Using a two-part mixed-effects model for understanding daily, individual-level media behavior

This study supports a strategic analytics proposal, namely that there is conceptual and practical utility in applying a two-part mixed-effects model for understanding individual differences in daily media use. Individual-level daily diary measures of media use typically contain information about a p...

Full description

Saved in:
Bibliographic Details
Published inJournal of marketing analytics Vol. 7; no. 4; pp. 234 - 250
Main Authors Blozis, Shelley A., Villarreal, Ricardo, Thota, Sweta, Imparato, Nicholas
Format Journal Article
LanguageEnglish
Published London Palgrave Macmillan UK 01.12.2019
Palgrave Macmillan
Subjects
Online AccessGet full text
ISSN2050-3318
2050-3326
DOI10.1057/s41270-019-00062-7

Cover

Abstract This study supports a strategic analytics proposal, namely that there is conceptual and practical utility in applying a two-part mixed-effects model for understanding individual differences in daily media use. Individual-level daily diary measures of media use typically contain information about a person’s likeliness to use media, extent of usage, and variation in use across days that, taken together, can provide data for evaluating media behavior that is otherwise masked by using aggregate measures. The statistical framework developed and demonstrated here focuses on these three metrics. The approach, applied to daily diary measures of television use in a large, representative U.S. sample, yields results that add value when weighing media strategies centered on the twin tactics of reach and frequency. The implications for the proposed analytic strategy are discussed.
AbstractList This study supports a strategic analytics proposal, namely that there is conceptual and practical utility in applying a two-part mixed-effects model for understanding individual differences in daily media use. Individual-level daily diary measures of media use typically contain information about a person’s likeliness to use media, extent of usage, and variation in use across days that, taken together, can provide data for evaluating media behavior that is otherwise masked by using aggregate measures. The statistical framework developed and demonstrated here focuses on these three metrics. The approach, applied to daily diary measures of television use in a large, representative U.S. sample, yields results that add value when weighing media strategies centered on the twin tactics of reach and frequency. The implications for the proposed analytic strategy are discussed.
Author Blozis, Shelley A.
Imparato, Nicholas
Villarreal, Ricardo
Thota, Sweta
Author_xml – sequence: 1
  givenname: Shelley A.
  surname: Blozis
  fullname: Blozis, Shelley A.
  email: sablozis@ucdavis.edu
  organization: Department of Psychology, University of California
– sequence: 2
  givenname: Ricardo
  surname: Villarreal
  fullname: Villarreal, Ricardo
  organization: Department of Marketing, School of Management, University of San Francisco
– sequence: 3
  givenname: Sweta
  surname: Thota
  fullname: Thota, Sweta
  organization: Department of Marketing, School of Management, University of San Francisco
– sequence: 4
  givenname: Nicholas
  surname: Imparato
  fullname: Imparato, Nicholas
  organization: Department of Marketing, School of Management, University of San Francisco
BookMark eNp9kE1LAzEQhoMoWGv_gKcFr0aTzO5me5TiFxS82KOE7Ga2pmw3NUmr_femVhQ89DQZeJ6ZzHtGjnvXIyEXnF1zVsibkHMhGWV8TBljpaDyiAwEKxgFEOXx75tXp2QUwiJBHMpSlDAgr7Ng-3mms_jh6Er7mC3tJxqKbYtNDNnSGeyy1vls3Rv0Iere7ASjbbe9ymzqNtasdUc73CRyicbqrMY3vbHOn5OTVncBRz91SGb3dy-TRzp9fnia3E5pAwWPtOQsZ7XABmQhAdI5RvKxxkq2VW24LtqcG4N6XBe10XlVFxx0KaCS2FZlrmFILvdzV969rzFEtXBr36eVSgAHziAHSFS1pxrvQvDYqsZGHa3ro0_nKM7ULk-1z1OlPNV3nkomVfxTV94utd8elmAvhQT3c_R_vzpgfQHARonh
CitedBy_id crossref_primary_10_1057_s41270_024_00347_6
crossref_primary_10_1093_ntr_ntab143
crossref_primary_10_1057_s41270_022_00172_9
Cites_doi 10.2307/1907382
10.1080/10705511.2014.856699
10.2501/JAR-52-2-262-269
10.1017/S002184990505004X
10.1287/mksc.1120.0759
10.1080/07350015.1983.10509330
10.2501/S0021849908080392
10.1177/0962280215590284
10.1093/biomet/70.1.1
10.1198/016214501753168389
10.2501/JAR-2017-004
10.1080/02650487.2015.1022975
10.1080/02650487.2017.1335010
10.1080/00913367.2016.1183244
10.1111/j.0006-341X.2000.00909.x
10.2307/1913974
10.1509/jmr.12.0241
10.1080/00913367.2015.1018460
10.2307/2529876
10.1007/978-88-470-2871-5_12
10.1007/978-1-4899-2873-3
10.1016/j.jhealeco.2009.11.010
10.1002/9780470510445
10.3102/1076998610375836
10.1080/02650487.2017.1339583
10.2307/2347792
ContentType Journal Article
Copyright Springer Nature Limited 2019
Copyright Palgrave Macmillan Dec 2019
Copyright_xml – notice: Springer Nature Limited 2019
– notice: Copyright Palgrave Macmillan Dec 2019
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1057/s41270-019-00062-7
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global (OCUL)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 2050-3326
EndPage 250
ExternalDocumentID 10_1057_s41270_019_00062_7
GroupedDBID 0R~
3V.
4.4
406
7WY
8FE
8FG
8FL
AACDK
AAFIF
AAIAL
AANZL
AARHV
AASML
AATNV
ABAKF
ABDZT
ABJNI
ABUWG
ACAOD
ACGFS
ACLPH
ACPIV
ACZOJ
ADINQ
ADXJC
AECXW
AEFQL
AEJRE
AEMSY
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AGAYW
AGQEE
AGRTI
AHBYD
AHSBF
AIGIU
AILAN
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMYLF
ARAPS
ASPBG
AVWKF
AXYYD
AZQEC
BENPR
BEZIV
BGLVJ
BKKNO
BPHCQ
CCPQU
CSNOR
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
FEFRA
FERAY
FIGPU
FPDNL
FRNLG
FSGXE
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
IWAJR
J-C
JZLTJ
K60
K6V
K6~
K7-
M0C
M0N
MS~
O9-
P62
PLIJB
PQBIZ
PQBZA
PQQKQ
PROAC
PVNMB
ROL
RPC
RSV
SJYHP
SNX
SOHCF
SOJ
SRMVM
SSHVO
TSG
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7XB
8AL
8FK
ABJZF
ABRTQ
JQ2
L.-
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c351t-61040b2ec375733412d719ae87f8bd1a5f41ddea9b5bda48b513a62387ef864a3
IEDL.DBID BENPR
ISSN 2050-3318
IngestDate Sat Aug 23 14:50:09 EDT 2025
Thu Apr 24 22:58:37 EDT 2025
Tue Jul 01 01:22:41 EDT 2025
Fri Feb 21 02:37:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Media
TV
Repeated measures
Frequency versus reach
Mixed-effects models
Diary data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-61040b2ec375733412d719ae87f8bd1a5f41ddea9b5bda48b513a62387ef864a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2313103433
PQPubID 2030667
PageCount 17
ParticipantIDs proquest_journals_2313103433
crossref_citationtrail_10_1057_s41270_019_00062_7
crossref_primary_10_1057_s41270_019_00062_7
springer_journals_10_1057_s41270_019_00062_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of marketing analytics
PublicationTitleAbbrev J Market Anal
PublicationYear 2019
Publisher Palgrave Macmillan UK
Palgrave Macmillan
Publisher_xml – name: Palgrave Macmillan UK
– name: Palgrave Macmillan
References BealVRomaniukJSharpBTelevision advertising television: measuring the ability of television promos to deliver ratings for new programs using single-source dataInternational Journal of Advertising20183346348110.1080/02650487.2017.1335010
CookRDWeisbergSDiagnostics for heteroscedasticity in regressionBiometrika198370111010.1093/biomet/70.1.1
XuSBlozisSASensitivity analysis of mixed models for incomplete longitudinal dataJournal of Educational and Behavioral Statistics201136223725610.3102/1076998610375836
TobinJEstimation of relationships for limited dependent variablesEconometrica1958261243610.2307/1907382
LarsenKPetersenJHBudtz-JorgensenEEndahlLInterpreting parameters in the logistic regression model with random effectsBiometrics200056390991410.1111/j.0006-341X.2000.00909.x
SchmidtSEisendMAdvertising repetition: a meta-analysis on effective frequency in advertisingJournal of Advertising201544441542810.1080/00913367.2015.1018460
AitkinMModelling variance heterogeneity in normal regression using GLIMApplied Statistics198736333233910.2307/2347792
La FerleCLeeWNCan English language media connect with ethnic audiences? Ethnic minorities’ media use and representation perceptionsJournal of Advertising Research200545114015310.1017/S002184990505004X
MolenberghsGKenwardMMissing Data in Clinical Studies2007West SussexWiley10.1002/9780470510445
GottardAStanghelliniECapobiancoRGrigolettoMFrancescoLPetroneSSemicontinuous regression models with skew distributionComplex Models and Computational Methods in Statistics2013Verlag-MailandSpringer14916010.1007/978-88-470-2871-5_12
Nelson-FieldKRiebeESharpBWhat’s not to “like?”: Can Facebook fan base give a brand the advertising reach it needs?Journal of Advertising Research201252226226910.2501/JAR-52-2-262-269
DuanNManningWGJrMorrisCNNewhouseJPA comparison of alternative models for the demand for medical careJournal of Business & Economic Statistics198312115126
LairdNMWareJHRandom-effects models for longitudinal dataBiometrics198238496397410.2307/2529876
CarrollRJRuppertDTransformation and Weighting in Regression1988New YorkChapman & Hall10.1007/978-1-4899-2873-3
McDonal, C., and Ehrenberg, A.S.C. 2003. What happens when brands gain or lose share? Customer acquisition or increased loyalty?: Report 31 for Corporate Members. Adelaide, Australian: Ehrenberg-Bass Institute for Marketing Science.
HallwardJMake measurable what is not so: consumer mix modeling for the evolving media worldJournal of Advertising Research200844333935110.2501/S0021849908080392
LinCVenkataramanSJapSDMedia multiplexing behaviour: implications for targeting and media planningMarketing Science201332231032410.1287/mksc.1120.0759
Wolfinger, R.D. 1999. Fitting nonlinear mixed models with the new NLMIXED procedure. Paper 287, SUGI Proceedings. Cary: SAS Institute Inc.
KellyJSJonesSKThe IMC Handbook: Readings & Cases in Integrated Marketing Communications2012ChicagoRamcom Communications
MoraJDSocial context and advertising effectiveness: a dynamic studyInternational Journal of Advertising201635232534410.1080/02650487.2015.1022975
Wolfinger, R.D. 2000. Fitting nonlinear mixed models with the new NLMIXED procedure, Paper 287, SAS Institute Inc., Proceedings of the Twenty-Fifth Annual SAS Users Group International Conference Cary, NC: SAS Institute Inc.
OlsenMKSchaferJLA two-part random effects model for semicontinuous longitudinal dataJournal of the American Statistical Association20019645473074510.1198/016214501753168389
PrecourtGWhy tv still mattersJournal of Advertising Research20175711210.2501/JAR-2017-004
DanaherPJDaggerTSComparing the relative effectiveness of advertising channels: a case study of a multimedia blitz campaignJournal of Marketing Research201350451753410.1509/jmr.12.0241
O’GuinnTCAllenCTClose ScheinbaumASemenikRJAdvertising and Integrated Brand Promotion2019BostonCengage Learning Inc
Ryff, C.D., and Almeida, D. Midlife in the United States (MIDUS Refresher): Daily Diary Project, 2012-2014. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2018-06-06.
XingDHuangYChenHZhuYDagneGABaldwinJBayesian inference for two-part mixed-effects model using skew distributions, with application to longitudinal semicontinuous alcohol dataStatistical Methods in Medical Research20172641838185310.1177/0962280215590284
CheonHJFraserFRNguyenTKFamily-based treatment for obesity in tweens: A three-year longitudinal follow-up studyInternational Journal of Advertising201837454856710.1080/02650487.2017.1339583
XuSBlozisSAVandewaterEOn fitting a multivariate two-part latent growth modelStructural Equation Modeling201421113114810.1080/10705511.2014.856699
KazakovaSCaubergheVHuddersLLabytCThe impact of media multitasking on the cognitive and attitudinal response to television commercials: The moderating role of type of advertising appealJournal of Advertising201645440341610.1080/00913367.2016.1183244
AdAge. 2017. Marketing Fact Pack 2018 http://adage.com/d/resources/resources/whitepaper/marketing-fact-pack-2018.
HarveyACEstimating regression models with multiplicative heteroscedasticityEconometrica197644346146510.2307/1913974
MinYAgrestiAModeling nonnegative data with clumping at zero: a surveyJournal of the Iranian Statistical Society200211–2733
LiuLStrawdermanRLCowenMEShihYCA flexible two-part random effects model for correlated medical costsJournal of Health Economics20102911012310.1016/j.jhealeco.2009.11.010
NM Laird (62_CR107) 1982; 38
S Kazakova (62_CR101) 2016; 45
62_CR19
N Duan (62_CR100) 1983; 1
S Schmidt (62_CR26) 2015; 44
62_CR103
D Xing (62_CR109) 2017; 26
TC O’Guinn (62_CR22) 2019
62_CR1
RD Cook (62_CR6) 1983; 70
HJ Cheon (62_CR108) 2018; 37
K Larsen (62_CR106) 2000; 56
J Hallward (62_CR9) 2008; 44
PJ Danaher (62_CR7) 2013; 50
AC Harvey (62_CR10) 1976; 44
A Gottard (62_CR8) 2013
L Liu (62_CR104) 2010; 29
MK Olsen (62_CR23) 2001; 96
62_CR29
C Lin (62_CR17) 2013; 32
62_CR25
M Aitkin (62_CR105) 1987; 36
Y Min (62_CR18) 2002; 1
S Xu (62_CR111) 2014; 21
K Nelson-Field (62_CR21) 2012; 52
V Beal (62_CR2) 2018; 3
C La Ferle (62_CR15) 2005; 45
JS Kelly (62_CR13) 2012
JD Mora (62_CR20) 2016; 35
G Molenberghs (62_CR102) 2007
G Precourt (62_CR24) 2017; 57
S Xu (62_CR110) 2011; 36
RJ Carroll (62_CR3) 1988
J Tobin (62_CR28) 1958; 26
References_xml – reference: CookRDWeisbergSDiagnostics for heteroscedasticity in regressionBiometrika198370111010.1093/biomet/70.1.1
– reference: OlsenMKSchaferJLA two-part random effects model for semicontinuous longitudinal dataJournal of the American Statistical Association20019645473074510.1198/016214501753168389
– reference: LairdNMWareJHRandom-effects models for longitudinal dataBiometrics198238496397410.2307/2529876
– reference: XuSBlozisSASensitivity analysis of mixed models for incomplete longitudinal dataJournal of Educational and Behavioral Statistics201136223725610.3102/1076998610375836
– reference: TobinJEstimation of relationships for limited dependent variablesEconometrica1958261243610.2307/1907382
– reference: CarrollRJRuppertDTransformation and Weighting in Regression1988New YorkChapman & Hall10.1007/978-1-4899-2873-3
– reference: CheonHJFraserFRNguyenTKFamily-based treatment for obesity in tweens: A three-year longitudinal follow-up studyInternational Journal of Advertising201837454856710.1080/02650487.2017.1339583
– reference: HallwardJMake measurable what is not so: consumer mix modeling for the evolving media worldJournal of Advertising Research200844333935110.2501/S0021849908080392
– reference: La FerleCLeeWNCan English language media connect with ethnic audiences? Ethnic minorities’ media use and representation perceptionsJournal of Advertising Research200545114015310.1017/S002184990505004X
– reference: DuanNManningWGJrMorrisCNNewhouseJPA comparison of alternative models for the demand for medical careJournal of Business & Economic Statistics198312115126
– reference: McDonal, C., and Ehrenberg, A.S.C. 2003. What happens when brands gain or lose share? Customer acquisition or increased loyalty?: Report 31 for Corporate Members. Adelaide, Australian: Ehrenberg-Bass Institute for Marketing Science.
– reference: AitkinMModelling variance heterogeneity in normal regression using GLIMApplied Statistics198736333233910.2307/2347792
– reference: BealVRomaniukJSharpBTelevision advertising television: measuring the ability of television promos to deliver ratings for new programs using single-source dataInternational Journal of Advertising20183346348110.1080/02650487.2017.1335010
– reference: HarveyACEstimating regression models with multiplicative heteroscedasticityEconometrica197644346146510.2307/1913974
– reference: MinYAgrestiAModeling nonnegative data with clumping at zero: a surveyJournal of the Iranian Statistical Society200211–2733
– reference: Nelson-FieldKRiebeESharpBWhat’s not to “like?”: Can Facebook fan base give a brand the advertising reach it needs?Journal of Advertising Research201252226226910.2501/JAR-52-2-262-269
– reference: O’GuinnTCAllenCTClose ScheinbaumASemenikRJAdvertising and Integrated Brand Promotion2019BostonCengage Learning Inc
– reference: XuSBlozisSAVandewaterEOn fitting a multivariate two-part latent growth modelStructural Equation Modeling201421113114810.1080/10705511.2014.856699
– reference: KellyJSJonesSKThe IMC Handbook: Readings & Cases in Integrated Marketing Communications2012ChicagoRamcom Communications
– reference: MoraJDSocial context and advertising effectiveness: a dynamic studyInternational Journal of Advertising201635232534410.1080/02650487.2015.1022975
– reference: MolenberghsGKenwardMMissing Data in Clinical Studies2007West SussexWiley10.1002/9780470510445
– reference: XingDHuangYChenHZhuYDagneGABaldwinJBayesian inference for two-part mixed-effects model using skew distributions, with application to longitudinal semicontinuous alcohol dataStatistical Methods in Medical Research20172641838185310.1177/0962280215590284
– reference: KazakovaSCaubergheVHuddersLLabytCThe impact of media multitasking on the cognitive and attitudinal response to television commercials: The moderating role of type of advertising appealJournal of Advertising201645440341610.1080/00913367.2016.1183244
– reference: LarsenKPetersenJHBudtz-JorgensenEEndahlLInterpreting parameters in the logistic regression model with random effectsBiometrics200056390991410.1111/j.0006-341X.2000.00909.x
– reference: Wolfinger, R.D. 2000. Fitting nonlinear mixed models with the new NLMIXED procedure, Paper 287, SAS Institute Inc., Proceedings of the Twenty-Fifth Annual SAS Users Group International Conference Cary, NC: SAS Institute Inc.
– reference: AdAge. 2017. Marketing Fact Pack 2018 http://adage.com/d/resources/resources/whitepaper/marketing-fact-pack-2018.
– reference: SchmidtSEisendMAdvertising repetition: a meta-analysis on effective frequency in advertisingJournal of Advertising201544441542810.1080/00913367.2015.1018460
– reference: PrecourtGWhy tv still mattersJournal of Advertising Research20175711210.2501/JAR-2017-004
– reference: GottardAStanghelliniECapobiancoRGrigolettoMFrancescoLPetroneSSemicontinuous regression models with skew distributionComplex Models and Computational Methods in Statistics2013Verlag-MailandSpringer14916010.1007/978-88-470-2871-5_12
– reference: DanaherPJDaggerTSComparing the relative effectiveness of advertising channels: a case study of a multimedia blitz campaignJournal of Marketing Research201350451753410.1509/jmr.12.0241
– reference: Ryff, C.D., and Almeida, D. Midlife in the United States (MIDUS Refresher): Daily Diary Project, 2012-2014. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2018-06-06.
– reference: LiuLStrawdermanRLCowenMEShihYCA flexible two-part random effects model for correlated medical costsJournal of Health Economics20102911012310.1016/j.jhealeco.2009.11.010
– reference: LinCVenkataramanSJapSDMedia multiplexing behaviour: implications for targeting and media planningMarketing Science201332231032410.1287/mksc.1120.0759
– reference: Wolfinger, R.D. 1999. Fitting nonlinear mixed models with the new NLMIXED procedure. Paper 287, SUGI Proceedings. Cary: SAS Institute Inc.
– volume: 26
  start-page: 24
  issue: 1
  year: 1958
  ident: 62_CR28
  publication-title: Econometrica
  doi: 10.2307/1907382
– volume-title: The IMC Handbook: Readings & Cases in Integrated Marketing Communications
  year: 2012
  ident: 62_CR13
– volume: 21
  start-page: 131
  issue: 1
  year: 2014
  ident: 62_CR111
  publication-title: Structural Equation Modeling
  doi: 10.1080/10705511.2014.856699
– volume: 52
  start-page: 262
  issue: 2
  year: 2012
  ident: 62_CR21
  publication-title: Journal of Advertising Research
  doi: 10.2501/JAR-52-2-262-269
– volume: 45
  start-page: 140
  issue: 1
  year: 2005
  ident: 62_CR15
  publication-title: Journal of Advertising Research
  doi: 10.1017/S002184990505004X
– volume: 32
  start-page: 310
  issue: 2
  year: 2013
  ident: 62_CR17
  publication-title: Marketing Science
  doi: 10.1287/mksc.1120.0759
– ident: 62_CR103
– volume: 1
  start-page: 115
  issue: 2
  year: 1983
  ident: 62_CR100
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.1983.10509330
– volume: 44
  start-page: 339
  issue: 3
  year: 2008
  ident: 62_CR9
  publication-title: Journal of Advertising Research
  doi: 10.2501/S0021849908080392
– volume: 1
  start-page: 7
  issue: 1–2
  year: 2002
  ident: 62_CR18
  publication-title: Journal of the Iranian Statistical Society
– volume-title: Advertising and Integrated Brand Promotion
  year: 2019
  ident: 62_CR22
– volume: 26
  start-page: 1838
  issue: 4
  year: 2017
  ident: 62_CR109
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/0962280215590284
– volume: 70
  start-page: 1
  issue: 1
  year: 1983
  ident: 62_CR6
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.1
– ident: 62_CR25
– volume: 96
  start-page: 730
  issue: 454
  year: 2001
  ident: 62_CR23
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753168389
– volume: 57
  start-page: 1
  issue: 1
  year: 2017
  ident: 62_CR24
  publication-title: Journal of Advertising Research
  doi: 10.2501/JAR-2017-004
– volume: 35
  start-page: 325
  issue: 2
  year: 2016
  ident: 62_CR20
  publication-title: International Journal of Advertising
  doi: 10.1080/02650487.2015.1022975
– volume: 3
  start-page: 463
  issue: 3
  year: 2018
  ident: 62_CR2
  publication-title: International Journal of Advertising
  doi: 10.1080/02650487.2017.1335010
– volume: 45
  start-page: 403
  issue: 4
  year: 2016
  ident: 62_CR101
  publication-title: Journal of Advertising
  doi: 10.1080/00913367.2016.1183244
– volume: 56
  start-page: 909
  issue: 3
  year: 2000
  ident: 62_CR106
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00909.x
– ident: 62_CR29
– volume: 44
  start-page: 461
  issue: 3
  year: 1976
  ident: 62_CR10
  publication-title: Econometrica
  doi: 10.2307/1913974
– ident: 62_CR1
– volume: 50
  start-page: 517
  issue: 4
  year: 2013
  ident: 62_CR7
  publication-title: Journal of Marketing Research
  doi: 10.1509/jmr.12.0241
– volume: 44
  start-page: 415
  issue: 4
  year: 2015
  ident: 62_CR26
  publication-title: Journal of Advertising
  doi: 10.1080/00913367.2015.1018460
– volume: 38
  start-page: 963
  issue: 4
  year: 1982
  ident: 62_CR107
  publication-title: Biometrics
  doi: 10.2307/2529876
– ident: 62_CR19
– start-page: 149
  volume-title: Complex Models and Computational Methods in Statistics
  year: 2013
  ident: 62_CR8
  doi: 10.1007/978-88-470-2871-5_12
– volume-title: Transformation and Weighting in Regression
  year: 1988
  ident: 62_CR3
  doi: 10.1007/978-1-4899-2873-3
– volume: 29
  start-page: 110
  year: 2010
  ident: 62_CR104
  publication-title: Journal of Health Economics
  doi: 10.1016/j.jhealeco.2009.11.010
– volume-title: Missing Data in Clinical Studies
  year: 2007
  ident: 62_CR102
  doi: 10.1002/9780470510445
– volume: 36
  start-page: 237
  issue: 2
  year: 2011
  ident: 62_CR110
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.3102/1076998610375836
– volume: 37
  start-page: 548
  issue: 4
  year: 2018
  ident: 62_CR108
  publication-title: International Journal of Advertising
  doi: 10.1080/02650487.2017.1339583
– volume: 36
  start-page: 332
  issue: 3
  year: 1987
  ident: 62_CR105
  publication-title: Applied Statistics
  doi: 10.2307/2347792
SSID ssj0001366263
Score 2.1189263
Snippet This study supports a strategic analytics proposal, namely that there is conceptual and practical utility in applying a two-part mixed-effects model for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 234
SubjectTerms Behavior
Business and Management
Consumers
Data collection
Diaries
Market analysis
Marketing
Media
Media planning & buying
Original Article
Tactics
Time use
Within-subjects design
Title Using a two-part mixed-effects model for understanding daily, individual-level media behavior
URI https://link.springer.com/article/10.1057/s41270-019-00062-7
https://www.proquest.com/docview/2313103433
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9OQXwRP3F-jDz45oLtkjTtk6g4h6CIKPgi5dI2MJjbdB3qf-8lS1cV3HPbQO8ul1_u60fIcWgMqBAClkAUMRHLhOk4Esxw4NJ0chU49obbu6j3JG6e5bMPuE18WWXlE52jzkeZjZGfIg6xlFiC87PxG7OsUTa76ik0GmQFXXCMdr5ycXV3_1BHWXhkx61YhrlAosNBC_adM4hTTifC5l3xNp3Y5uoIoebv06mGnH-ypO7w6W6QdY8a6flMzZtkqRhukdWqaH2bvLjMPwVafozYGK2BvvY_i5z5ag3q-G4o4lM6_dnMQnPoD77atD_vymIDW0REXT8JrVr4d8hT9-rxssc8cQLLuAxLvA7i1tSdIuPKjjvEv8xVmEARKxPrPARpRIhuDRItdQ4i1jLkgDgoVoVBRQHfJcvD0bDYI1QA6ChIMmUyITINYDtPc6MUyMDITtEkYSWwNPNTxS25xSB12W2p0pmQUxRy6oScqiY5mX8zns3UWPj2YaWH1O-vSVpbQ5O0K93Uj_9fbX_xagdkrWPNwdWrHJLl8n1aHCHqKHWLNOLudcsb2Dcn1NLG
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIhUuCGhRFwr1AU7UahzbcXJACAHb7eeplXqpzDixpZWW3YXdqvRP8RsZe5MuILW3npNYzvjZfvZ8PIC3IgQ0AjNeYVFwVeqKu7JQPEiUOuSNyZJ6w_FJMThTB-f6fAV-d7kwMayyWxPTQt1M6nhHvks8JEpiKSk_Tn_wqBoVvaudhMYCFof--oqObLMP-19ofN_lef_r6ecBb1UFeC21mNNZiXDrcl9LE2sBKkEdEhX60oTSNQJ1UILmPFZOuwZV6bSQSCShND7QX6Ckdh_AQ-pIFaUiyv7e8k5HFrG4S9SzyzQtbzRf2jwdYkW7MxW9vHR2r2Iqd0HE9t-9cElw__PJpq2u_xSetByVfVqA6hms-PFzWOtC5NfhIsUZMGTzqwmfEvbY9-Ev3_A2NoQldR1GbJhd_p06wxocjq532PAmB4yPYsgSS9krrCsYsAFn92LQF7A6noz9JjCF6Iqsqk2olaodYsxzbYIxqLOgc98D0RnM1m0N8yilMbLJl66NXRjZkpFtMrI1PXh_8810UcHjzre3unGw7Wye2SX2erDTjc3y8e2tvby7tW14NDg9PrJH-yeHr-BxHqGRImW2YHX-89K_Jr4zd28SyBh8u29U_wFaSQ0h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFH5BSIgXo6hxBaUHPEmz02k7nTkYY8QFRIkHSbiY-jrTJpusuyu7BPnX_Ot87c6wQgI3zjPTzLx-bb8378cHsCNCQCMw4xUWBVelrrgrC8WDRKlD3pgsqTd8PS4OTtTnU326An-7WpiYVtntiWmjbiZ1_EfeJx4SJbGUlP3QpkV82xu8n_7mUUEqRlo7OY0FRI785QW5b7N3h3s012_yfPDp-8cD3ioM8FpqMSe_iTDscl9LE_sCKkEvJyr0pQmlawTqoAStf6ycdg2q0mkhkQhDaXygL0JJ4z6ANSNNFR2_crC__L8ji9joJWrbZZq2Olo7bc0OMaT-TMWIL_nxVSzrLojkXj8Xl2T3Rnw2HXuDx_Co5avswwJgT2DFjzdgvUuXfwo_Us4BQza_mPAp4ZD9Gv7xDW_zRFhS2mHEjNn5_2U0rMHh6HKXDa_qwfgopi-xVMnCuuYBz-DkXgz6HFbHk7F_AUwhuiKrahNqpWqHGGtem2AM6izo3PdAdAazddvPPMpqjGyKq2tjF0a2ZGSbjGxND95ePTNddPO48-6tbh5su7JndonDHux2c7O8fPtoL-8ebRvWCc_2y-Hx0SY8zCMyUtLMFqzOz879K6I-c_c6YYzBz_sG9T8GYxFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+two-part+mixed-effects+model+for+understanding+daily%2C+individual-level+media+behavior&rft.jtitle=Journal+of+marketing+analytics&rft.au=Blozis%2C+Shelley+A&rft.au=Villarreal%2C+Ricardo&rft.au=Thota%2C+Sweta&rft.au=Imparato%2C+Nicholas&rft.date=2019-12-01&rft.pub=Palgrave+Macmillan&rft.issn=2050-3318&rft.eissn=2050-3326&rft.volume=7&rft.issue=4&rft.spage=234&rft.epage=250&rft_id=info:doi/10.1057%2Fs41270-019-00062-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3318&client=summon