The mass transport based on convection effects in a passive DMFC under open-circuit conditions

The study investigates the open-circuit characteristics of a passive direct methanol fuel cell (DMFC) based on temperature-induced convection effects, including the reactants distributions at anode, the non-uniform temperature distribution and the methanol crossover. A two-dimensional, well-thought-...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 43; no. 52; pp. 23463 - 23474
Main Authors Zuo, Kaiyuan, Yuan, Zhenyu, Cao, Cheng, Hao, Yazhe
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 27.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The study investigates the open-circuit characteristics of a passive direct methanol fuel cell (DMFC) based on temperature-induced convection effects, including the reactants distributions at anode, the non-uniform temperature distribution and the methanol crossover. A two-dimensional, well-thought-out numerical model coupling with mass transfer and momentum transfer is exploited for DMFC to investigate its inner component and temperature distributions under open-circuit condition. In addition, a 4.0 cm2 passive DMFC has been designed and manufactured by the laser-cutting technology for experimental verification. The average methanol crossover flux, methanol diffusion coefficient and crossover current are obtained, which coincide with the simulation data well. The temperature-induced convection simulation results show that the distorted temperature distribution becomes more obvious with higher methanol concentration. Furthermore, the polarization curve, cell temperature and open-circuit voltage (OCV) are measured by varying the methanol concentration to conduct more in-depth research on DMFC performance at open circuit state. The results indicate that the temperature is increased, whereas the OCV is decreased with the increase of methanol concentration, accompanied by the phenomenon of methanol crossover is aggravated. The paper provides the theory basis and the optimal operating parameters for safe start-up of DMFC. •A cell model is built to explore the cell performance under open circuit state.•Temperature-induced convection effects are considered in the model.•Novel experiments are developed to verify the accuracy of developed model.•The direct and indirect influences of various parameters on DMFC are analyzed.
AbstractList The study investigates the open-circuit characteristics of a passive direct methanol fuel cell (DMFC) based on temperature-induced convection effects, including the reactants distributions at anode, the non-uniform temperature distribution and the methanol crossover. A two-dimensional, well-thought-out numerical model coupling with mass transfer and momentum transfer is exploited for DMFC to investigate its inner component and temperature distributions under open-circuit condition. In addition, a 4.0 cm2 passive DMFC has been designed and manufactured by the laser-cutting technology for experimental verification. The average methanol crossover flux, methanol diffusion coefficient and crossover current are obtained, which coincide with the simulation data well. The temperature-induced convection simulation results show that the distorted temperature distribution becomes more obvious with higher methanol concentration. Furthermore, the polarization curve, cell temperature and open-circuit voltage (OCV) are measured by varying the methanol concentration to conduct more in-depth research on DMFC performance at open circuit state. The results indicate that the temperature is increased, whereas the OCV is decreased with the increase of methanol concentration, accompanied by the phenomenon of methanol crossover is aggravated. The paper provides the theory basis and the optimal operating parameters for safe start-up of DMFC. •A cell model is built to explore the cell performance under open circuit state.•Temperature-induced convection effects are considered in the model.•Novel experiments are developed to verify the accuracy of developed model.•The direct and indirect influences of various parameters on DMFC are analyzed.
Author Zuo, Kaiyuan
Cao, Cheng
Yuan, Zhenyu
Hao, Yazhe
Author_xml – sequence: 1
  givenname: Kaiyuan
  surname: Zuo
  fullname: Zuo, Kaiyuan
– sequence: 2
  givenname: Zhenyu
  orcidid: 0000-0003-2988-2214
  surname: Yuan
  fullname: Yuan, Zhenyu
  email: yuanzhenyu@ise.neu.edu.cn
– sequence: 3
  givenname: Cheng
  surname: Cao
  fullname: Cao, Cheng
– sequence: 4
  givenname: Yazhe
  surname: Hao
  fullname: Hao, Yazhe
BookMark eNqFkFFLwzAUhYMouE3_guQPtCamTRvwQZlOhYkv89WQJjcsZUtL0g32702dvviyp3s53O9wz5mic995QOiGkpwSym_b3LXrgwEP-R2hdT7qgp-hCa0rkbGirs7RhDBOMkaFuETTGFtCaEUKMUFfqzXgrYoRD0H52HdhwI2KYHDnse78HvTg0grWpi1i57HCfbp3e8BP74s53nkDAXc9-Ey7oHduGDnjRixeoQurNhGuf-cMfS6eV_PXbPnx8jZ_XGaalXTISlsrowypVdE0vKFCNapsSmpLbjUvQVdK2JqLQnDGa95UZVEzppmCdC90xWbo_uirQxdjACu1G9T4QorlNpISOXYlW_nXlRy7-tGT5wzxf3gf3FaFw2nw4QhCCrd3EGTUDrwG40LqS5rOnbL4Bn1mjG8
CitedBy_id crossref_primary_10_1088_1361_6439_ab1db7
crossref_primary_10_3390_en15103787
crossref_primary_10_1016_j_ijhydene_2019_03_217
crossref_primary_10_1016_j_seta_2022_102212
crossref_primary_10_1016_j_enconman_2023_116775
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122749
crossref_primary_10_1016_j_ijhydene_2020_10_114
crossref_primary_10_3390_en17205174
Cites_doi 10.1016/j.ijhydene.2016.02.057
10.1016/j.ijhydene.2015.06.071
10.1016/j.jpowsour.2009.03.008
10.1016/j.energy.2013.06.024
10.1016/j.ijhydene.2011.12.017
10.1016/j.ijhydene.2012.07.096
10.1016/j.ijhydene.2017.03.144
10.1016/j.ijhydene.2016.05.116
10.1016/j.ijhydene.2011.02.058
10.1016/j.ijhydene.2016.12.051
10.1016/j.ijhydene.2010.03.080
10.1016/j.ijhydene.2013.09.028
10.1016/j.ijhydene.2015.09.040
10.1016/j.ijhydene.2016.03.147
10.1016/j.energy.2018.02.132
10.4028/www.scientific.net/KEM.459.71
10.1016/j.ijhydene.2016.09.087
10.1016/j.jpowsour.2007.09.086
10.1016/j.ijhydene.2014.12.004
10.1016/j.apenergy.2010.11.012
10.1016/j.ijhydene.2014.08.132
10.1016/j.ijhydene.2012.06.094
10.1016/j.energy.2010.11.034
10.1016/j.ijhydene.2016.03.164
10.1007/s11581-013-0889-y
10.1016/j.ijhydene.2017.06.091
10.1016/j.ijhydene.2016.02.114
10.1016/j.jpowsour.2011.01.094
10.1016/j.ijhydene.2016.11.022
10.1016/j.jpowsour.2015.09.119
10.1149/1.2047350
10.1016/j.ijhydene.2014.01.117
10.1016/j.renene.2014.08.043
10.1016/j.ijhydene.2014.02.002
10.1016/j.ijhydene.2014.05.048
10.1016/j.applthermaleng.2016.02.107
10.1016/j.ijhydene.2015.01.062
10.1016/j.jpowsour.2005.02.088
10.1016/j.jpowsour.2010.11.050
10.1016/j.ijhydene.2012.02.038
10.1016/j.ijhydene.2013.12.014
10.1007/s11581-013-0924-z
10.1149/1.2142267
10.1016/j.jpowsour.2006.10.047
ContentType Journal Article
Copyright 2018 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2018 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2018.10.196
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 23474
ExternalDocumentID 10_1016_j_ijhydene_2018_10_196
S0360319918334591
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
SEW
SSH
T9H
WUQ
ID FETCH-LOGICAL-c351t-5f8adad08a4bb6b19aba5b51f56fc65ec7a9f8694963686b754833c3ae4bb9c73
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Thu Apr 24 22:59:34 EDT 2025
Tue Jul 01 04:13:14 EDT 2025
Fri Feb 23 02:34:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords Passive DMFC
Temperature-induced convection effect
Methanol crossover
Open-circuit
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-5f8adad08a4bb6b19aba5b51f56fc65ec7a9f8694963686b754833c3ae4bb9c73
ORCID 0000-0003-2988-2214
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_ijhydene_2018_10_196
crossref_primary_10_1016_j_ijhydene_2018_10_196
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2018_10_196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-27
PublicationDateYYYYMMDD 2018-12-27
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-27
  day: 27
PublicationDecade 2010
PublicationTitle International journal of hydrogen energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Taymaz, Akgun, Benli (bib19) 2011; 36
Müller, Kimiaie, Glüsen (bib11) 2014; 39
Jung (bib17) 2014; 40
Ye, Zhu, Liao, Li, Fu (bib28) 2009; 192
Sundarrajan, Allakhverdiev, Ramakrishna (bib3) 2012; 37
Achmad, Kamarudin, Daud, Majlan (bib4) 2011; 88
Lin, Van Nguyen (bib42) 2006; 153
Oliveira, Rangel, Pinto (bib31) 2011; 196
Basri, Kamarudin (bib2) 2011; 36
Gwak, Lee, Ferekh, Lee, Ju (bib29) 2015; 40
Schoekel, Melke, Bruns, Wippermann, Kuppler, Roth (bib39) 2016; 301
Kamaruddin, Kamarudin, Masdar, Daud (bib22) 2015; 40
Casalegno, Bresciani, Di Noto, Casari, Li Bassi, Negro (bib36) 2014; 39
Chiu (bib30) 2010; 35
Falcão, Oliveira, Rangel, Pinto (bib20) 2015; 74
Jung (bib34) 2016; 41
Wilberforce, El-Hassan, Khatib, Al Makky, Baroutaji, Carton (bib21) 2017; 42
Ouellette, Gencalp, Colpan (bib23) 2017; 42
Chen, Zhao, Yang, Xu (bib41) 2008; 175
Yousefi, Zohoor (bib10) 2014; 39
Wang, Zhou, Du, Yin, Jiao (bib27) 2016; 100
Casalegno, Santoro, Rinaldi, Marchesi (bib35) 2007; 196
Yuan, Tang, Yang, Wan (bib14) 2012; 37
Kalantari, Baghalha (bib18) 2014; 39
Tsujiguchi, Masumi, Kawakubo, Nakagawa (bib7) 2011; 459
Ye, Zhao (bib38) 2005; 152
Verjulio, Santander, Sabaté, Esquivel, Torres-Herrero, Habrioux (bib12) 2014; 39
Guo, Sun, Deng, Jiao, Huang (bib33) 2015; 40
Deodath, Jhingoorie, Riverol (bib1) 2017; 42
Yuan, Zhang, Zuo, Ren (bib40) 2018; 150
Yuan, Zhou, Deng, Tang, Zhang, Li (bib6) 2014; 39
Lee, Lee, Han, Gwak, Ju (bib25) 2016; 42
Yousefi, Sedighi (bib13) 2013; 19
Li, Faghri (bib15) 2012; 37
Wang, Zhang, An, Huang, Zhou, Liu (bib32) 2013; 58
Liu, Wang (bib43) 2007; 164
Alaswad, Baroutaji, Achour, Carton, Al Makky, Olabi (bib9) 2016; 37
Wang, Jing, Mao, Xie (bib5) 2016; 41
Yousefi, Sasan, Zohoor (bib37) 2013; 19
Guo, Sun, Deng, Xie, Jiao, Huang (bib26) 2016; 41
Bahrami, Faghri (bib16) 2012; 37
Ouellette, Matida, Cruickshank (bib24) 2017; 42
Zhao, Chen (bib44) 2005; 152
Wilberforce, Alaswad, Palumbo, Dassisti, Olabi (bib8) 2016; 41
Tsujiguchi (10.1016/j.ijhydene.2018.10.196_bib7) 2011; 459
Yousefi (10.1016/j.ijhydene.2018.10.196_bib13) 2013; 19
Guo (10.1016/j.ijhydene.2018.10.196_bib26) 2016; 41
Yuan (10.1016/j.ijhydene.2018.10.196_bib40) 2018; 150
Jung (10.1016/j.ijhydene.2018.10.196_bib34) 2016; 41
Yuan (10.1016/j.ijhydene.2018.10.196_bib14) 2012; 37
Li (10.1016/j.ijhydene.2018.10.196_bib15) 2012; 37
Casalegno (10.1016/j.ijhydene.2018.10.196_bib36) 2014; 39
Kamaruddin (10.1016/j.ijhydene.2018.10.196_bib22) 2015; 40
Gwak (10.1016/j.ijhydene.2018.10.196_bib29) 2015; 40
Deodath (10.1016/j.ijhydene.2018.10.196_bib1) 2017; 42
Bahrami (10.1016/j.ijhydene.2018.10.196_bib16) 2012; 37
Wilberforce (10.1016/j.ijhydene.2018.10.196_bib21) 2017; 42
Ouellette (10.1016/j.ijhydene.2018.10.196_bib23) 2017; 42
Verjulio (10.1016/j.ijhydene.2018.10.196_bib12) 2014; 39
Yousefi (10.1016/j.ijhydene.2018.10.196_bib10) 2014; 39
Wang (10.1016/j.ijhydene.2018.10.196_bib32) 2013; 58
Falcão (10.1016/j.ijhydene.2018.10.196_bib20) 2015; 74
Achmad (10.1016/j.ijhydene.2018.10.196_bib4) 2011; 88
Schoekel (10.1016/j.ijhydene.2018.10.196_bib39) 2016; 301
Chen (10.1016/j.ijhydene.2018.10.196_bib41) 2008; 175
Wilberforce (10.1016/j.ijhydene.2018.10.196_bib8) 2016; 41
Chiu (10.1016/j.ijhydene.2018.10.196_bib30) 2010; 35
Guo (10.1016/j.ijhydene.2018.10.196_bib33) 2015; 40
Alaswad (10.1016/j.ijhydene.2018.10.196_bib9) 2016; 37
Wang (10.1016/j.ijhydene.2018.10.196_bib5) 2016; 41
Wang (10.1016/j.ijhydene.2018.10.196_bib27) 2016; 100
Casalegno (10.1016/j.ijhydene.2018.10.196_bib35) 2007; 196
Ye (10.1016/j.ijhydene.2018.10.196_bib38) 2005; 152
Yuan (10.1016/j.ijhydene.2018.10.196_bib6) 2014; 39
Müller (10.1016/j.ijhydene.2018.10.196_bib11) 2014; 39
Lin (10.1016/j.ijhydene.2018.10.196_bib42) 2006; 153
Basri (10.1016/j.ijhydene.2018.10.196_bib2) 2011; 36
Zhao (10.1016/j.ijhydene.2018.10.196_bib44) 2005; 152
Yousefi (10.1016/j.ijhydene.2018.10.196_bib37) 2013; 19
Jung (10.1016/j.ijhydene.2018.10.196_bib17) 2014; 40
Sundarrajan (10.1016/j.ijhydene.2018.10.196_bib3) 2012; 37
Ye (10.1016/j.ijhydene.2018.10.196_bib28) 2009; 192
Liu (10.1016/j.ijhydene.2018.10.196_bib43) 2007; 164
Oliveira (10.1016/j.ijhydene.2018.10.196_bib31) 2011; 196
Lee (10.1016/j.ijhydene.2018.10.196_bib25) 2016; 42
Kalantari (10.1016/j.ijhydene.2018.10.196_bib18) 2014; 39
Taymaz (10.1016/j.ijhydene.2018.10.196_bib19) 2011; 36
Ouellette (10.1016/j.ijhydene.2018.10.196_bib24) 2017; 42
References_xml – volume: 36
  start-page: 6219
  year: 2011
  end-page: 6236
  ident: bib2
  article-title: Process system engineering in direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 36
  start-page: 1155
  year: 2011
  end-page: 1160
  ident: bib19
  article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC
  publication-title: Energy
– volume: 153
  start-page: A372
  year: 2006
  end-page: A382
  ident: bib42
  article-title: A two-dimensional two-phase model of a PEM fuel cell
  publication-title: J Electrochem Soc
– volume: 39
  start-page: 5972
  year: 2014
  end-page: 5980
  ident: bib10
  article-title: Conceptual design and statistical overview on the design of a passive DMFC single cell
  publication-title: Int J Hydrogen Energy
– volume: 100
  start-page: 1245
  year: 2016
  end-page: 1258
  ident: bib27
  article-title: Transient investigation of passive alkaline membrane direct methanol fuel cell
  publication-title: Appl Therm Eng
– volume: 41
  start-page: 16509
  year: 2016
  end-page: 16522
  ident: bib8
  article-title: Advances in stationary and portable fuel cell applications
  publication-title: Int J Hydrogen Energy
– volume: 40
  start-page: 14978
  year: 2015
  end-page: 14995
  ident: bib33
  article-title: Transient analysis of passive direct methanol fuel cells with different operation and design parameters
  publication-title: Int J Hydrogen Energy
– volume: 42
  start-page: 12032
  year: 2017
  end-page: 120454
  ident: bib1
  article-title: Direct methanol fuel cell system reliability analysis
  publication-title: Int J Hydrogen Energy
– volume: 35
  start-page: 6418
  year: 2010
  end-page: 6430
  ident: bib30
  article-title: An algebraic semi-empirical model for evaluating fuel crossover fluxes of a DMFC under various operating conditions
  publication-title: Int J Hydrogen Energy
– volume: 196
  start-page: 2669
  year: 2007
  end-page: 2675
  ident: bib35
  article-title: Low methanol crossover and high efficiency direct methanol fuel cell: the influence of diffusion layers
  publication-title: J Power Sources
– volume: 88
  start-page: 1681
  year: 2011
  end-page: 1689
  ident: bib4
  article-title: Passive direct methanol fuel cells for portable electronic devices
  publication-title: Appl Energy
– volume: 37
  start-page: 8765
  year: 2012
  end-page: 8786
  ident: bib3
  article-title: Progress and perspectives in micro direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 42
  start-page: 1736
  year: 2016
  end-page: 1750
  ident: bib25
  article-title: Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions
  publication-title: Int J Hydrogen Energy
– volume: 39
  start-page: 2801
  year: 2014
  end-page: 2811
  ident: bib36
  article-title: Nano structured Pd barrier for low methanol crossover DMFC
  publication-title: Int J Hydrogen Energy
– volume: 459
  start-page: 71
  year: 2011
  end-page: 77
  ident: bib7
  article-title: Control of methanol crossover using a perforated metal sheet for DMFC application
  publication-title: Key Eng Mater
– volume: 37
  start-page: 16499
  year: 2016
  end-page: 16508
  ident: bib9
  article-title: Developments in fuel cell technologies in the transport sector
  publication-title: Int J Hydrogen Energy
– volume: 41
  start-page: 6493
  year: 2016
  end-page: 6507
  ident: bib26
  article-title: Investigation of cell orientation effect on transient operation of passive direct methanol fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 152
  start-page: A2238
  year: 2005
  end-page: A2245
  ident: bib38
  article-title: Abrupt decline in the open-circuit voltage of direct methanol fuel cells at critical oxygen feed rate
  publication-title: J Electrochem Soc
– volume: 58
  start-page: 283
  year: 2013
  end-page: 295
  ident: bib32
  article-title: Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect
  publication-title: Energy
– volume: 37
  start-page: 13510
  year: 2012
  end-page: 13521
  ident: bib14
  article-title: Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 301
  start-page: 210
  year: 2016
  end-page: 218
  ident: bib39
  article-title: Quantitative study of ruthenium cross-over in direct methanol fuel cells during early operation hours
  publication-title: J Power Sources
– volume: 39
  start-page: 21739
  year: 2014
  end-page: 21745
  ident: bib11
  article-title: Direct methanol fuel cell systems for backup power-Influence of the standby procedure on the lifetime
  publication-title: Int J Hydrogen Energy
– volume: 40
  start-page: 1923
  year: 2014
  end-page: 1934
  ident: bib17
  article-title: Direct methanol fuel cell with interdigitated anode for operating under ultra-low fuel stoichiometry condition
  publication-title: Int J Hydrogen Energy
– volume: 74
  start-page: 464
  year: 2015
  end-page: 470
  ident: bib20
  article-title: Experimental and modeling studies of a micro direct methanol fuel cell
  publication-title: Renew Energy
– volume: 40
  start-page: 11931
  year: 2015
  end-page: 11942
  ident: bib22
  article-title: Investigating design parameter effects on the methanol flux in the passive storage of a direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 37
  start-page: 8641
  year: 2012
  end-page: 8658
  ident: bib16
  article-title: Start-up and steady-state operation of a passive vapor-feed direct methanol fuel cell fed with pure methanol
  publication-title: Int J Hydrogen Energy
– volume: 42
  start-page: 25639
  year: 2017
  end-page: 25662
  ident: bib21
  article-title: Modelling and simulation of Proton Exchange Membrane fuel cell with serpentine bipolar plate using MATLAB
  publication-title: Int J Hydrogen Energy
– volume: 19
  start-page: 1195
  year: 2013
  end-page: 1201
  ident: bib37
  article-title: Investigating the effect of operating parameters on the open circuit voltage of a passive DMFC
  publication-title: Ionics
– volume: 39
  start-page: 5406
  year: 2014
  end-page: 5413
  ident: bib12
  article-title: Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 37
  start-page: 14549
  year: 2012
  end-page: 14556
  ident: bib15
  article-title: Development of a direct methanol fuel cell stack fed with pure methanol
  publication-title: Int J Hydrogen Energy
– volume: 42
  start-page: 13913
  year: 2017
  end-page: 13926
  ident: bib24
  article-title: The effect of water introduction rate and liquid saturation jumps on the performance of the flowing electrolyte-Direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 40
  start-page: 5396
  year: 2015
  end-page: 5407
  ident: bib29
  article-title: Analyzing the effects of fluctuating methanol feed concentration in active-type direct methanol fuel cell (DMFC) systems
  publication-title: Int J Hydrogen Energy
– volume: 164
  start-page: 189
  year: 2007
  end-page: 195
  ident: bib43
  article-title: Modeling water transport in liquid feed direct methanol fuel cell
  publication-title: J Power Sources
– volume: 152
  start-page: 122
  year: 2005
  end-page: 130
  ident: bib44
  article-title: Mathematical modeling of a passive-feed DMFC with heat transfer effect
  publication-title: J Power Sources
– volume: 41
  start-page: 16247
  year: 2016
  end-page: 16253
  ident: bib5
  article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 39
  start-page: 6689
  year: 2014
  end-page: 6704
  ident: bib6
  article-title: Overview on the developments of vapor-feed direct methanol fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 42
  start-page: 2680
  year: 2017
  end-page: 2690
  ident: bib23
  article-title: Effect of cathode flow field configuration on the performance of flowing electrolyte-direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 175
  start-page: 276
  year: 2008
  end-page: 287
  ident: bib41
  article-title: Two-dimensional two-phase thermal model for passive direct methanol fuel cells
  publication-title: J Power Sources
– volume: 39
  start-page: 11224
  year: 2014
  end-page: 11240
  ident: bib18
  article-title: Analyses of mass and heat transport interactions in a direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 196
  start-page: 8973
  year: 2011
  end-page: 8982
  ident: bib31
  article-title: One-dimensional and non-isothermal model for a passive DMFC
  publication-title: J Power Sources
– volume: 192
  start-page: 502
  year: 2009
  end-page: 514
  ident: bib28
  article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells
  publication-title: J Power Sources
– volume: 41
  start-page: 9022
  year: 2016
  end-page: 9034
  ident: bib34
  article-title: High-performance direct methanol fuel cell with optimized membrane electrode assembly: a theoretical approach
  publication-title: Int J Hydrogen Energy
– volume: 19
  start-page: 1637
  year: 2013
  end-page: 1647
  ident: bib13
  article-title: The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell
  publication-title: Ionics
– volume: 150
  start-page: 28
  year: 2018
  end-page: 37
  ident: bib40
  article-title: The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell
  publication-title: Energy
– volume: 41
  start-page: 16509
  year: 2016
  ident: 10.1016/j.ijhydene.2018.10.196_bib8
  article-title: Advances in stationary and portable fuel cell applications
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.02.057
– volume: 40
  start-page: 11931
  year: 2015
  ident: 10.1016/j.ijhydene.2018.10.196_bib22
  article-title: Investigating design parameter effects on the methanol flux in the passive storage of a direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.071
– volume: 192
  start-page: 502
  year: 2009
  ident: 10.1016/j.ijhydene.2018.10.196_bib28
  article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.03.008
– volume: 58
  start-page: 283
  year: 2013
  ident: 10.1016/j.ijhydene.2018.10.196_bib32
  article-title: Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect
  publication-title: Energy
  doi: 10.1016/j.energy.2013.06.024
– volume: 37
  start-page: 8765
  year: 2012
  ident: 10.1016/j.ijhydene.2018.10.196_bib3
  article-title: Progress and perspectives in micro direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.12.017
– volume: 37
  start-page: 14549
  year: 2012
  ident: 10.1016/j.ijhydene.2018.10.196_bib15
  article-title: Development of a direct methanol fuel cell stack fed with pure methanol
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.07.096
– volume: 42
  start-page: 12032
  year: 2017
  ident: 10.1016/j.ijhydene.2018.10.196_bib1
  article-title: Direct methanol fuel cell system reliability analysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.03.144
– volume: 41
  start-page: 16247
  year: 2016
  ident: 10.1016/j.ijhydene.2018.10.196_bib5
  article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.116
– volume: 36
  start-page: 6219
  year: 2011
  ident: 10.1016/j.ijhydene.2018.10.196_bib2
  article-title: Process system engineering in direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.02.058
– volume: 42
  start-page: 13913
  year: 2017
  ident: 10.1016/j.ijhydene.2018.10.196_bib24
  article-title: The effect of water introduction rate and liquid saturation jumps on the performance of the flowing electrolyte-Direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.12.051
– volume: 35
  start-page: 6418
  year: 2010
  ident: 10.1016/j.ijhydene.2018.10.196_bib30
  article-title: An algebraic semi-empirical model for evaluating fuel crossover fluxes of a DMFC under various operating conditions
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.080
– volume: 39
  start-page: 2801
  year: 2014
  ident: 10.1016/j.ijhydene.2018.10.196_bib36
  article-title: Nano structured Pd barrier for low methanol crossover DMFC
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.028
– volume: 40
  start-page: 14978
  year: 2015
  ident: 10.1016/j.ijhydene.2018.10.196_bib33
  article-title: Transient analysis of passive direct methanol fuel cells with different operation and design parameters
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.09.040
– volume: 41
  start-page: 9022
  year: 2016
  ident: 10.1016/j.ijhydene.2018.10.196_bib34
  article-title: High-performance direct methanol fuel cell with optimized membrane electrode assembly: a theoretical approach
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.147
– volume: 150
  start-page: 28
  year: 2018
  ident: 10.1016/j.ijhydene.2018.10.196_bib40
  article-title: The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell
  publication-title: Energy
  doi: 10.1016/j.energy.2018.02.132
– volume: 459
  start-page: 71
  year: 2011
  ident: 10.1016/j.ijhydene.2018.10.196_bib7
  article-title: Control of methanol crossover using a perforated metal sheet for DMFC application
  publication-title: Key Eng Mater
  doi: 10.4028/www.scientific.net/KEM.459.71
– volume: 42
  start-page: 1736
  year: 2016
  ident: 10.1016/j.ijhydene.2018.10.196_bib25
  article-title: Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.09.087
– volume: 175
  start-page: 276
  year: 2008
  ident: 10.1016/j.ijhydene.2018.10.196_bib41
  article-title: Two-dimensional two-phase thermal model for passive direct methanol fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.09.086
– volume: 40
  start-page: 1923
  year: 2014
  ident: 10.1016/j.ijhydene.2018.10.196_bib17
  article-title: Direct methanol fuel cell with interdigitated anode for operating under ultra-low fuel stoichiometry condition
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.12.004
– volume: 88
  start-page: 1681
  year: 2011
  ident: 10.1016/j.ijhydene.2018.10.196_bib4
  article-title: Passive direct methanol fuel cells for portable electronic devices
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.11.012
– volume: 39
  start-page: 21739
  year: 2014
  ident: 10.1016/j.ijhydene.2018.10.196_bib11
  article-title: Direct methanol fuel cell systems for backup power-Influence of the standby procedure on the lifetime
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.08.132
– volume: 37
  start-page: 13510
  year: 2012
  ident: 10.1016/j.ijhydene.2018.10.196_bib14
  article-title: Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.06.094
– volume: 36
  start-page: 1155
  year: 2011
  ident: 10.1016/j.ijhydene.2018.10.196_bib19
  article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC
  publication-title: Energy
  doi: 10.1016/j.energy.2010.11.034
– volume: 37
  start-page: 16499
  year: 2016
  ident: 10.1016/j.ijhydene.2018.10.196_bib9
  article-title: Developments in fuel cell technologies in the transport sector
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.164
– volume: 19
  start-page: 1637
  year: 2013
  ident: 10.1016/j.ijhydene.2018.10.196_bib13
  article-title: The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell
  publication-title: Ionics
  doi: 10.1007/s11581-013-0889-y
– volume: 42
  start-page: 25639
  year: 2017
  ident: 10.1016/j.ijhydene.2018.10.196_bib21
  article-title: Modelling and simulation of Proton Exchange Membrane fuel cell with serpentine bipolar plate using MATLAB
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.091
– volume: 41
  start-page: 6493
  year: 2016
  ident: 10.1016/j.ijhydene.2018.10.196_bib26
  article-title: Investigation of cell orientation effect on transient operation of passive direct methanol fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.02.114
– volume: 196
  start-page: 8973
  year: 2011
  ident: 10.1016/j.ijhydene.2018.10.196_bib31
  article-title: One-dimensional and non-isothermal model for a passive DMFC
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.01.094
– volume: 42
  start-page: 2680
  year: 2017
  ident: 10.1016/j.ijhydene.2018.10.196_bib23
  article-title: Effect of cathode flow field configuration on the performance of flowing electrolyte-direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.022
– volume: 301
  start-page: 210
  year: 2016
  ident: 10.1016/j.ijhydene.2018.10.196_bib39
  article-title: Quantitative study of ruthenium cross-over in direct methanol fuel cells during early operation hours
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.09.119
– volume: 152
  start-page: A2238
  year: 2005
  ident: 10.1016/j.ijhydene.2018.10.196_bib38
  article-title: Abrupt decline in the open-circuit voltage of direct methanol fuel cells at critical oxygen feed rate
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2047350
– volume: 39
  start-page: 5972
  year: 2014
  ident: 10.1016/j.ijhydene.2018.10.196_bib10
  article-title: Conceptual design and statistical overview on the design of a passive DMFC single cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.117
– volume: 74
  start-page: 464
  year: 2015
  ident: 10.1016/j.ijhydene.2018.10.196_bib20
  article-title: Experimental and modeling studies of a micro direct methanol fuel cell
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.08.043
– volume: 39
  start-page: 6689
  year: 2014
  ident: 10.1016/j.ijhydene.2018.10.196_bib6
  article-title: Overview on the developments of vapor-feed direct methanol fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.02.002
– volume: 39
  start-page: 11224
  year: 2014
  ident: 10.1016/j.ijhydene.2018.10.196_bib18
  article-title: Analyses of mass and heat transport interactions in a direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.05.048
– volume: 100
  start-page: 1245
  year: 2016
  ident: 10.1016/j.ijhydene.2018.10.196_bib27
  article-title: Transient investigation of passive alkaline membrane direct methanol fuel cell
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.02.107
– volume: 40
  start-page: 5396
  year: 2015
  ident: 10.1016/j.ijhydene.2018.10.196_bib29
  article-title: Analyzing the effects of fluctuating methanol feed concentration in active-type direct methanol fuel cell (DMFC) systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.01.062
– volume: 152
  start-page: 122
  year: 2005
  ident: 10.1016/j.ijhydene.2018.10.196_bib44
  article-title: Mathematical modeling of a passive-feed DMFC with heat transfer effect
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.02.088
– volume: 196
  start-page: 2669
  year: 2007
  ident: 10.1016/j.ijhydene.2018.10.196_bib35
  article-title: Low methanol crossover and high efficiency direct methanol fuel cell: the influence of diffusion layers
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.11.050
– volume: 37
  start-page: 8641
  year: 2012
  ident: 10.1016/j.ijhydene.2018.10.196_bib16
  article-title: Start-up and steady-state operation of a passive vapor-feed direct methanol fuel cell fed with pure methanol
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.02.038
– volume: 39
  start-page: 5406
  year: 2014
  ident: 10.1016/j.ijhydene.2018.10.196_bib12
  article-title: Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.014
– volume: 19
  start-page: 1195
  year: 2013
  ident: 10.1016/j.ijhydene.2018.10.196_bib37
  article-title: Investigating the effect of operating parameters on the open circuit voltage of a passive DMFC
  publication-title: Ionics
  doi: 10.1007/s11581-013-0924-z
– volume: 153
  start-page: A372
  year: 2006
  ident: 10.1016/j.ijhydene.2018.10.196_bib42
  article-title: A two-dimensional two-phase model of a PEM fuel cell
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2142267
– volume: 164
  start-page: 189
  year: 2007
  ident: 10.1016/j.ijhydene.2018.10.196_bib43
  article-title: Modeling water transport in liquid feed direct methanol fuel cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.10.047
SSID ssj0017049
Score 2.3190057
Snippet The study investigates the open-circuit characteristics of a passive direct methanol fuel cell (DMFC) based on temperature-induced convection effects,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 23463
SubjectTerms Methanol crossover
Open-circuit
Passive DMFC
Temperature-induced convection effect
Title The mass transport based on convection effects in a passive DMFC under open-circuit conditions
URI https://dx.doi.org/10.1016/j.ijhydene.2018.10.196
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWqssCA-BTlo_LAmrYmtmOPVaEqoHaBSp2IbCcWqSCtqnRg4bdzTpyqSEgdGGPdSdH5_O6ivHdG6FYSTUQKB1BYYgKoeDqQtpcGlKnQaK6YKP-Yjid8NKVPMzZroEGthXG0So_9FaaXaO1Xuj6a3WWWdV8Ae50ER0JShpRVCnYauSzvfG9oHiTyLTAYB856SyU872Tz9y843m5cJhGdUrvH_y5QW0VneIQOfbeI-9ULHaNGmp-gg60ZgqfoDTYaf0ILjIt6Tjl2pSnBixyXnPJSuYA9cQNnOVZ4CfYAc_h-PBxgJyNbYXeNVmCylVlnhfNLKi7XGZoOH14Ho8BfmhCYkJEiYFaoRCU9oajWXBOptGKaEcu4NZylJlLSCi4pnDwuuI7gkyUMTahSsJcmCs9RM1_k6QXCUgjNetZoKqFLgV4AgswTBSggbCQtbSFWRyo2fqK4u9jiI66pY_O4jnDsIlyuS95C3Y3fspqpsdND1hsR_8qOGIB_h-_lP3yv0L57cvSVu-gaNYvVOr2BJqTQ7TLL2miv__g8mvwAaX7dmg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQDG2Hqk-VPj10DSFN7NgjokVQHktBYmpkO7Ea1AaEwtB_33PiICpVYujq-CTrfPfdRb7vDqFH7kmPJeCATHvKgYgnHa7biRMQ4StJBWHFi-l4Qvuz4HVO5jXUrbgwpqzSYn-J6QVa2xXXatNdpan7BthrKDgcjNIPiGGwN0x3KlJHjc5g2J9sHxNCmwXDfscI7BCFF6108fENHm46ZnqsVdD36N8xaifu9E7QsU0Ycac80ymqJdkZOtppI3iO3uGu8RdkwTivWpVjE51ivMxwUVZekBewrd3AaYYFXsF-QDr8PO51sWGSrbGZpOWodK02aW7k4rKc6wLNei_Tbt-xcxMc5RMvd4hmIhZxm4lASio9LqQgkniaUK0oSVQouGaUB-B8lFEZwl-L7ytfJLCfq9C_RPVsmSVXCHPGJGlrJQMOiQqkA6BnGgsAAqZDroMmIpWmImWbipvZFp9RVT22iCoNR0bDxTqnTeRu5VZlW429Ery6iOiXgUSA_Xtkr_8h-4AO-tPxKBoNJsMbdGi-mGqWp_AW1fP1JrmDnCSX99bmfgAHfuBL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mass+transport+based+on+convection+effects+in+a+passive+DMFC+under+open-circuit+conditions&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zuo%2C+Kaiyuan&rft.au=Yuan%2C+Zhenyu&rft.au=Cao%2C+Cheng&rft.au=Hao%2C+Yazhe&rft.date=2018-12-27&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=43&rft.issue=52&rft.spage=23463&rft.epage=23474&rft_id=info:doi/10.1016%2Fj.ijhydene.2018.10.196&rft.externalDocID=S0360319918334591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon