Using a two-part mixed-effects model for understanding daily, individual-level media behavior
This study supports a strategic analytics proposal, namely that there is conceptual and practical utility in applying a two-part mixed-effects model for understanding individual differences in daily media use. Individual-level daily diary measures of media use typically contain information about a p...
Saved in:
Published in | Journal of marketing analytics Vol. 7; no. 4; pp. 234 - 250 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Palgrave Macmillan UK
01.12.2019
Palgrave Macmillan |
Subjects | |
Online Access | Get full text |
ISSN | 2050-3318 2050-3326 |
DOI | 10.1057/s41270-019-00062-7 |
Cover
Abstract | This study supports a strategic analytics proposal, namely that there is conceptual and practical utility in applying a two-part mixed-effects model for understanding individual differences in daily media use. Individual-level daily diary measures of media use typically contain information about a person’s likeliness to use media, extent of usage, and variation in use across days that, taken together, can provide data for evaluating media behavior that is otherwise masked by using aggregate measures. The statistical framework developed and demonstrated here focuses on these three metrics. The approach, applied to daily diary measures of television use in a large, representative U.S. sample, yields results that add value when weighing media strategies centered on the twin tactics of reach and frequency. The implications for the proposed analytic strategy are discussed. |
---|---|
AbstractList | This study supports a strategic analytics proposal, namely that there is conceptual and practical utility in applying a two-part mixed-effects model for understanding individual differences in daily media use. Individual-level daily diary measures of media use typically contain information about a person’s likeliness to use media, extent of usage, and variation in use across days that, taken together, can provide data for evaluating media behavior that is otherwise masked by using aggregate measures. The statistical framework developed and demonstrated here focuses on these three metrics. The approach, applied to daily diary measures of television use in a large, representative U.S. sample, yields results that add value when weighing media strategies centered on the twin tactics of reach and frequency. The implications for the proposed analytic strategy are discussed. |
Author | Blozis, Shelley A. Imparato, Nicholas Villarreal, Ricardo Thota, Sweta |
Author_xml | – sequence: 1 givenname: Shelley A. surname: Blozis fullname: Blozis, Shelley A. email: sablozis@ucdavis.edu organization: Department of Psychology, University of California – sequence: 2 givenname: Ricardo surname: Villarreal fullname: Villarreal, Ricardo organization: Department of Marketing, School of Management, University of San Francisco – sequence: 3 givenname: Sweta surname: Thota fullname: Thota, Sweta organization: Department of Marketing, School of Management, University of San Francisco – sequence: 4 givenname: Nicholas surname: Imparato fullname: Imparato, Nicholas organization: Department of Marketing, School of Management, University of San Francisco |
BookMark | eNp9kE1LAzEQhoMoWGv_gKcFr0aTzO5me5TiFxS82KOE7Ga2pmw3NUmr_femVhQ89DQZeJ6ZzHtGjnvXIyEXnF1zVsibkHMhGWV8TBljpaDyiAwEKxgFEOXx75tXp2QUwiJBHMpSlDAgr7Ng-3mms_jh6Er7mC3tJxqKbYtNDNnSGeyy1vls3Rv0Iere7ASjbbe9ymzqNtasdUc73CRyicbqrMY3vbHOn5OTVncBRz91SGb3dy-TRzp9fnia3E5pAwWPtOQsZ7XABmQhAdI5RvKxxkq2VW24LtqcG4N6XBe10XlVFxx0KaCS2FZlrmFILvdzV969rzFEtXBr36eVSgAHziAHSFS1pxrvQvDYqsZGHa3ro0_nKM7ULk-1z1OlPNV3nkomVfxTV94utd8elmAvhQT3c_R_vzpgfQHARonh |
CitedBy_id | crossref_primary_10_1057_s41270_024_00347_6 crossref_primary_10_1093_ntr_ntab143 crossref_primary_10_1057_s41270_022_00172_9 |
Cites_doi | 10.2307/1907382 10.1080/10705511.2014.856699 10.2501/JAR-52-2-262-269 10.1017/S002184990505004X 10.1287/mksc.1120.0759 10.1080/07350015.1983.10509330 10.2501/S0021849908080392 10.1177/0962280215590284 10.1093/biomet/70.1.1 10.1198/016214501753168389 10.2501/JAR-2017-004 10.1080/02650487.2015.1022975 10.1080/02650487.2017.1335010 10.1080/00913367.2016.1183244 10.1111/j.0006-341X.2000.00909.x 10.2307/1913974 10.1509/jmr.12.0241 10.1080/00913367.2015.1018460 10.2307/2529876 10.1007/978-88-470-2871-5_12 10.1007/978-1-4899-2873-3 10.1016/j.jhealeco.2009.11.010 10.1002/9780470510445 10.3102/1076998610375836 10.1080/02650487.2017.1339583 10.2307/2347792 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2019 Copyright Palgrave Macmillan Dec 2019 |
Copyright_xml | – notice: Springer Nature Limited 2019 – notice: Copyright Palgrave Macmillan Dec 2019 |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
DOI | 10.1057/s41270-019-00062-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global (OCUL) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 2050-3326 |
EndPage | 250 |
ExternalDocumentID | 10_1057_s41270_019_00062_7 |
GroupedDBID | 0R~ 3V. 4.4 406 7WY 8FE 8FG 8FL AACDK AAFIF AAIAL AANZL AARHV AASML AATNV ABAKF ABDZT ABJNI ABUWG ACAOD ACGFS ACLPH ACPIV ACZOJ ADINQ ADXJC AECXW AEFQL AEJRE AEMSY AESKC AEVLU AEXYK AFBBN AFKRA AGAYW AGQEE AGRTI AHBYD AHSBF AIGIU AILAN AJRNO ALMA_UNASSIGNED_HOLDINGS AMKLP AMYLF ARAPS ASPBG AVWKF AXYYD AZQEC BENPR BEZIV BGLVJ BKKNO BPHCQ CCPQU CSNOR DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD FEFRA FERAY FIGPU FPDNL FRNLG FSGXE GNUQQ GROUPED_ABI_INFORM_COMPLETE HCIFZ IWAJR J-C JZLTJ K60 K6V K6~ K7- M0C M0N MS~ O9- P62 PLIJB PQBIZ PQBZA PQQKQ PROAC PVNMB ROL RPC RSV SJYHP SNX SOHCF SOJ SRMVM SSHVO TSG AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7XB 8AL 8FK ABJZF ABRTQ JQ2 L.- PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c351t-61040b2ec375733412d719ae87f8bd1a5f41ddea9b5bda48b513a62387ef864a3 |
IEDL.DBID | BENPR |
ISSN | 2050-3318 |
IngestDate | Sat Aug 23 14:50:09 EDT 2025 Thu Apr 24 22:58:37 EDT 2025 Tue Jul 01 01:22:41 EDT 2025 Fri Feb 21 02:37:49 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Media TV Repeated measures Frequency versus reach Mixed-effects models Diary data |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-61040b2ec375733412d719ae87f8bd1a5f41ddea9b5bda48b513a62387ef864a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2313103433 |
PQPubID | 2030667 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2313103433 crossref_citationtrail_10_1057_s41270_019_00062_7 crossref_primary_10_1057_s41270_019_00062_7 springer_journals_10_1057_s41270_019_00062_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of marketing analytics |
PublicationTitleAbbrev | J Market Anal |
PublicationYear | 2019 |
Publisher | Palgrave Macmillan UK Palgrave Macmillan |
Publisher_xml | – name: Palgrave Macmillan UK – name: Palgrave Macmillan |
References | BealVRomaniukJSharpBTelevision advertising television: measuring the ability of television promos to deliver ratings for new programs using single-source dataInternational Journal of Advertising20183346348110.1080/02650487.2017.1335010 CookRDWeisbergSDiagnostics for heteroscedasticity in regressionBiometrika198370111010.1093/biomet/70.1.1 XuSBlozisSASensitivity analysis of mixed models for incomplete longitudinal dataJournal of Educational and Behavioral Statistics201136223725610.3102/1076998610375836 TobinJEstimation of relationships for limited dependent variablesEconometrica1958261243610.2307/1907382 LarsenKPetersenJHBudtz-JorgensenEEndahlLInterpreting parameters in the logistic regression model with random effectsBiometrics200056390991410.1111/j.0006-341X.2000.00909.x SchmidtSEisendMAdvertising repetition: a meta-analysis on effective frequency in advertisingJournal of Advertising201544441542810.1080/00913367.2015.1018460 AitkinMModelling variance heterogeneity in normal regression using GLIMApplied Statistics198736333233910.2307/2347792 La FerleCLeeWNCan English language media connect with ethnic audiences? Ethnic minorities’ media use and representation perceptionsJournal of Advertising Research200545114015310.1017/S002184990505004X MolenberghsGKenwardMMissing Data in Clinical Studies2007West SussexWiley10.1002/9780470510445 GottardAStanghelliniECapobiancoRGrigolettoMFrancescoLPetroneSSemicontinuous regression models with skew distributionComplex Models and Computational Methods in Statistics2013Verlag-MailandSpringer14916010.1007/978-88-470-2871-5_12 Nelson-FieldKRiebeESharpBWhat’s not to “like?”: Can Facebook fan base give a brand the advertising reach it needs?Journal of Advertising Research201252226226910.2501/JAR-52-2-262-269 DuanNManningWGJrMorrisCNNewhouseJPA comparison of alternative models for the demand for medical careJournal of Business & Economic Statistics198312115126 LairdNMWareJHRandom-effects models for longitudinal dataBiometrics198238496397410.2307/2529876 CarrollRJRuppertDTransformation and Weighting in Regression1988New YorkChapman & Hall10.1007/978-1-4899-2873-3 McDonal, C., and Ehrenberg, A.S.C. 2003. What happens when brands gain or lose share? Customer acquisition or increased loyalty?: Report 31 for Corporate Members. Adelaide, Australian: Ehrenberg-Bass Institute for Marketing Science. HallwardJMake measurable what is not so: consumer mix modeling for the evolving media worldJournal of Advertising Research200844333935110.2501/S0021849908080392 LinCVenkataramanSJapSDMedia multiplexing behaviour: implications for targeting and media planningMarketing Science201332231032410.1287/mksc.1120.0759 Wolfinger, R.D. 1999. Fitting nonlinear mixed models with the new NLMIXED procedure. Paper 287, SUGI Proceedings. Cary: SAS Institute Inc. KellyJSJonesSKThe IMC Handbook: Readings & Cases in Integrated Marketing Communications2012ChicagoRamcom Communications MoraJDSocial context and advertising effectiveness: a dynamic studyInternational Journal of Advertising201635232534410.1080/02650487.2015.1022975 Wolfinger, R.D. 2000. Fitting nonlinear mixed models with the new NLMIXED procedure, Paper 287, SAS Institute Inc., Proceedings of the Twenty-Fifth Annual SAS Users Group International Conference Cary, NC: SAS Institute Inc. OlsenMKSchaferJLA two-part random effects model for semicontinuous longitudinal dataJournal of the American Statistical Association20019645473074510.1198/016214501753168389 PrecourtGWhy tv still mattersJournal of Advertising Research20175711210.2501/JAR-2017-004 DanaherPJDaggerTSComparing the relative effectiveness of advertising channels: a case study of a multimedia blitz campaignJournal of Marketing Research201350451753410.1509/jmr.12.0241 O’GuinnTCAllenCTClose ScheinbaumASemenikRJAdvertising and Integrated Brand Promotion2019BostonCengage Learning Inc Ryff, C.D., and Almeida, D. Midlife in the United States (MIDUS Refresher): Daily Diary Project, 2012-2014. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2018-06-06. XingDHuangYChenHZhuYDagneGABaldwinJBayesian inference for two-part mixed-effects model using skew distributions, with application to longitudinal semicontinuous alcohol dataStatistical Methods in Medical Research20172641838185310.1177/0962280215590284 CheonHJFraserFRNguyenTKFamily-based treatment for obesity in tweens: A three-year longitudinal follow-up studyInternational Journal of Advertising201837454856710.1080/02650487.2017.1339583 XuSBlozisSAVandewaterEOn fitting a multivariate two-part latent growth modelStructural Equation Modeling201421113114810.1080/10705511.2014.856699 KazakovaSCaubergheVHuddersLLabytCThe impact of media multitasking on the cognitive and attitudinal response to television commercials: The moderating role of type of advertising appealJournal of Advertising201645440341610.1080/00913367.2016.1183244 AdAge. 2017. Marketing Fact Pack 2018 http://adage.com/d/resources/resources/whitepaper/marketing-fact-pack-2018. HarveyACEstimating regression models with multiplicative heteroscedasticityEconometrica197644346146510.2307/1913974 MinYAgrestiAModeling nonnegative data with clumping at zero: a surveyJournal of the Iranian Statistical Society200211–2733 LiuLStrawdermanRLCowenMEShihYCA flexible two-part random effects model for correlated medical costsJournal of Health Economics20102911012310.1016/j.jhealeco.2009.11.010 NM Laird (62_CR107) 1982; 38 S Kazakova (62_CR101) 2016; 45 62_CR19 N Duan (62_CR100) 1983; 1 S Schmidt (62_CR26) 2015; 44 62_CR103 D Xing (62_CR109) 2017; 26 TC O’Guinn (62_CR22) 2019 62_CR1 RD Cook (62_CR6) 1983; 70 HJ Cheon (62_CR108) 2018; 37 K Larsen (62_CR106) 2000; 56 J Hallward (62_CR9) 2008; 44 PJ Danaher (62_CR7) 2013; 50 AC Harvey (62_CR10) 1976; 44 A Gottard (62_CR8) 2013 L Liu (62_CR104) 2010; 29 MK Olsen (62_CR23) 2001; 96 62_CR29 C Lin (62_CR17) 2013; 32 62_CR25 M Aitkin (62_CR105) 1987; 36 Y Min (62_CR18) 2002; 1 S Xu (62_CR111) 2014; 21 K Nelson-Field (62_CR21) 2012; 52 V Beal (62_CR2) 2018; 3 C La Ferle (62_CR15) 2005; 45 JS Kelly (62_CR13) 2012 JD Mora (62_CR20) 2016; 35 G Molenberghs (62_CR102) 2007 G Precourt (62_CR24) 2017; 57 S Xu (62_CR110) 2011; 36 RJ Carroll (62_CR3) 1988 J Tobin (62_CR28) 1958; 26 |
References_xml | – reference: CookRDWeisbergSDiagnostics for heteroscedasticity in regressionBiometrika198370111010.1093/biomet/70.1.1 – reference: OlsenMKSchaferJLA two-part random effects model for semicontinuous longitudinal dataJournal of the American Statistical Association20019645473074510.1198/016214501753168389 – reference: LairdNMWareJHRandom-effects models for longitudinal dataBiometrics198238496397410.2307/2529876 – reference: XuSBlozisSASensitivity analysis of mixed models for incomplete longitudinal dataJournal of Educational and Behavioral Statistics201136223725610.3102/1076998610375836 – reference: TobinJEstimation of relationships for limited dependent variablesEconometrica1958261243610.2307/1907382 – reference: CarrollRJRuppertDTransformation and Weighting in Regression1988New YorkChapman & Hall10.1007/978-1-4899-2873-3 – reference: CheonHJFraserFRNguyenTKFamily-based treatment for obesity in tweens: A three-year longitudinal follow-up studyInternational Journal of Advertising201837454856710.1080/02650487.2017.1339583 – reference: HallwardJMake measurable what is not so: consumer mix modeling for the evolving media worldJournal of Advertising Research200844333935110.2501/S0021849908080392 – reference: La FerleCLeeWNCan English language media connect with ethnic audiences? Ethnic minorities’ media use and representation perceptionsJournal of Advertising Research200545114015310.1017/S002184990505004X – reference: DuanNManningWGJrMorrisCNNewhouseJPA comparison of alternative models for the demand for medical careJournal of Business & Economic Statistics198312115126 – reference: McDonal, C., and Ehrenberg, A.S.C. 2003. What happens when brands gain or lose share? Customer acquisition or increased loyalty?: Report 31 for Corporate Members. Adelaide, Australian: Ehrenberg-Bass Institute for Marketing Science. – reference: AitkinMModelling variance heterogeneity in normal regression using GLIMApplied Statistics198736333233910.2307/2347792 – reference: BealVRomaniukJSharpBTelevision advertising television: measuring the ability of television promos to deliver ratings for new programs using single-source dataInternational Journal of Advertising20183346348110.1080/02650487.2017.1335010 – reference: HarveyACEstimating regression models with multiplicative heteroscedasticityEconometrica197644346146510.2307/1913974 – reference: MinYAgrestiAModeling nonnegative data with clumping at zero: a surveyJournal of the Iranian Statistical Society200211–2733 – reference: Nelson-FieldKRiebeESharpBWhat’s not to “like?”: Can Facebook fan base give a brand the advertising reach it needs?Journal of Advertising Research201252226226910.2501/JAR-52-2-262-269 – reference: O’GuinnTCAllenCTClose ScheinbaumASemenikRJAdvertising and Integrated Brand Promotion2019BostonCengage Learning Inc – reference: XuSBlozisSAVandewaterEOn fitting a multivariate two-part latent growth modelStructural Equation Modeling201421113114810.1080/10705511.2014.856699 – reference: KellyJSJonesSKThe IMC Handbook: Readings & Cases in Integrated Marketing Communications2012ChicagoRamcom Communications – reference: MoraJDSocial context and advertising effectiveness: a dynamic studyInternational Journal of Advertising201635232534410.1080/02650487.2015.1022975 – reference: MolenberghsGKenwardMMissing Data in Clinical Studies2007West SussexWiley10.1002/9780470510445 – reference: XingDHuangYChenHZhuYDagneGABaldwinJBayesian inference for two-part mixed-effects model using skew distributions, with application to longitudinal semicontinuous alcohol dataStatistical Methods in Medical Research20172641838185310.1177/0962280215590284 – reference: KazakovaSCaubergheVHuddersLLabytCThe impact of media multitasking on the cognitive and attitudinal response to television commercials: The moderating role of type of advertising appealJournal of Advertising201645440341610.1080/00913367.2016.1183244 – reference: LarsenKPetersenJHBudtz-JorgensenEEndahlLInterpreting parameters in the logistic regression model with random effectsBiometrics200056390991410.1111/j.0006-341X.2000.00909.x – reference: Wolfinger, R.D. 2000. Fitting nonlinear mixed models with the new NLMIXED procedure, Paper 287, SAS Institute Inc., Proceedings of the Twenty-Fifth Annual SAS Users Group International Conference Cary, NC: SAS Institute Inc. – reference: AdAge. 2017. Marketing Fact Pack 2018 http://adage.com/d/resources/resources/whitepaper/marketing-fact-pack-2018. – reference: SchmidtSEisendMAdvertising repetition: a meta-analysis on effective frequency in advertisingJournal of Advertising201544441542810.1080/00913367.2015.1018460 – reference: PrecourtGWhy tv still mattersJournal of Advertising Research20175711210.2501/JAR-2017-004 – reference: GottardAStanghelliniECapobiancoRGrigolettoMFrancescoLPetroneSSemicontinuous regression models with skew distributionComplex Models and Computational Methods in Statistics2013Verlag-MailandSpringer14916010.1007/978-88-470-2871-5_12 – reference: DanaherPJDaggerTSComparing the relative effectiveness of advertising channels: a case study of a multimedia blitz campaignJournal of Marketing Research201350451753410.1509/jmr.12.0241 – reference: Ryff, C.D., and Almeida, D. Midlife in the United States (MIDUS Refresher): Daily Diary Project, 2012-2014. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2018-06-06. – reference: LiuLStrawdermanRLCowenMEShihYCA flexible two-part random effects model for correlated medical costsJournal of Health Economics20102911012310.1016/j.jhealeco.2009.11.010 – reference: LinCVenkataramanSJapSDMedia multiplexing behaviour: implications for targeting and media planningMarketing Science201332231032410.1287/mksc.1120.0759 – reference: Wolfinger, R.D. 1999. Fitting nonlinear mixed models with the new NLMIXED procedure. Paper 287, SUGI Proceedings. Cary: SAS Institute Inc. – volume: 26 start-page: 24 issue: 1 year: 1958 ident: 62_CR28 publication-title: Econometrica doi: 10.2307/1907382 – volume-title: The IMC Handbook: Readings & Cases in Integrated Marketing Communications year: 2012 ident: 62_CR13 – volume: 21 start-page: 131 issue: 1 year: 2014 ident: 62_CR111 publication-title: Structural Equation Modeling doi: 10.1080/10705511.2014.856699 – volume: 52 start-page: 262 issue: 2 year: 2012 ident: 62_CR21 publication-title: Journal of Advertising Research doi: 10.2501/JAR-52-2-262-269 – volume: 45 start-page: 140 issue: 1 year: 2005 ident: 62_CR15 publication-title: Journal of Advertising Research doi: 10.1017/S002184990505004X – volume: 32 start-page: 310 issue: 2 year: 2013 ident: 62_CR17 publication-title: Marketing Science doi: 10.1287/mksc.1120.0759 – ident: 62_CR103 – volume: 1 start-page: 115 issue: 2 year: 1983 ident: 62_CR100 publication-title: Journal of Business & Economic Statistics doi: 10.1080/07350015.1983.10509330 – volume: 44 start-page: 339 issue: 3 year: 2008 ident: 62_CR9 publication-title: Journal of Advertising Research doi: 10.2501/S0021849908080392 – volume: 1 start-page: 7 issue: 1–2 year: 2002 ident: 62_CR18 publication-title: Journal of the Iranian Statistical Society – volume-title: Advertising and Integrated Brand Promotion year: 2019 ident: 62_CR22 – volume: 26 start-page: 1838 issue: 4 year: 2017 ident: 62_CR109 publication-title: Statistical Methods in Medical Research doi: 10.1177/0962280215590284 – volume: 70 start-page: 1 issue: 1 year: 1983 ident: 62_CR6 publication-title: Biometrika doi: 10.1093/biomet/70.1.1 – ident: 62_CR25 – volume: 96 start-page: 730 issue: 454 year: 2001 ident: 62_CR23 publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753168389 – volume: 57 start-page: 1 issue: 1 year: 2017 ident: 62_CR24 publication-title: Journal of Advertising Research doi: 10.2501/JAR-2017-004 – volume: 35 start-page: 325 issue: 2 year: 2016 ident: 62_CR20 publication-title: International Journal of Advertising doi: 10.1080/02650487.2015.1022975 – volume: 3 start-page: 463 issue: 3 year: 2018 ident: 62_CR2 publication-title: International Journal of Advertising doi: 10.1080/02650487.2017.1335010 – volume: 45 start-page: 403 issue: 4 year: 2016 ident: 62_CR101 publication-title: Journal of Advertising doi: 10.1080/00913367.2016.1183244 – volume: 56 start-page: 909 issue: 3 year: 2000 ident: 62_CR106 publication-title: Biometrics doi: 10.1111/j.0006-341X.2000.00909.x – ident: 62_CR29 – volume: 44 start-page: 461 issue: 3 year: 1976 ident: 62_CR10 publication-title: Econometrica doi: 10.2307/1913974 – ident: 62_CR1 – volume: 50 start-page: 517 issue: 4 year: 2013 ident: 62_CR7 publication-title: Journal of Marketing Research doi: 10.1509/jmr.12.0241 – volume: 44 start-page: 415 issue: 4 year: 2015 ident: 62_CR26 publication-title: Journal of Advertising doi: 10.1080/00913367.2015.1018460 – volume: 38 start-page: 963 issue: 4 year: 1982 ident: 62_CR107 publication-title: Biometrics doi: 10.2307/2529876 – ident: 62_CR19 – start-page: 149 volume-title: Complex Models and Computational Methods in Statistics year: 2013 ident: 62_CR8 doi: 10.1007/978-88-470-2871-5_12 – volume-title: Transformation and Weighting in Regression year: 1988 ident: 62_CR3 doi: 10.1007/978-1-4899-2873-3 – volume: 29 start-page: 110 year: 2010 ident: 62_CR104 publication-title: Journal of Health Economics doi: 10.1016/j.jhealeco.2009.11.010 – volume-title: Missing Data in Clinical Studies year: 2007 ident: 62_CR102 doi: 10.1002/9780470510445 – volume: 36 start-page: 237 issue: 2 year: 2011 ident: 62_CR110 publication-title: Journal of Educational and Behavioral Statistics doi: 10.3102/1076998610375836 – volume: 37 start-page: 548 issue: 4 year: 2018 ident: 62_CR108 publication-title: International Journal of Advertising doi: 10.1080/02650487.2017.1339583 – volume: 36 start-page: 332 issue: 3 year: 1987 ident: 62_CR105 publication-title: Applied Statistics doi: 10.2307/2347792 |
SSID | ssj0001366263 |
Score | 2.1189263 |
Snippet | This study supports a strategic analytics proposal, namely that there is conceptual and practical utility in applying a two-part mixed-effects model for... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 234 |
SubjectTerms | Behavior Business and Management Consumers Data collection Diaries Market analysis Marketing Media Media planning & buying Original Article Tactics Time use Within-subjects design |
Title | Using a two-part mixed-effects model for understanding daily, individual-level media behavior |
URI | https://link.springer.com/article/10.1057/s41270-019-00062-7 https://www.proquest.com/docview/2313103433 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9OQXwRP3F-jDz45oLtkjTtk6g4h6CIKPgi5dI2MJjbdB3qf-8lS1cV3HPbQO8ul1_u60fIcWgMqBAClkAUMRHLhOk4Esxw4NJ0chU49obbu6j3JG6e5bMPuE18WWXlE52jzkeZjZGfIg6xlFiC87PxG7OsUTa76ik0GmQFXXCMdr5ycXV3_1BHWXhkx61YhrlAosNBC_adM4hTTifC5l3xNp3Y5uoIoebv06mGnH-ypO7w6W6QdY8a6flMzZtkqRhukdWqaH2bvLjMPwVafozYGK2BvvY_i5z5ag3q-G4o4lM6_dnMQnPoD77atD_vymIDW0REXT8JrVr4d8hT9-rxssc8cQLLuAxLvA7i1tSdIuPKjjvEv8xVmEARKxPrPARpRIhuDRItdQ4i1jLkgDgoVoVBRQHfJcvD0bDYI1QA6ChIMmUyITINYDtPc6MUyMDITtEkYSWwNPNTxS25xSB12W2p0pmQUxRy6oScqiY5mX8zns3UWPj2YaWH1O-vSVpbQ5O0K93Uj_9fbX_xagdkrWPNwdWrHJLl8n1aHCHqKHWLNOLudcsb2Dcn1NLG |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIhUuCGhRFwr1AU7UahzbcXJACAHb7eeplXqpzDixpZWW3YXdqvRP8RsZe5MuILW3npNYzvjZfvZ8PIC3IgQ0AjNeYVFwVeqKu7JQPEiUOuSNyZJ6w_FJMThTB-f6fAV-d7kwMayyWxPTQt1M6nhHvks8JEpiKSk_Tn_wqBoVvaudhMYCFof--oqObLMP-19ofN_lef_r6ecBb1UFeC21mNNZiXDrcl9LE2sBKkEdEhX60oTSNQJ1UILmPFZOuwZV6bSQSCShND7QX6Ckdh_AQ-pIFaUiyv7e8k5HFrG4S9SzyzQtbzRf2jwdYkW7MxW9vHR2r2Iqd0HE9t-9cElw__PJpq2u_xSetByVfVqA6hms-PFzWOtC5NfhIsUZMGTzqwmfEvbY9-Ev3_A2NoQldR1GbJhd_p06wxocjq532PAmB4yPYsgSS9krrCsYsAFn92LQF7A6noz9JjCF6Iqsqk2olaodYsxzbYIxqLOgc98D0RnM1m0N8yilMbLJl66NXRjZkpFtMrI1PXh_8810UcHjzre3unGw7Wye2SX2erDTjc3y8e2tvby7tW14NDg9PrJH-yeHr-BxHqGRImW2YHX-89K_Jr4zd28SyBh8u29U_wFaSQ0h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFH5BSIgXo6hxBaUHPEmz02k7nTkYY8QFRIkHSbiY-jrTJpusuyu7BPnX_Ot87c6wQgI3zjPTzLx-bb8378cHsCNCQCMw4xUWBVelrrgrC8WDRKlD3pgsqTd8PS4OTtTnU326An-7WpiYVtntiWmjbiZ1_EfeJx4SJbGUlP3QpkV82xu8n_7mUUEqRlo7OY0FRI785QW5b7N3h3s012_yfPDp-8cD3ioM8FpqMSe_iTDscl9LE_sCKkEvJyr0pQmlawTqoAStf6ycdg2q0mkhkQhDaXygL0JJ4z6ANSNNFR2_crC__L8ji9joJWrbZZq2Olo7bc0OMaT-TMWIL_nxVSzrLojkXj8Xl2T3Rnw2HXuDx_Co5avswwJgT2DFjzdgvUuXfwo_Us4BQza_mPAp4ZD9Gv7xDW_zRFhS2mHEjNn5_2U0rMHh6HKXDa_qwfgopi-xVMnCuuYBz-DkXgz6HFbHk7F_AUwhuiKrahNqpWqHGGtem2AM6izo3PdAdAazddvPPMpqjGyKq2tjF0a2ZGSbjGxND95ePTNddPO48-6tbh5su7JndonDHux2c7O8fPtoL-8ebRvWCc_2y-Hx0SY8zCMyUtLMFqzOz879K6I-c_c6YYzBz_sG9T8GYxFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+two-part+mixed-effects+model+for+understanding+daily%2C+individual-level+media+behavior&rft.jtitle=Journal+of+marketing+analytics&rft.au=Blozis%2C+Shelley+A&rft.au=Villarreal%2C+Ricardo&rft.au=Thota%2C+Sweta&rft.au=Imparato%2C+Nicholas&rft.date=2019-12-01&rft.pub=Palgrave+Macmillan&rft.issn=2050-3318&rft.eissn=2050-3326&rft.volume=7&rft.issue=4&rft.spage=234&rft.epage=250&rft_id=info:doi/10.1057%2Fs41270-019-00062-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3318&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3318&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3318&client=summon |