The mass transport based on convection effects in a passive DMFC under open-circuit conditions
The study investigates the open-circuit characteristics of a passive direct methanol fuel cell (DMFC) based on temperature-induced convection effects, including the reactants distributions at anode, the non-uniform temperature distribution and the methanol crossover. A two-dimensional, well-thought-...
Saved in:
Published in | International journal of hydrogen energy Vol. 43; no. 52; pp. 23463 - 23474 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
27.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study investigates the open-circuit characteristics of a passive direct methanol fuel cell (DMFC) based on temperature-induced convection effects, including the reactants distributions at anode, the non-uniform temperature distribution and the methanol crossover. A two-dimensional, well-thought-out numerical model coupling with mass transfer and momentum transfer is exploited for DMFC to investigate its inner component and temperature distributions under open-circuit condition. In addition, a 4.0 cm2 passive DMFC has been designed and manufactured by the laser-cutting technology for experimental verification. The average methanol crossover flux, methanol diffusion coefficient and crossover current are obtained, which coincide with the simulation data well. The temperature-induced convection simulation results show that the distorted temperature distribution becomes more obvious with higher methanol concentration. Furthermore, the polarization curve, cell temperature and open-circuit voltage (OCV) are measured by varying the methanol concentration to conduct more in-depth research on DMFC performance at open circuit state. The results indicate that the temperature is increased, whereas the OCV is decreased with the increase of methanol concentration, accompanied by the phenomenon of methanol crossover is aggravated. The paper provides the theory basis and the optimal operating parameters for safe start-up of DMFC.
•A cell model is built to explore the cell performance under open circuit state.•Temperature-induced convection effects are considered in the model.•Novel experiments are developed to verify the accuracy of developed model.•The direct and indirect influences of various parameters on DMFC are analyzed. |
---|---|
AbstractList | The study investigates the open-circuit characteristics of a passive direct methanol fuel cell (DMFC) based on temperature-induced convection effects, including the reactants distributions at anode, the non-uniform temperature distribution and the methanol crossover. A two-dimensional, well-thought-out numerical model coupling with mass transfer and momentum transfer is exploited for DMFC to investigate its inner component and temperature distributions under open-circuit condition. In addition, a 4.0 cm2 passive DMFC has been designed and manufactured by the laser-cutting technology for experimental verification. The average methanol crossover flux, methanol diffusion coefficient and crossover current are obtained, which coincide with the simulation data well. The temperature-induced convection simulation results show that the distorted temperature distribution becomes more obvious with higher methanol concentration. Furthermore, the polarization curve, cell temperature and open-circuit voltage (OCV) are measured by varying the methanol concentration to conduct more in-depth research on DMFC performance at open circuit state. The results indicate that the temperature is increased, whereas the OCV is decreased with the increase of methanol concentration, accompanied by the phenomenon of methanol crossover is aggravated. The paper provides the theory basis and the optimal operating parameters for safe start-up of DMFC.
•A cell model is built to explore the cell performance under open circuit state.•Temperature-induced convection effects are considered in the model.•Novel experiments are developed to verify the accuracy of developed model.•The direct and indirect influences of various parameters on DMFC are analyzed. |
Author | Zuo, Kaiyuan Cao, Cheng Yuan, Zhenyu Hao, Yazhe |
Author_xml | – sequence: 1 givenname: Kaiyuan surname: Zuo fullname: Zuo, Kaiyuan – sequence: 2 givenname: Zhenyu orcidid: 0000-0003-2988-2214 surname: Yuan fullname: Yuan, Zhenyu email: yuanzhenyu@ise.neu.edu.cn – sequence: 3 givenname: Cheng surname: Cao fullname: Cao, Cheng – sequence: 4 givenname: Yazhe surname: Hao fullname: Hao, Yazhe |
BookMark | eNqFkFFLwzAUhYMouE3_guQPtCamTRvwQZlOhYkv89WQJjcsZUtL0g32702dvviyp3s53O9wz5mic995QOiGkpwSym_b3LXrgwEP-R2hdT7qgp-hCa0rkbGirs7RhDBOMkaFuETTGFtCaEUKMUFfqzXgrYoRD0H52HdhwI2KYHDnse78HvTg0grWpi1i57HCfbp3e8BP74s53nkDAXc9-Ey7oHduGDnjRixeoQurNhGuf-cMfS6eV_PXbPnx8jZ_XGaalXTISlsrowypVdE0vKFCNapsSmpLbjUvQVdK2JqLQnDGa95UZVEzppmCdC90xWbo_uirQxdjACu1G9T4QorlNpISOXYlW_nXlRy7-tGT5wzxf3gf3FaFw2nw4QhCCrd3EGTUDrwG40LqS5rOnbL4Bn1mjG8 |
CitedBy_id | crossref_primary_10_1088_1361_6439_ab1db7 crossref_primary_10_3390_en15103787 crossref_primary_10_1016_j_ijhydene_2019_03_217 crossref_primary_10_1016_j_seta_2022_102212 crossref_primary_10_1016_j_enconman_2023_116775 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122749 crossref_primary_10_1016_j_ijhydene_2020_10_114 crossref_primary_10_3390_en17205174 |
Cites_doi | 10.1016/j.ijhydene.2016.02.057 10.1016/j.ijhydene.2015.06.071 10.1016/j.jpowsour.2009.03.008 10.1016/j.energy.2013.06.024 10.1016/j.ijhydene.2011.12.017 10.1016/j.ijhydene.2012.07.096 10.1016/j.ijhydene.2017.03.144 10.1016/j.ijhydene.2016.05.116 10.1016/j.ijhydene.2011.02.058 10.1016/j.ijhydene.2016.12.051 10.1016/j.ijhydene.2010.03.080 10.1016/j.ijhydene.2013.09.028 10.1016/j.ijhydene.2015.09.040 10.1016/j.ijhydene.2016.03.147 10.1016/j.energy.2018.02.132 10.4028/www.scientific.net/KEM.459.71 10.1016/j.ijhydene.2016.09.087 10.1016/j.jpowsour.2007.09.086 10.1016/j.ijhydene.2014.12.004 10.1016/j.apenergy.2010.11.012 10.1016/j.ijhydene.2014.08.132 10.1016/j.ijhydene.2012.06.094 10.1016/j.energy.2010.11.034 10.1016/j.ijhydene.2016.03.164 10.1007/s11581-013-0889-y 10.1016/j.ijhydene.2017.06.091 10.1016/j.ijhydene.2016.02.114 10.1016/j.jpowsour.2011.01.094 10.1016/j.ijhydene.2016.11.022 10.1016/j.jpowsour.2015.09.119 10.1149/1.2047350 10.1016/j.ijhydene.2014.01.117 10.1016/j.renene.2014.08.043 10.1016/j.ijhydene.2014.02.002 10.1016/j.ijhydene.2014.05.048 10.1016/j.applthermaleng.2016.02.107 10.1016/j.ijhydene.2015.01.062 10.1016/j.jpowsour.2005.02.088 10.1016/j.jpowsour.2010.11.050 10.1016/j.ijhydene.2012.02.038 10.1016/j.ijhydene.2013.12.014 10.1007/s11581-013-0924-z 10.1149/1.2142267 10.1016/j.jpowsour.2006.10.047 |
ContentType | Journal Article |
Copyright | 2018 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2018 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2018.10.196 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 23474 |
ExternalDocumentID | 10_1016_j_ijhydene_2018_10_196 S0360319918334591 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF R2- SAC SCB SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c351t-5f8adad08a4bb6b19aba5b51f56fc65ec7a9f8694963686b754833c3ae4bb9c73 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Thu Apr 24 22:59:34 EDT 2025 Tue Jul 01 04:13:14 EDT 2025 Fri Feb 23 02:34:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | Passive DMFC Temperature-induced convection effect Methanol crossover Open-circuit |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-5f8adad08a4bb6b19aba5b51f56fc65ec7a9f8694963686b754833c3ae4bb9c73 |
ORCID | 0000-0003-2988-2214 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijhydene_2018_10_196 crossref_primary_10_1016_j_ijhydene_2018_10_196 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2018_10_196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-27 |
PublicationDateYYYYMMDD | 2018-12-27 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-27 day: 27 |
PublicationDecade | 2010 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Taymaz, Akgun, Benli (bib19) 2011; 36 Müller, Kimiaie, Glüsen (bib11) 2014; 39 Jung (bib17) 2014; 40 Ye, Zhu, Liao, Li, Fu (bib28) 2009; 192 Sundarrajan, Allakhverdiev, Ramakrishna (bib3) 2012; 37 Achmad, Kamarudin, Daud, Majlan (bib4) 2011; 88 Lin, Van Nguyen (bib42) 2006; 153 Oliveira, Rangel, Pinto (bib31) 2011; 196 Basri, Kamarudin (bib2) 2011; 36 Gwak, Lee, Ferekh, Lee, Ju (bib29) 2015; 40 Schoekel, Melke, Bruns, Wippermann, Kuppler, Roth (bib39) 2016; 301 Kamaruddin, Kamarudin, Masdar, Daud (bib22) 2015; 40 Casalegno, Bresciani, Di Noto, Casari, Li Bassi, Negro (bib36) 2014; 39 Chiu (bib30) 2010; 35 Falcão, Oliveira, Rangel, Pinto (bib20) 2015; 74 Jung (bib34) 2016; 41 Wilberforce, El-Hassan, Khatib, Al Makky, Baroutaji, Carton (bib21) 2017; 42 Ouellette, Gencalp, Colpan (bib23) 2017; 42 Chen, Zhao, Yang, Xu (bib41) 2008; 175 Yousefi, Zohoor (bib10) 2014; 39 Wang, Zhou, Du, Yin, Jiao (bib27) 2016; 100 Casalegno, Santoro, Rinaldi, Marchesi (bib35) 2007; 196 Yuan, Tang, Yang, Wan (bib14) 2012; 37 Kalantari, Baghalha (bib18) 2014; 39 Tsujiguchi, Masumi, Kawakubo, Nakagawa (bib7) 2011; 459 Ye, Zhao (bib38) 2005; 152 Verjulio, Santander, Sabaté, Esquivel, Torres-Herrero, Habrioux (bib12) 2014; 39 Guo, Sun, Deng, Jiao, Huang (bib33) 2015; 40 Deodath, Jhingoorie, Riverol (bib1) 2017; 42 Yuan, Zhang, Zuo, Ren (bib40) 2018; 150 Yuan, Zhou, Deng, Tang, Zhang, Li (bib6) 2014; 39 Lee, Lee, Han, Gwak, Ju (bib25) 2016; 42 Yousefi, Sedighi (bib13) 2013; 19 Li, Faghri (bib15) 2012; 37 Wang, Zhang, An, Huang, Zhou, Liu (bib32) 2013; 58 Liu, Wang (bib43) 2007; 164 Alaswad, Baroutaji, Achour, Carton, Al Makky, Olabi (bib9) 2016; 37 Wang, Jing, Mao, Xie (bib5) 2016; 41 Yousefi, Sasan, Zohoor (bib37) 2013; 19 Guo, Sun, Deng, Xie, Jiao, Huang (bib26) 2016; 41 Bahrami, Faghri (bib16) 2012; 37 Ouellette, Matida, Cruickshank (bib24) 2017; 42 Zhao, Chen (bib44) 2005; 152 Wilberforce, Alaswad, Palumbo, Dassisti, Olabi (bib8) 2016; 41 Tsujiguchi (10.1016/j.ijhydene.2018.10.196_bib7) 2011; 459 Yousefi (10.1016/j.ijhydene.2018.10.196_bib13) 2013; 19 Guo (10.1016/j.ijhydene.2018.10.196_bib26) 2016; 41 Yuan (10.1016/j.ijhydene.2018.10.196_bib40) 2018; 150 Jung (10.1016/j.ijhydene.2018.10.196_bib34) 2016; 41 Yuan (10.1016/j.ijhydene.2018.10.196_bib14) 2012; 37 Li (10.1016/j.ijhydene.2018.10.196_bib15) 2012; 37 Casalegno (10.1016/j.ijhydene.2018.10.196_bib36) 2014; 39 Kamaruddin (10.1016/j.ijhydene.2018.10.196_bib22) 2015; 40 Gwak (10.1016/j.ijhydene.2018.10.196_bib29) 2015; 40 Deodath (10.1016/j.ijhydene.2018.10.196_bib1) 2017; 42 Bahrami (10.1016/j.ijhydene.2018.10.196_bib16) 2012; 37 Wilberforce (10.1016/j.ijhydene.2018.10.196_bib21) 2017; 42 Ouellette (10.1016/j.ijhydene.2018.10.196_bib23) 2017; 42 Verjulio (10.1016/j.ijhydene.2018.10.196_bib12) 2014; 39 Yousefi (10.1016/j.ijhydene.2018.10.196_bib10) 2014; 39 Wang (10.1016/j.ijhydene.2018.10.196_bib32) 2013; 58 Falcão (10.1016/j.ijhydene.2018.10.196_bib20) 2015; 74 Achmad (10.1016/j.ijhydene.2018.10.196_bib4) 2011; 88 Schoekel (10.1016/j.ijhydene.2018.10.196_bib39) 2016; 301 Chen (10.1016/j.ijhydene.2018.10.196_bib41) 2008; 175 Wilberforce (10.1016/j.ijhydene.2018.10.196_bib8) 2016; 41 Chiu (10.1016/j.ijhydene.2018.10.196_bib30) 2010; 35 Guo (10.1016/j.ijhydene.2018.10.196_bib33) 2015; 40 Alaswad (10.1016/j.ijhydene.2018.10.196_bib9) 2016; 37 Wang (10.1016/j.ijhydene.2018.10.196_bib5) 2016; 41 Wang (10.1016/j.ijhydene.2018.10.196_bib27) 2016; 100 Casalegno (10.1016/j.ijhydene.2018.10.196_bib35) 2007; 196 Ye (10.1016/j.ijhydene.2018.10.196_bib38) 2005; 152 Yuan (10.1016/j.ijhydene.2018.10.196_bib6) 2014; 39 Müller (10.1016/j.ijhydene.2018.10.196_bib11) 2014; 39 Lin (10.1016/j.ijhydene.2018.10.196_bib42) 2006; 153 Basri (10.1016/j.ijhydene.2018.10.196_bib2) 2011; 36 Zhao (10.1016/j.ijhydene.2018.10.196_bib44) 2005; 152 Yousefi (10.1016/j.ijhydene.2018.10.196_bib37) 2013; 19 Jung (10.1016/j.ijhydene.2018.10.196_bib17) 2014; 40 Sundarrajan (10.1016/j.ijhydene.2018.10.196_bib3) 2012; 37 Ye (10.1016/j.ijhydene.2018.10.196_bib28) 2009; 192 Liu (10.1016/j.ijhydene.2018.10.196_bib43) 2007; 164 Oliveira (10.1016/j.ijhydene.2018.10.196_bib31) 2011; 196 Lee (10.1016/j.ijhydene.2018.10.196_bib25) 2016; 42 Kalantari (10.1016/j.ijhydene.2018.10.196_bib18) 2014; 39 Taymaz (10.1016/j.ijhydene.2018.10.196_bib19) 2011; 36 Ouellette (10.1016/j.ijhydene.2018.10.196_bib24) 2017; 42 |
References_xml | – volume: 36 start-page: 6219 year: 2011 end-page: 6236 ident: bib2 article-title: Process system engineering in direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 36 start-page: 1155 year: 2011 end-page: 1160 ident: bib19 article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC publication-title: Energy – volume: 153 start-page: A372 year: 2006 end-page: A382 ident: bib42 article-title: A two-dimensional two-phase model of a PEM fuel cell publication-title: J Electrochem Soc – volume: 39 start-page: 5972 year: 2014 end-page: 5980 ident: bib10 article-title: Conceptual design and statistical overview on the design of a passive DMFC single cell publication-title: Int J Hydrogen Energy – volume: 100 start-page: 1245 year: 2016 end-page: 1258 ident: bib27 article-title: Transient investigation of passive alkaline membrane direct methanol fuel cell publication-title: Appl Therm Eng – volume: 41 start-page: 16509 year: 2016 end-page: 16522 ident: bib8 article-title: Advances in stationary and portable fuel cell applications publication-title: Int J Hydrogen Energy – volume: 40 start-page: 14978 year: 2015 end-page: 14995 ident: bib33 article-title: Transient analysis of passive direct methanol fuel cells with different operation and design parameters publication-title: Int J Hydrogen Energy – volume: 42 start-page: 12032 year: 2017 end-page: 120454 ident: bib1 article-title: Direct methanol fuel cell system reliability analysis publication-title: Int J Hydrogen Energy – volume: 35 start-page: 6418 year: 2010 end-page: 6430 ident: bib30 article-title: An algebraic semi-empirical model for evaluating fuel crossover fluxes of a DMFC under various operating conditions publication-title: Int J Hydrogen Energy – volume: 196 start-page: 2669 year: 2007 end-page: 2675 ident: bib35 article-title: Low methanol crossover and high efficiency direct methanol fuel cell: the influence of diffusion layers publication-title: J Power Sources – volume: 88 start-page: 1681 year: 2011 end-page: 1689 ident: bib4 article-title: Passive direct methanol fuel cells for portable electronic devices publication-title: Appl Energy – volume: 37 start-page: 8765 year: 2012 end-page: 8786 ident: bib3 article-title: Progress and perspectives in micro direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 42 start-page: 1736 year: 2016 end-page: 1750 ident: bib25 article-title: Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions publication-title: Int J Hydrogen Energy – volume: 39 start-page: 2801 year: 2014 end-page: 2811 ident: bib36 article-title: Nano structured Pd barrier for low methanol crossover DMFC publication-title: Int J Hydrogen Energy – volume: 459 start-page: 71 year: 2011 end-page: 77 ident: bib7 article-title: Control of methanol crossover using a perforated metal sheet for DMFC application publication-title: Key Eng Mater – volume: 37 start-page: 16499 year: 2016 end-page: 16508 ident: bib9 article-title: Developments in fuel cell technologies in the transport sector publication-title: Int J Hydrogen Energy – volume: 41 start-page: 6493 year: 2016 end-page: 6507 ident: bib26 article-title: Investigation of cell orientation effect on transient operation of passive direct methanol fuel cells publication-title: Int J Hydrogen Energy – volume: 152 start-page: A2238 year: 2005 end-page: A2245 ident: bib38 article-title: Abrupt decline in the open-circuit voltage of direct methanol fuel cells at critical oxygen feed rate publication-title: J Electrochem Soc – volume: 58 start-page: 283 year: 2013 end-page: 295 ident: bib32 article-title: Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect publication-title: Energy – volume: 37 start-page: 13510 year: 2012 end-page: 13521 ident: bib14 article-title: Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 301 start-page: 210 year: 2016 end-page: 218 ident: bib39 article-title: Quantitative study of ruthenium cross-over in direct methanol fuel cells during early operation hours publication-title: J Power Sources – volume: 39 start-page: 21739 year: 2014 end-page: 21745 ident: bib11 article-title: Direct methanol fuel cell systems for backup power-Influence of the standby procedure on the lifetime publication-title: Int J Hydrogen Energy – volume: 40 start-page: 1923 year: 2014 end-page: 1934 ident: bib17 article-title: Direct methanol fuel cell with interdigitated anode for operating under ultra-low fuel stoichiometry condition publication-title: Int J Hydrogen Energy – volume: 74 start-page: 464 year: 2015 end-page: 470 ident: bib20 article-title: Experimental and modeling studies of a micro direct methanol fuel cell publication-title: Renew Energy – volume: 40 start-page: 11931 year: 2015 end-page: 11942 ident: bib22 article-title: Investigating design parameter effects on the methanol flux in the passive storage of a direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 37 start-page: 8641 year: 2012 end-page: 8658 ident: bib16 article-title: Start-up and steady-state operation of a passive vapor-feed direct methanol fuel cell fed with pure methanol publication-title: Int J Hydrogen Energy – volume: 42 start-page: 25639 year: 2017 end-page: 25662 ident: bib21 article-title: Modelling and simulation of Proton Exchange Membrane fuel cell with serpentine bipolar plate using MATLAB publication-title: Int J Hydrogen Energy – volume: 19 start-page: 1195 year: 2013 end-page: 1201 ident: bib37 article-title: Investigating the effect of operating parameters on the open circuit voltage of a passive DMFC publication-title: Ionics – volume: 39 start-page: 5406 year: 2014 end-page: 5413 ident: bib12 article-title: Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 37 start-page: 14549 year: 2012 end-page: 14556 ident: bib15 article-title: Development of a direct methanol fuel cell stack fed with pure methanol publication-title: Int J Hydrogen Energy – volume: 42 start-page: 13913 year: 2017 end-page: 13926 ident: bib24 article-title: The effect of water introduction rate and liquid saturation jumps on the performance of the flowing electrolyte-Direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 40 start-page: 5396 year: 2015 end-page: 5407 ident: bib29 article-title: Analyzing the effects of fluctuating methanol feed concentration in active-type direct methanol fuel cell (DMFC) systems publication-title: Int J Hydrogen Energy – volume: 164 start-page: 189 year: 2007 end-page: 195 ident: bib43 article-title: Modeling water transport in liquid feed direct methanol fuel cell publication-title: J Power Sources – volume: 152 start-page: 122 year: 2005 end-page: 130 ident: bib44 article-title: Mathematical modeling of a passive-feed DMFC with heat transfer effect publication-title: J Power Sources – volume: 41 start-page: 16247 year: 2016 end-page: 16253 ident: bib5 article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 39 start-page: 6689 year: 2014 end-page: 6704 ident: bib6 article-title: Overview on the developments of vapor-feed direct methanol fuel cells publication-title: Int J Hydrogen Energy – volume: 42 start-page: 2680 year: 2017 end-page: 2690 ident: bib23 article-title: Effect of cathode flow field configuration on the performance of flowing electrolyte-direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 175 start-page: 276 year: 2008 end-page: 287 ident: bib41 article-title: Two-dimensional two-phase thermal model for passive direct methanol fuel cells publication-title: J Power Sources – volume: 39 start-page: 11224 year: 2014 end-page: 11240 ident: bib18 article-title: Analyses of mass and heat transport interactions in a direct methanol fuel cell publication-title: Int J Hydrogen Energy – volume: 196 start-page: 8973 year: 2011 end-page: 8982 ident: bib31 article-title: One-dimensional and non-isothermal model for a passive DMFC publication-title: J Power Sources – volume: 192 start-page: 502 year: 2009 end-page: 514 ident: bib28 article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells publication-title: J Power Sources – volume: 41 start-page: 9022 year: 2016 end-page: 9034 ident: bib34 article-title: High-performance direct methanol fuel cell with optimized membrane electrode assembly: a theoretical approach publication-title: Int J Hydrogen Energy – volume: 19 start-page: 1637 year: 2013 end-page: 1647 ident: bib13 article-title: The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell publication-title: Ionics – volume: 150 start-page: 28 year: 2018 end-page: 37 ident: bib40 article-title: The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell publication-title: Energy – volume: 41 start-page: 16509 year: 2016 ident: 10.1016/j.ijhydene.2018.10.196_bib8 article-title: Advances in stationary and portable fuel cell applications publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.02.057 – volume: 40 start-page: 11931 year: 2015 ident: 10.1016/j.ijhydene.2018.10.196_bib22 article-title: Investigating design parameter effects on the methanol flux in the passive storage of a direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.071 – volume: 192 start-page: 502 year: 2009 ident: 10.1016/j.ijhydene.2018.10.196_bib28 article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.03.008 – volume: 58 start-page: 283 year: 2013 ident: 10.1016/j.ijhydene.2018.10.196_bib32 article-title: Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect publication-title: Energy doi: 10.1016/j.energy.2013.06.024 – volume: 37 start-page: 8765 year: 2012 ident: 10.1016/j.ijhydene.2018.10.196_bib3 article-title: Progress and perspectives in micro direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.12.017 – volume: 37 start-page: 14549 year: 2012 ident: 10.1016/j.ijhydene.2018.10.196_bib15 article-title: Development of a direct methanol fuel cell stack fed with pure methanol publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.07.096 – volume: 42 start-page: 12032 year: 2017 ident: 10.1016/j.ijhydene.2018.10.196_bib1 article-title: Direct methanol fuel cell system reliability analysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.03.144 – volume: 41 start-page: 16247 year: 2016 ident: 10.1016/j.ijhydene.2018.10.196_bib5 article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.116 – volume: 36 start-page: 6219 year: 2011 ident: 10.1016/j.ijhydene.2018.10.196_bib2 article-title: Process system engineering in direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.02.058 – volume: 42 start-page: 13913 year: 2017 ident: 10.1016/j.ijhydene.2018.10.196_bib24 article-title: The effect of water introduction rate and liquid saturation jumps on the performance of the flowing electrolyte-Direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.12.051 – volume: 35 start-page: 6418 year: 2010 ident: 10.1016/j.ijhydene.2018.10.196_bib30 article-title: An algebraic semi-empirical model for evaluating fuel crossover fluxes of a DMFC under various operating conditions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.03.080 – volume: 39 start-page: 2801 year: 2014 ident: 10.1016/j.ijhydene.2018.10.196_bib36 article-title: Nano structured Pd barrier for low methanol crossover DMFC publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.028 – volume: 40 start-page: 14978 year: 2015 ident: 10.1016/j.ijhydene.2018.10.196_bib33 article-title: Transient analysis of passive direct methanol fuel cells with different operation and design parameters publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.09.040 – volume: 41 start-page: 9022 year: 2016 ident: 10.1016/j.ijhydene.2018.10.196_bib34 article-title: High-performance direct methanol fuel cell with optimized membrane electrode assembly: a theoretical approach publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.147 – volume: 150 start-page: 28 year: 2018 ident: 10.1016/j.ijhydene.2018.10.196_bib40 article-title: The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell publication-title: Energy doi: 10.1016/j.energy.2018.02.132 – volume: 459 start-page: 71 year: 2011 ident: 10.1016/j.ijhydene.2018.10.196_bib7 article-title: Control of methanol crossover using a perforated metal sheet for DMFC application publication-title: Key Eng Mater doi: 10.4028/www.scientific.net/KEM.459.71 – volume: 42 start-page: 1736 year: 2016 ident: 10.1016/j.ijhydene.2018.10.196_bib25 article-title: Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.09.087 – volume: 175 start-page: 276 year: 2008 ident: 10.1016/j.ijhydene.2018.10.196_bib41 article-title: Two-dimensional two-phase thermal model for passive direct methanol fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.09.086 – volume: 40 start-page: 1923 year: 2014 ident: 10.1016/j.ijhydene.2018.10.196_bib17 article-title: Direct methanol fuel cell with interdigitated anode for operating under ultra-low fuel stoichiometry condition publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.12.004 – volume: 88 start-page: 1681 year: 2011 ident: 10.1016/j.ijhydene.2018.10.196_bib4 article-title: Passive direct methanol fuel cells for portable electronic devices publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.11.012 – volume: 39 start-page: 21739 year: 2014 ident: 10.1016/j.ijhydene.2018.10.196_bib11 article-title: Direct methanol fuel cell systems for backup power-Influence of the standby procedure on the lifetime publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.08.132 – volume: 37 start-page: 13510 year: 2012 ident: 10.1016/j.ijhydene.2018.10.196_bib14 article-title: Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.06.094 – volume: 36 start-page: 1155 year: 2011 ident: 10.1016/j.ijhydene.2018.10.196_bib19 article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC publication-title: Energy doi: 10.1016/j.energy.2010.11.034 – volume: 37 start-page: 16499 year: 2016 ident: 10.1016/j.ijhydene.2018.10.196_bib9 article-title: Developments in fuel cell technologies in the transport sector publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.164 – volume: 19 start-page: 1637 year: 2013 ident: 10.1016/j.ijhydene.2018.10.196_bib13 article-title: The effect of cell orientations and environmental conditions on the performance of a passive DMFC single cell publication-title: Ionics doi: 10.1007/s11581-013-0889-y – volume: 42 start-page: 25639 year: 2017 ident: 10.1016/j.ijhydene.2018.10.196_bib21 article-title: Modelling and simulation of Proton Exchange Membrane fuel cell with serpentine bipolar plate using MATLAB publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.06.091 – volume: 41 start-page: 6493 year: 2016 ident: 10.1016/j.ijhydene.2018.10.196_bib26 article-title: Investigation of cell orientation effect on transient operation of passive direct methanol fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.02.114 – volume: 196 start-page: 8973 year: 2011 ident: 10.1016/j.ijhydene.2018.10.196_bib31 article-title: One-dimensional and non-isothermal model for a passive DMFC publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.01.094 – volume: 42 start-page: 2680 year: 2017 ident: 10.1016/j.ijhydene.2018.10.196_bib23 article-title: Effect of cathode flow field configuration on the performance of flowing electrolyte-direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.022 – volume: 301 start-page: 210 year: 2016 ident: 10.1016/j.ijhydene.2018.10.196_bib39 article-title: Quantitative study of ruthenium cross-over in direct methanol fuel cells during early operation hours publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.09.119 – volume: 152 start-page: A2238 year: 2005 ident: 10.1016/j.ijhydene.2018.10.196_bib38 article-title: Abrupt decline in the open-circuit voltage of direct methanol fuel cells at critical oxygen feed rate publication-title: J Electrochem Soc doi: 10.1149/1.2047350 – volume: 39 start-page: 5972 year: 2014 ident: 10.1016/j.ijhydene.2018.10.196_bib10 article-title: Conceptual design and statistical overview on the design of a passive DMFC single cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.117 – volume: 74 start-page: 464 year: 2015 ident: 10.1016/j.ijhydene.2018.10.196_bib20 article-title: Experimental and modeling studies of a micro direct methanol fuel cell publication-title: Renew Energy doi: 10.1016/j.renene.2014.08.043 – volume: 39 start-page: 6689 year: 2014 ident: 10.1016/j.ijhydene.2018.10.196_bib6 article-title: Overview on the developments of vapor-feed direct methanol fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.002 – volume: 39 start-page: 11224 year: 2014 ident: 10.1016/j.ijhydene.2018.10.196_bib18 article-title: Analyses of mass and heat transport interactions in a direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.05.048 – volume: 100 start-page: 1245 year: 2016 ident: 10.1016/j.ijhydene.2018.10.196_bib27 article-title: Transient investigation of passive alkaline membrane direct methanol fuel cell publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.02.107 – volume: 40 start-page: 5396 year: 2015 ident: 10.1016/j.ijhydene.2018.10.196_bib29 article-title: Analyzing the effects of fluctuating methanol feed concentration in active-type direct methanol fuel cell (DMFC) systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.01.062 – volume: 152 start-page: 122 year: 2005 ident: 10.1016/j.ijhydene.2018.10.196_bib44 article-title: Mathematical modeling of a passive-feed DMFC with heat transfer effect publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.02.088 – volume: 196 start-page: 2669 year: 2007 ident: 10.1016/j.ijhydene.2018.10.196_bib35 article-title: Low methanol crossover and high efficiency direct methanol fuel cell: the influence of diffusion layers publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.11.050 – volume: 37 start-page: 8641 year: 2012 ident: 10.1016/j.ijhydene.2018.10.196_bib16 article-title: Start-up and steady-state operation of a passive vapor-feed direct methanol fuel cell fed with pure methanol publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.02.038 – volume: 39 start-page: 5406 year: 2014 ident: 10.1016/j.ijhydene.2018.10.196_bib12 article-title: Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.12.014 – volume: 19 start-page: 1195 year: 2013 ident: 10.1016/j.ijhydene.2018.10.196_bib37 article-title: Investigating the effect of operating parameters on the open circuit voltage of a passive DMFC publication-title: Ionics doi: 10.1007/s11581-013-0924-z – volume: 153 start-page: A372 year: 2006 ident: 10.1016/j.ijhydene.2018.10.196_bib42 article-title: A two-dimensional two-phase model of a PEM fuel cell publication-title: J Electrochem Soc doi: 10.1149/1.2142267 – volume: 164 start-page: 189 year: 2007 ident: 10.1016/j.ijhydene.2018.10.196_bib43 article-title: Modeling water transport in liquid feed direct methanol fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.10.047 |
SSID | ssj0017049 |
Score | 2.3190057 |
Snippet | The study investigates the open-circuit characteristics of a passive direct methanol fuel cell (DMFC) based on temperature-induced convection effects,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 23463 |
SubjectTerms | Methanol crossover Open-circuit Passive DMFC Temperature-induced convection effect |
Title | The mass transport based on convection effects in a passive DMFC under open-circuit conditions |
URI | https://dx.doi.org/10.1016/j.ijhydene.2018.10.196 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWqssCA-BTlo_LAmrYmtmOPVaEqoHaBSp2IbCcWqSCtqnRg4bdzTpyqSEgdGGPdSdH5_O6ivHdG6FYSTUQKB1BYYgKoeDqQtpcGlKnQaK6YKP-Yjid8NKVPMzZroEGthXG0So_9FaaXaO1Xuj6a3WWWdV8Ae50ER0JShpRVCnYauSzvfG9oHiTyLTAYB856SyU872Tz9y843m5cJhGdUrvH_y5QW0VneIQOfbeI-9ULHaNGmp-gg60ZgqfoDTYaf0ILjIt6Tjl2pSnBixyXnPJSuYA9cQNnOVZ4CfYAc_h-PBxgJyNbYXeNVmCylVlnhfNLKi7XGZoOH14Ho8BfmhCYkJEiYFaoRCU9oajWXBOptGKaEcu4NZylJlLSCi4pnDwuuI7gkyUMTahSsJcmCs9RM1_k6QXCUgjNetZoKqFLgV4AgswTBSggbCQtbSFWRyo2fqK4u9jiI66pY_O4jnDsIlyuS95C3Y3fspqpsdND1hsR_8qOGIB_h-_lP3yv0L57cvSVu-gaNYvVOr2BJqTQ7TLL2miv__g8mvwAaX7dmg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYQDG2Hqk-VPj10DSFN7NgjokVQHktBYmpkO7Ea1AaEwtB_33PiICpVYujq-CTrfPfdRb7vDqFH7kmPJeCATHvKgYgnHa7biRMQ4StJBWHFi-l4Qvuz4HVO5jXUrbgwpqzSYn-J6QVa2xXXatNdpan7BthrKDgcjNIPiGGwN0x3KlJHjc5g2J9sHxNCmwXDfscI7BCFF6108fENHm46ZnqsVdD36N8xaifu9E7QsU0Ycac80ymqJdkZOtppI3iO3uGu8RdkwTivWpVjE51ivMxwUVZekBewrd3AaYYFXsF-QDr8PO51sWGSrbGZpOWodK02aW7k4rKc6wLNei_Tbt-xcxMc5RMvd4hmIhZxm4lASio9LqQgkniaUK0oSVQouGaUB-B8lFEZwl-L7ytfJLCfq9C_RPVsmSVXCHPGJGlrJQMOiQqkA6BnGgsAAqZDroMmIpWmImWbipvZFp9RVT22iCoNR0bDxTqnTeRu5VZlW429Ery6iOiXgUSA_Xtkr_8h-4AO-tPxKBoNJsMbdGi-mGqWp_AW1fP1JrmDnCSX99bmfgAHfuBL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mass+transport+based+on+convection+effects+in+a+passive+DMFC+under+open-circuit+conditions&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zuo%2C+Kaiyuan&rft.au=Yuan%2C+Zhenyu&rft.au=Cao%2C+Cheng&rft.au=Hao%2C+Yazhe&rft.date=2018-12-27&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=43&rft.issue=52&rft.spage=23463&rft.epage=23474&rft_id=info:doi/10.1016%2Fj.ijhydene.2018.10.196&rft.externalDocID=S0360319918334591 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |