proposed mechanism can be dynamically adjusted with conditions of the latest vehicle state. Each vehicle in this study is deemed as an agent, under which a novel control strategy is developed for these autonomous agents with deception attacks. With the assistance of Lyapunov stability theory, sufficient conditions are obtained to guarantee the stability and stabilization of the overall system. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed theoretical results.
This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve the burden of the shareable vehicle communication network and to improve the tracking performance in the presence of deception attacks, a learning-based event-triggered mechanism (ETM) is proposed. Different from existing ETMs, the triggering threshold of the proposed mechanism can be dynamically adjusted with conditions of the latest vehicle state. Each vehicle in this study is deemed as an agent, under which a novel control strategy is developed for these autonomous agents with deception attacks. With the assistance of Lyapunov stability theory, sufficient conditions are obtained to guarantee the stability and stabilization of the overall system. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed theoretical results.This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve the burden of the shareable vehicle communication network and to improve the tracking performance in the presence of deception attacks, a learning-based event-triggered mechanism (ETM) is proposed. Different from existing ETMs, the triggering threshold of the proposed mechanism can be dynamically adjusted with conditions of the latest vehicle state. Each vehicle in this study is deemed as an agent, under which a novel control strategy is developed for these autonomous agents with deception attacks. With the assistance of Lyapunov stability theory, sufficient conditions are obtained to guarantee the stability and stabilization of the overall system. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed theoretical results.
Author Gu, Zhou
Yin, Tingting
Ding, Zhengtao
Author_xml – sequence: 1
  givenname: Zhou
  orcidid: 0000-0002-0342-1658
  surname: Gu
  fullname: Gu, Zhou
  email: gzh1808@163.com
  organization: College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
– sequence: 2
  givenname: Tingting
  orcidid: 0000-0001-6645-8709
  surname: Yin
  fullname: Yin, Tingting
  email: yttangle@163.com
  organization: College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
– sequence: 3
  givenname: Zhengtao
  orcidid: 0000-0003-0690-7853
  surname: Ding
  fullname: Ding, Zhengtao
  email: zhengtao.ding@manchester.ac.uk
  organization: School of Electrical and Electronic Engineering, The University of Manchester, Manchester, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33587721$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1UREvpHwAJWWLDZoIf47FnGUJ5SKEgdYTYjTzOncRhxg62p2r_PQ4JWXSBN9eWvnOv7znP0ZnzDhB6ScmMUlK_a25ulrczRhidcSIqWZVP0AWjFSsYV-rsdJc_z9FVjFuST5XBsn6GzjkXSkpGL9D9d502uAna_LJujRfepeAH7Hs8n5J3fvRTxD9gY80AEd9O3RZMwsnjD2Bgl6x3eJ5SVkd8ZzXWeAk6uNyqeK8jrPD1HbhUNMGu1xDy-yuYjXY2ji_Q014PEa6O9RI1H6-bxedi-e3Tl8V8WRguaCoqygToXpRipWhfU626iklZGkFkrfVKsa7jDCrQRlRa1YYYRQRQamohFeGX6O2h7S743xPE1I42GhgG7SCv1rKyJpSVJZUZffMI3fopuPy5llWkrKlUJcvU6yM1dSOs2l2wow4P7T9LM8AOgAk-xgD9CaGk3UfX_o2u3UfXHqPLIvVIZGzSe3tT0Hb4v_TVQWoB4DSr5tkyyvgf9E-log
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3440926
crossref_primary_10_1109_TITS_2024_3355411
crossref_primary_10_1109_TNNLS_2022_3227101
crossref_primary_10_1016_j_automatica_2022_110535
crossref_primary_10_1016_j_tranpol_2022_04_011
crossref_primary_10_1002_rnc_6591
crossref_primary_10_1016_j_isatra_2023_01_018
crossref_primary_10_1016_j_jfranklin_2023_06_009
crossref_primary_10_1109_TII_2022_3206354
crossref_primary_10_59782_sidr_v5i1_157
crossref_primary_10_1016_j_chaos_2024_114584
crossref_primary_10_1016_j_ifacol_2023_02_053
crossref_primary_10_3390_s22124467
crossref_primary_10_1109_TNSE_2024_3359180
crossref_primary_10_1109_TIV_2024_3372522
crossref_primary_10_1109_TSMC_2024_3406563
crossref_primary_10_1109_ACCESS_2022_3191801
crossref_primary_10_1007_s40815_022_01346_4
crossref_primary_10_1016_j_amc_2023_128337
crossref_primary_10_1109_TSMC_2024_3378773
crossref_primary_10_1109_TVT_2024_3387737
crossref_primary_10_1177_01423312241267062
crossref_primary_10_1109_TNNLS_2022_3222206
crossref_primary_10_1002_rnc_6819
crossref_primary_10_1002_rnc_6580
crossref_primary_10_1002_rnc_7590
crossref_primary_10_1109_TII_2023_3335996
crossref_primary_10_1109_TVT_2024_3436052
crossref_primary_10_1007_s11431_022_2173_7
crossref_primary_10_1109_TNSE_2022_3223978
crossref_primary_10_1109_TVT_2023_3287272
crossref_primary_10_1016_j_jfranklin_2024_107358
crossref_primary_10_1109_TIV_2023_3317238
crossref_primary_10_1109_TFUZZ_2023_3300882
crossref_primary_10_1109_TITS_2023_3240731
crossref_primary_10_1109_TIV_2023_3278697
crossref_primary_10_1080_00207721_2022_2083260
crossref_primary_10_1002_rnc_5957
crossref_primary_10_1016_j_apenergy_2022_119948
crossref_primary_10_1016_j_neucom_2022_05_096
crossref_primary_10_1080_00423114_2024_2407181
crossref_primary_10_1109_ACCESS_2022_3225659
crossref_primary_10_1016_j_jfranklin_2022_10_046
crossref_primary_10_1109_ACCESS_2023_3270924
crossref_primary_10_1109_TASE_2024_3465439
crossref_primary_10_3390_s23115033
crossref_primary_10_1109_TVT_2023_3250709
crossref_primary_10_1016_j_jfranklin_2021_04_012
crossref_primary_10_1007_s12555_022_0502_0
crossref_primary_10_1080_23307706_2023_2238719
crossref_primary_10_1109_TSMC_2022_3223148
crossref_primary_10_1109_TII_2024_3495763
crossref_primary_10_1109_TKDE_2022_3162220
crossref_primary_10_1109_TVT_2024_3458994
crossref_primary_10_1109_TSMC_2024_3373408
crossref_primary_10_1109_ACCESS_2024_3455329
crossref_primary_10_1007_s41870_023_01712_x
crossref_primary_10_1016_j_jfranklin_2024_107502
crossref_primary_10_1016_j_isatra_2025_02_007
crossref_primary_10_1109_ACCESS_2022_3161672
crossref_primary_10_1016_j_jfranklin_2021_09_021
crossref_primary_10_1109_TFUZZ_2021_3133892
crossref_primary_10_1109_JSYST_2021_3079460
crossref_primary_10_1109_TITS_2024_3350536
crossref_primary_10_1016_j_conengprac_2023_105626
crossref_primary_10_1016_j_neunet_2024_106249
crossref_primary_10_1002_rnc_7052
crossref_primary_10_1016_j_cnsns_2025_108803
crossref_primary_10_1016_j_isatra_2023_04_028
crossref_primary_10_1109_TIFS_2024_3352404
crossref_primary_10_1002_rnc_5794
crossref_primary_10_1002_rnc_7851
crossref_primary_10_1002_rnc_6243
Cites_doi 10.1109/TNNLS.2019.2955132
10.1007/s11432-019-2714-7
10.1109/TCYB.2019.2931770
10.1109/TAC.2007.904284
10.1049/cth2.12059
10.1109/TCYB.2020.2972384
10.1109/TVT.2015.2472975
10.1109/TCYB.2019.2917179
10.1109/TSMCB.2009.2024408
10.1080/00207179.2015.1088967
10.1016/j.ins.2018.04.020
10.1109/TAC.2007.902731
10.1109/TAC.2014.2366855
10.1109/TCYB.2018.2802044
10.1109/TITS.2015.2498172
10.1023/A:1008942012299
10.1016/j.jfranklin.2020.09.020
10.1109/TCYB.2014.2371814
10.1109/TVT.2016.2555853
10.1016/j.jfranklin.2017.02.020
10.1109/TCYB.2019.2946122
10.1109/TMECH.2014.2301459
10.1109/TITS.2015.2498157
10.1109/TCYB.2020.2970556
10.1109/TITS.2019.2924937
10.1109/TTE.2015.2512237
10.1016/j.ymssp.2020.106798
10.1109/TNNLS.2019.2946290
10.1109/TCST.2016.2642164
10.1109/TNNLS.2019.2919641
10.1109/TCYB.2020.3030028
10.1109/TNNLS.2019.2951709
10.1109/TAC.2012.2206694
10.1007/s10458-005-2631-2
10.1155/2017/8132769
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3056764
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 5653
ExternalDocumentID 33587721
10_1109_TNNLS_2021_3056764
9354512
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62022044; 61473156
  funderid: 10.13039/501100001809
– fundername: Jiangsu Natural Science Foundation for Distinguished Young Scholars
  grantid: BK20190039
  funderid: 10.13039/501100018541
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-6125eaf545d81f91a8b62774c5079aad82bb32e6eac56a89c0c805e11c957803
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 15:03:41 EDT 2025
Sun Jun 29 15:27:10 EDT 2025
Thu Jan 02 22:57:09 EST 2025
Thu Apr 24 22:57:05 EDT 2025
Tue Jul 01 00:27:37 EDT 2025
Wed Aug 27 05:01:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-6125eaf545d81f91a8b62774c5079aad82bb32e6eac56a89c0c805e11c957803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0342-1658
0000-0003-0690-7853
0000-0001-6645-8709
PMID 33587721
PQID 2604917842
PQPubID 85436
PageCount 10
ParticipantIDs proquest_miscellaneous_2490124417
pubmed_primary_33587721
proquest_journals_2604917842
crossref_citationtrail_10_1109_TNNLS_2021_3056764
crossref_primary_10_1109_TNNLS_2021_3056764
ieee_primary_9354512
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
gu (ref25) 2020
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref30
  doi: 10.1109/TNNLS.2019.2955132
– ident: ref19
  doi: 10.1007/s11432-019-2714-7
– ident: ref20
  doi: 10.1109/TCYB.2019.2931770
– ident: ref15
  doi: 10.1109/TAC.2007.904284
– ident: ref21
  doi: 10.1049/cth2.12059
– ident: ref26
  doi: 10.1109/TCYB.2020.2972384
– ident: ref6
  doi: 10.1109/TVT.2015.2472975
– ident: ref24
  doi: 10.1109/TCYB.2019.2917179
– ident: ref13
  doi: 10.1109/TSMCB.2009.2024408
– ident: ref16
  doi: 10.1080/00207179.2015.1088967
– ident: ref31
  doi: 10.1016/j.ins.2018.04.020
– ident: ref4
  doi: 10.1109/TAC.2007.902731
– ident: ref22
  doi: 10.1109/TAC.2014.2366855
– ident: ref33
  doi: 10.1109/TCYB.2018.2802044
– ident: ref7
  doi: 10.1109/TITS.2015.2498172
– year: 2020
  ident: ref25
  article-title: Memory-based continuous event-triggered control for networked T-S fuzzy systems against cyber-attacks
  publication-title: IEEE Trans Fuzzy Syst
– ident: ref10
  doi: 10.1023/A:1008942012299
– ident: ref35
  doi: 10.1016/j.jfranklin.2020.09.020
– ident: ref14
  doi: 10.1109/TCYB.2014.2371814
– ident: ref2
  doi: 10.1109/TVT.2016.2555853
– ident: ref27
  doi: 10.1016/j.jfranklin.2017.02.020
– ident: ref36
  doi: 10.1109/TCYB.2019.2946122
– ident: ref8
  doi: 10.1109/TMECH.2014.2301459
– ident: ref5
  doi: 10.1109/TITS.2015.2498157
– ident: ref32
  doi: 10.1109/TCYB.2020.2970556
– ident: ref3
  doi: 10.1109/TITS.2019.2924937
– ident: ref12
  doi: 10.1109/TTE.2015.2512237
– ident: ref28
  doi: 10.1016/j.ymssp.2020.106798
– ident: ref29
  doi: 10.1109/TNNLS.2019.2946290
– ident: ref1
  doi: 10.1109/TCST.2016.2642164
– ident: ref17
  doi: 10.1109/TNNLS.2019.2919641
– ident: ref18
  doi: 10.1109/TCYB.2020.3030028
– ident: ref34
  doi: 10.1109/TNNLS.2019.2951709
– ident: ref23
  doi: 10.1109/TAC.2012.2206694
– ident: ref11
  doi: 10.1007/s10458-005-2631-2
– ident: ref9
  doi: 10.1155/2017/8132769
SSID ssj0000605649
Score 2.6020894
Snippet This article investigates the problem of event-triggered secure path tracking control of autonomous ground vehicles (AGVs) under deception attacks. To relieve...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5644
SubjectTerms Autonomous ground vehicles (AGVs)
Autonomous vehicles
Axles
Communication networks
Data models
Deception
deception attacks
Denial-of-service attack
Learning
learning-based event-triggered control
Mathematical model
Path tracking
Stability
Symmetric matrices
Tracking control
Unmanned ground vehicles
Vehicles
Title Path Tracking Control of Autonomous Vehicles Subject to Deception Attacks via a Learning-Based Event-Triggered Mechanism
URI https://ieeexplore.ieee.org/document/9354512
https://www.ncbi.nlm.nih.gov/pubmed/33587721
https://www.proquest.com/docview/2604917842
https://www.proquest.com/docview/2490124417
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGTrswYAMKG_IkbuDOdhI3PnZj0zStFdIK6i2yHbergAatCZr21_Oe40QCwbRLFClOYus9-_ue_X4Q8h4gzDufpwzQXLFUlJZptFIMJqNTxi10iIWZTNXFl_Ryns23yMc-FsZ7H5zP_BBvw1l-WbkGt8qOdQJ4jyWFn4Dh1sZq9fspHHi5CmxXCiWZTEbzLkaG6-PZdHp1DdagFEPkzCOF9XiSJMuBXIo_ICnUWPk_3Qywc75LJl2HW2-Tb8OmtkN3_1cux8eO6Bl5GvknHbcK85xs-fULstvVdqBxqu-Ru89ADSkgmcO9dHraerTTakHHTY2BEFWzoV_9TfCqo7D84H4OrSv6yUdHGTquawzgp79WhhoaE7ku2QngZknP0M-SzW5XyyVWC6UTjyHIq82PfTI7P5udXrBYpYG5JBM1Q4rkzQLGUeZioYXJrZJAKh0wTW1MmUtrE-kVrPCZMrl23OU880I4DasFT16S7XW19q8JtVI6A7Bp4JpqyS3IxpuMuxSZiB0NiOjkVLiYwRwLaXwvgiXDdRHEXKCYiyjmAfnQv_Ozzd_xYOs9lFHfMopnQA46dSjiFN8UYAimYOvmKTw-6h_D5MQTF7P2IIYCbFuOBEpA31-1atR_u9O-N__-51uygz1rPWcOyHZ92_hD4D-1fRcU_zcrtf07
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lj9MwEB4tywEuLLCwFBYwEpxQurHzaHzgUPahLttWSATUm-U4bqmAFm0TXn-Fv8KPY8ZxIoGA20pcokiJEyf-PPONPQ-Ax6jCrLFZHKA2T4OYl0UgyUrRlIwu1WYuXSzMZJqOXscvZslsC753sTDWWud8Zvt06vbyy7WpaansQEao77nwLpRn9utnNNA2z06PcDSfCHFynB-OAl9DIDBRwquAFLjVc2xXZnwuuc6KVCDlMciDpNZlJooiEjZF-ZOkOpMmNFmYWM6NRCyHET72ElzG5ologsO6BZwQDYHU0WvBUxGIaDBrg3JCeZBPp-NXaH4K3ieSPkipAFAUJRmyWf6LDnRFXf7Ob52eO9mBH-0fatxb3vXrquibb78lj_xPf-F1uOb5NRs2E-IGbNnVTdhpa1cwL8p24ctLpL4MNbWhvQJ22Hjss_WcDeuKAj3W9Ya9sW-d1yBD8UrrVaxasyPrHYHYsKooQQH7tNRMM5-odhE8R15QsmPyIw3y8-ViQdVQ2cRSiPVy8-EW5Bfx-bdhe7Ve2TvACiGMRlqg8RhLERYIBauT0MTEtIpBD3gLC2V8hnYqFPJeOUstlMqhShGqlEdVD552bT42-Un-efcuQaK706OhB_st-pQXYRuFhm6MtnwW4-VH3WUUPrSjpFcWh0Gh7R4SQeTY970Gtd2zW7Df_fM7H8KVUT4Zq_Hp9OweXKVeNl5C-7Bdndf2PnK9qnjg5hwDdcEA_QlN81i8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+Tracking+Control+of+Autonomous+Vehicles+Subject+to+Deception+Attacks+via+a+Learning-Based+Event-Triggered+Mechanism&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Gu%2C+Zhou&rft.au=Yin%2C+Tingting&rft.au=Ding%2C+Zhengtao&rft.date=2021-12-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2021.3056764&rft_id=info%3Apmid%2F33587721&rft.externalDocID=33587721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon