Metal-organic framework structure-property relationships for high-performance multifunctional polymer nanocomposite applications

Metal-organic frameworks (MOFs) have emerged as a new class of crystalline nanomaterials with ultrahigh porosities and high internal surface areas. Recently, these MOF structures with their extraordinary inherent properties have become potential candidates for specific technologies in areas such as...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 8; pp. 4348 - 4378
Main Authors Unnikrishnan, Vishnu, Zabihi, Omid, Ahmadi, Mojtaba, Li, Quanxiang, Blanchard, Patrick, Kiziltas, Alper, Naebe, Minoo
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 02.03.2021
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/d0ta11255k

Cover

Loading…
Abstract Metal-organic frameworks (MOFs) have emerged as a new class of crystalline nanomaterials with ultrahigh porosities and high internal surface areas. Recently, these MOF structures with their extraordinary inherent properties have become potential candidates for specific technologies in areas such as the automotive, defence, and aerospace industries. Conversely, polymeric materials are common in a wide variety of industrial applications due to their unique properties and versatile performance. The idea of hybridising MOFs and polymers purely for their distinct superior properties has led to the concept of hybrid composite structures, which exhibit the inherent properties of the two different materials. However, MOFs by themselves have always been considered as labile reinforcements for polymers to afford multifunctional nanocomposites. Therefore, to improve the interactions between MOFs and polymers, it is imperative to understand the factors affecting the inherent MOF properties. This review briefly presents approaches for the synthesis, functionalisation, and post-synthesis modification of MOFs, and the opportunities and challenges for the utilisation of MOFs in high-performance, multifunctional polymer nanocomposites are comprehensively reviewed. In this regard, a wide range of properties related to multifunctional polymer nanocomposites, with a focus on mechanical properties and flame retardancy, are presented. Recent trends in the hybridisation of MOFs with various substrates and other two-dimensional nanomaterials such as graphene and boron nitrides are also discussed. This review highlights the potential of MOFs as versatile porous materials for the development of novel hybrid fillers which could represent remarkable advances in the field of high-performance multifunctional composites. Metal-organic frameworks (MOFs) have emerged as a new class of crystalline nanomaterials with ultrahigh porosities and high internal surface areas.
AbstractList Metal–organic frameworks (MOFs) have emerged as a new class of crystalline nanomaterials with ultrahigh porosities and high internal surface areas. Recently, these MOF structures with their extraordinary inherent properties have become potential candidates for specific technologies in areas such as the automotive, defence, and aerospace industries. Conversely, polymeric materials are common in a wide variety of industrial applications due to their unique properties and versatile performance. The idea of hybridising MOFs and polymers purely for their distinct superior properties has led to the concept of hybrid composite structures, which exhibit the inherent properties of the two different materials. However, MOFs by themselves have always been considered as labile reinforcements for polymers to afford multifunctional nanocomposites. Therefore, to improve the interactions between MOFs and polymers, it is imperative to understand the factors affecting the inherent MOF properties. This review briefly presents approaches for the synthesis, functionalisation, and post-synthesis modification of MOFs, and the opportunities and challenges for the utilisation of MOFs in high-performance, multifunctional polymer nanocomposites are comprehensively reviewed. In this regard, a wide range of properties related to multifunctional polymer nanocomposites, with a focus on mechanical properties and flame retardancy, are presented. Recent trends in the hybridisation of MOFs with various substrates and other two-dimensional nanomaterials such as graphene and boron nitrides are also discussed. This review highlights the potential of MOFs as versatile porous materials for the development of novel hybrid fillers which could represent remarkable advances in the field of high-performance multifunctional composites.
Metal-organic frameworks (MOFs) have emerged as a new class of crystalline nanomaterials with ultrahigh porosities and high internal surface areas. Recently, these MOF structures with their extraordinary inherent properties have become potential candidates for specific technologies in areas such as the automotive, defence, and aerospace industries. Conversely, polymeric materials are common in a wide variety of industrial applications due to their unique properties and versatile performance. The idea of hybridising MOFs and polymers purely for their distinct superior properties has led to the concept of hybrid composite structures, which exhibit the inherent properties of the two different materials. However, MOFs by themselves have always been considered as labile reinforcements for polymers to afford multifunctional nanocomposites. Therefore, to improve the interactions between MOFs and polymers, it is imperative to understand the factors affecting the inherent MOF properties. This review briefly presents approaches for the synthesis, functionalisation, and post-synthesis modification of MOFs, and the opportunities and challenges for the utilisation of MOFs in high-performance, multifunctional polymer nanocomposites are comprehensively reviewed. In this regard, a wide range of properties related to multifunctional polymer nanocomposites, with a focus on mechanical properties and flame retardancy, are presented. Recent trends in the hybridisation of MOFs with various substrates and other two-dimensional nanomaterials such as graphene and boron nitrides are also discussed. This review highlights the potential of MOFs as versatile porous materials for the development of novel hybrid fillers which could represent remarkable advances in the field of high-performance multifunctional composites. Metal-organic frameworks (MOFs) have emerged as a new class of crystalline nanomaterials with ultrahigh porosities and high internal surface areas.
Author Blanchard, Patrick
Unnikrishnan, Vishnu
Li, Quanxiang
Zabihi, Omid
Ahmadi, Mojtaba
Kiziltas, Alper
Naebe, Minoo
AuthorAffiliation Deakin University
Ford Motor Company
Institute for Frontier Materials
Research and Product Development
AuthorAffiliation_xml – name: Ford Motor Company
– name: Research and Product Development
– name: Institute for Frontier Materials
– name: Deakin University
Author_xml – sequence: 1
  givenname: Vishnu
  surname: Unnikrishnan
  fullname: Unnikrishnan, Vishnu
– sequence: 2
  givenname: Omid
  surname: Zabihi
  fullname: Zabihi, Omid
– sequence: 3
  givenname: Mojtaba
  surname: Ahmadi
  fullname: Ahmadi, Mojtaba
– sequence: 4
  givenname: Quanxiang
  surname: Li
  fullname: Li, Quanxiang
– sequence: 5
  givenname: Patrick
  surname: Blanchard
  fullname: Blanchard, Patrick
– sequence: 6
  givenname: Alper
  surname: Kiziltas
  fullname: Kiziltas, Alper
– sequence: 7
  givenname: Minoo
  surname: Naebe
  fullname: Naebe, Minoo
BookMark eNptkc1r3DAQxUVJoUmaS-8FQS4l4FayZVs6hrT5oCm97N2MtaOsEllyJZmyt_7p0WZLAiG66MH85sGbd0QOfPBIyCfOvnLWqG9rloHzum0f3pHDmrWs6oXqDp61lB_ISUr3rDzJWKfUIfn3CzO4KsQ78FZTE2HCvyE-0JTjovMSsZpjmDHmLY3oINvg08bOiZoQ6cbebaoyLHoCr5FOi8vWLF7vOHB0Dm47YaQefNBhmkOyGSnMs7N67_WRvDfgEp78_4_J6vLH6uK6uv19dXNxflvppuW5akfNG4Osl0aMBnvJZNebXgJXoxSdrFXLga95q4SoZdH92BgQHRsB17JujsmXvW1J82fBlIfJJo3OgcewpKFcjStV7FlBT1-h92GJJU2hhBKqHE_sKLandAwpRTSDtvkpUo5g3cDZsCtl-M5W50-l_CwrZ69W5mgniNu34c97OCb9zL003DwCZTSb9g
CitedBy_id crossref_primary_10_1039_D2NJ06066C
crossref_primary_10_1016_j_ccr_2023_215501
crossref_primary_10_1016_j_molstruc_2022_133346
crossref_primary_10_1039_D4NJ04745A
crossref_primary_10_3390_su14020737
crossref_primary_10_3390_polym17060778
crossref_primary_10_1007_s12274_023_5935_0
crossref_primary_10_1039_D4MA00628C
crossref_primary_10_1016_j_ijbiomac_2024_132691
crossref_primary_10_1016_j_inoche_2023_111446
crossref_primary_10_1007_s10904_025_03616_8
crossref_primary_10_1021_acsanm_1c02503
crossref_primary_10_1039_D4TB00718B
crossref_primary_10_1002_mats_202100044
crossref_primary_10_1016_j_micromeso_2023_112932
crossref_primary_10_1016_j_ccr_2021_214263
crossref_primary_10_1016_j_jssc_2022_123346
crossref_primary_10_1021_acs_chemmater_4c00112
crossref_primary_10_1080_25740881_2024_2441941
crossref_primary_10_1007_s11356_024_35449_2
crossref_primary_10_1016_j_polymer_2022_125422
crossref_primary_10_1016_j_jece_2023_111217
crossref_primary_10_1039_D3MA01074K
crossref_primary_10_1016_j_jece_2024_114819
crossref_primary_10_1039_D2CE01686A
crossref_primary_10_1002_pc_29106
crossref_primary_10_1002_pc_27002
crossref_primary_10_1039_D4RA07476A
crossref_primary_10_1016_j_jssc_2021_122385
crossref_primary_10_1039_D4CP02873B
crossref_primary_10_3390_cleantechnol5010009
crossref_primary_10_1039_D3NJ04806C
crossref_primary_10_1016_j_cej_2023_141448
crossref_primary_10_1016_j_porgcoat_2023_107648
crossref_primary_10_1017_S0885715624000058
crossref_primary_10_3390_catal12111350
crossref_primary_10_1016_j_jwpe_2024_105859
crossref_primary_10_1007_s40242_024_4098_1
crossref_primary_10_1016_j_mseb_2024_117932
crossref_primary_10_1088_1748_605X_ad6070
crossref_primary_10_3390_ma17164028
crossref_primary_10_1021_acsami_2c00487
crossref_primary_10_1039_D3RA08577E
crossref_primary_10_1016_j_compositesa_2022_107187
crossref_primary_10_1016_j_conbuildmat_2024_135816
crossref_primary_10_1016_j_cej_2024_158711
crossref_primary_10_1007_s00289_025_05720_8
crossref_primary_10_1016_j_chemosphere_2021_131393
crossref_primary_10_1002_elan_12020
crossref_primary_10_1039_D2TA07272F
crossref_primary_10_3390_analytica5040040
crossref_primary_10_1007_s12221_024_00666_6
crossref_primary_10_1016_j_compscitech_2022_109564
Cites_doi 10.1039/C1SC00394A
10.1021/jp072085x
10.1002/fam.2709
10.1016/j.compositesb.2020.107750
10.1016/j.trac.2019.06.007
10.1002/adma.201601133
10.1126/science.1230444
10.1021/acs.cgd.7b01211
10.1021/acs.iecr.7b00694
10.1080/00218468708080469
10.1002/pat.4404
10.1016/j.compositesb.2019.107498
10.1016/j.jallcom.2019.04.325
10.1016/j.ultsonch.2017.09.014
10.1021/ja308786r
10.1021/jacs.6b12564
10.1021/jp4079663
10.1039/C7SC05217K
10.1016/j.ccr.2017.09.005
10.1039/c0cs00163e
10.1021/cr200256v
10.1021/jacs.6b06051
10.1039/C7CS00614D
10.1039/C3CS60483G
10.1039/C4TA01885K
10.1021/acs.chemmater.9b02409
10.1021/ja903726m
10.1021/cr300014x
10.1016/j.poly.2020.114463
10.1039/c3ta10419b
10.1021/cm103571y
10.1146/annurev-matsci-070218-010134
10.1016/j.matlet.2018.12.123
10.1016/j.jclepro.2019.119150
10.1039/C4TA01656D
10.1016/j.compositesb.2020.108284
10.1039/C5RA04446D
10.1039/C6SC03704F
10.1155/2019/4273253
10.1016/j.tree.2005.02.010
10.1007/s12274-017-1595-2
10.1021/acsami.9b11840
10.1002/9783527807369
10.1039/C7CS90049J
10.1016/j.ccr.2017.06.007
10.1016/j.matlet.2018.01.052
10.1021/acs.jpcc.6b03237
10.1016/j.gee.2018.03.001
10.3390/su12020641
10.1021/cr200179u
10.1002/anie.201500207
10.1002/anie.201511063
10.1021/acs.jced.7b00049
10.1016/j.memsci.2012.11.014
10.1016/j.micromeso.2008.04.033
10.1021/cm900069f
10.1021/acs.chemmater.6b02626
10.1016/j.ultsonch.2018.03.001
10.1016/j.cej.2020.127361
10.1016/j.mser.2008.09.002
10.1039/c1dt10115c
10.1016/j.compositesb.2017.09.066
10.1002/adma.201704303
10.1039/c0dt01820a
10.1002/slct.201601513
10.1002/marc.201900333
10.1021/acs.accounts.6b00457
10.3390/polym12081764
10.1039/b807080f
10.1016/j.fuel.2020.117598
10.1021/acs.chemrev.6b00558
10.1021/acs.cgd.8b00854
10.1016/j.ccr.2020.213525
10.1038/natrevmats.2016.78
10.1021/cr200101d
10.1016/j.jssc.2005.05.019
10.1038/s42004-019-0184-6
10.3791/52094
10.1039/b802258p
10.1016/j.jallcom.2016.11.220
10.1016/j.micromeso.2014.10.018
10.1016/j.jmrt.2019.10.022
10.1002/adfm.201301256
10.1038/srep38194
10.1039/c2sc20558k
10.1016/j.mtchem.2020.100334
10.1002/smll.201805473
10.1016/j.ultsonch.2015.05.034
10.1016/j.poly.2019.01.024
10.1039/C4NJ01768D
10.1088/1361-665X/ab3d59
10.1002/adma.200601604
10.1016/j.ultsonch.2017.01.018
10.1016/j.apsusc.2017.12.034
10.1126/sciadv.aao3920
10.1016/j.ccr.2019.213016
10.1002/aic.16816
10.1021/acs.accounts.0c00106
10.1016/j.ccr.2019.213023
10.1039/C9SC03916C
10.3390/ma13122881
10.1039/C4CS00076E
10.1039/C4MH00065J
10.1002/anie.201402950
10.1021/acs.jpclett.6b01236
10.1016/j.ultsonch.2018.03.012
10.1038/nmat1848
10.1021/ic200744y
10.1016/j.cej.2020.125829
10.1016/j.micromeso.2015.11.060
10.1016/j.materresbull.2017.10.038
10.1016/j.compositesa.2016.05.004
10.1021/cg800623v
10.1016/j.ultras.2017.06.012
10.1021/acsami.7b18506
10.1016/j.micromeso.2016.04.017
10.1039/C4SC03217A
10.1021/cm0300866
10.1016/S1452-3981(23)05082-4
10.1039/C6PY01008C
10.1016/j.snb.2015.08.100
10.1039/C8RA06355A
10.1016/j.cej.2015.12.099
10.1039/C5TA04923G
10.1016/S1452-3981(23)06674-9
10.1039/C5TA09349J
10.1016/j.matchemphys.2011.09.056
10.1039/C0CS00031K
10.1016/j.compositesa.2018.07.001
10.1016/j.mattod.2018.10.038
10.1007/s10870-018-0708-4
10.1016/j.polymer.2016.05.012
10.1039/b513750k
10.1039/C8MH01342J
10.1016/j.ultsonch.2018.02.001
10.1039/D0MA00650E
10.1149/2.0291910jes
10.1021/acs.iecr.7b03712
10.1016/j.ultsonch.2015.12.007
10.1038/srep04375
10.1016/j.carbon.2019.07.003
10.1016/j.porgcoat.2019.105245
10.1016/j.carbon.2019.03.078
10.1039/C3SC52633J
10.1002/anie.201302682
10.1089/3dp.2017.0067
10.1039/C7CS00122C
10.1039/C5CE01868D
10.1021/ja00146a033
10.1021/acs.iecr.6b04920
10.1039/C8TA12178H
10.1021/acs.chemmater.6b00180
10.1016/j.chempr.2017.02.005
10.1016/j.synthmet.2017.04.009
10.1007/978-3-642-14613-8
10.1021/acssuschemeng.8b05587
10.1016/j.compositesb.2019.106906
10.1002/pi.3186
10.1016/j.micromeso.2012.06.009
10.1021/acsami.6b15098
10.1016/j.pmatsci.2020.100687
10.1039/C6TA02118B
10.1038/ncomms1091
10.1039/C4RA09126D
10.1007/s11814-013-0140-6
10.1021/jacs.9b10880
10.1016/j.jhazmat.2018.09.086
10.1039/C7GC01078H
10.1016/j.apt.2018.11.011
10.1002/adma.201502418
10.1039/B511962F
10.1103/PhysRevLett.109.195502
10.1038/srep05443
10.1016/j.polymer.2013.11.005
10.1039/c2ce26115d
10.1002/anie.202002384
10.1002/anie.201812655
10.1016/j.tet.2008.06.036
10.1103/PhysRevB.76.184106
10.1002/ejic.201600295
10.1016/j.compscitech.2012.03.025
10.1016/j.micromeso.2011.02.003
10.1021/acs.inorgchem.6b00045
10.1021/acs.chemmater.8b03881
10.1016/j.micromeso.2008.10.035
10.1016/j.cej.2017.08.059
10.1002/adma.201002854
10.1080/25740881.2019.1625393
10.1002/cphc.200500449
10.1039/B616516H
10.1016/j.ultsonch.2016.06.011
10.1038/s41598-018-33704-4
10.1021/acsami.7b17565
10.1016/j.compscitech.2017.08.032
10.1016/j.ultsonch.2018.03.014
10.1021/ja076877g
10.1039/C8DT03312A
10.1021/cg070468e
10.1016/j.compositesa.2020.106113
10.1038/nature01650
10.1016/j.polymer.2014.03.008
10.1002/anie.200906583
10.1021/acs.iecr.6b04204
10.1016/j.micromeso.2017.07.003
10.1016/j.inoche.2016.01.007
10.1039/C9TA10130F
10.1002/anie.200400655
10.1073/pnas.0602439103
10.1039/C4QI00209A
10.1038/s41427-020-00240-5
10.1039/C5CS00307E
10.1021/acsami.7b11626
10.1016/j.cej.2018.09.011
10.1039/B804126A
10.1016/j.matlet.2017.03.140
10.1039/C9ME00007K
10.1039/C4TA04203D
10.1002/aoc.4801
10.1002/app.27027
10.3390/polym12010108
10.1016/j.ensm.2015.11.005
10.1016/j.micromeso.2012.09.028
10.1021/cr200304e
10.1039/C3CS60472A
10.1039/C3RA47744D
10.1021/ja206082s
10.1039/C5DT03359D
10.1021/jacs.6b02553
10.1039/C9SC00135B
10.1021/ja109268m
10.1007/978-3-319-42559-7_22
10.1016/j.micromeso.2010.02.008
10.1039/C9TA03578H
10.1002/celc.201402429
10.1039/C6QI00042H
10.1039/c2jm15675j
10.1016/j.compositesa.2019.105720
10.1126/sciadv.aav5340
10.1039/B508588H
10.1039/C7CS00109F
10.1016/j.compositesb.2020.108019
10.1021/acsami.7b16711
10.1007/s10973-019-08267-9
10.1039/C8CS00268A
10.1021/la8008656
10.1080/00028896309343250
10.1186/s11671-016-1798-6
10.1021/acs.cgd.9b00170
10.1016/j.carbon.2019.01.028
10.1016/j.micromeso.2012.05.021
10.1021/acscentsci.6b00277
10.1016/j.ccr.2020.213366
10.1016/j.solidstatesciences.2017.05.002
10.1016/j.ultsonch.2016.01.024
10.1016/j.cej.2017.05.169
10.1002/anie.201502733
10.1021/acs.inorgchem.7b00707
10.1016/j.ccr.2015.02.014
10.1021/jacs.7b12633
10.1021/cm900049x
10.1021/cg200594e
10.1002/pen.25276
10.1039/b822934c
10.1021/cg300552w
10.1039/C4CS00010B
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d0ta11255k
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2050-7496
EndPage 4378
ExternalDocumentID 10_1039_D0TA11255K
d0ta11255k
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c351t-5bc13fe078f4bfe780867f78a19b84682951a1d159442851a7b3fa460baed823
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 14:34:00 EDT 2025
Mon Jun 30 11:59:59 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Tue Jul 01 01:13:04 EDT 2025
Sat Jan 08 03:48:18 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-5bc13fe078f4bfe780867f78a19b84682951a1d159442851a7b3fa460baed823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8980-9134
0000-0003-3258-5413
0000-0002-0607-6327
0000-0001-8065-2671
PQID 2494900840
PQPubID 2047523
PageCount 31
ParticipantIDs crossref_citationtrail_10_1039_D0TA11255K
rsc_primary_d0ta11255k
proquest_miscellaneous_2551990780
proquest_journals_2494900840
crossref_primary_10_1039_D0TA11255K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210302
PublicationDateYYYYMMDD 2021-03-02
PublicationDate_xml – month: 3
  year: 2021
  text: 20210302
  day: 2
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Robatjazi (D0TA11255K-(cit264)/*[position()=1]) 2019; 5
Shi (D0TA11255K-(cit233)/*[position()=1]) 2017; 56
Armstrong (D0TA11255K-(cit283)/*[position()=1]) 2020; 66
Song (D0TA11255K-(cit167)/*[position()=1]) 2012; 14
Li (D0TA11255K-(cit207)/*[position()=1]) 2019; 11
Cui (D0TA11255K-(cit234)/*[position()=1]) 2012; 112
Zhang (D0TA11255K-(cit268)/*[position()=1]) 2019; 153
Lee (D0TA11255K-(cit139)/*[position()=1]) 2019; 6
Cui (D0TA11255K-(cit212)/*[position()=1]) 2018; 8
Salam (D0TA11255K-(cit223)/*[position()=1]) 2020
Liu (D0TA11255K-(cit231)/*[position()=1]) 2018; 10
Lee (D0TA11255K-(cit29)/*[position()=1]) 2018; 9
Hou (D0TA11255K-(cit205)/*[position()=1]) 2016; 7
Panapitiya (D0TA11255K-(cit214)/*[position()=1]) 2014; 55
Venna (D0TA11255K-(cit187)/*[position()=1]) 2010; 132
Srinivasan (D0TA11255K-(cit215)/*[position()=1]) 2020; 10
Thrune (D0TA11255K-(cit240)/*[position()=1]) 1963; 24
Evans (D0TA11255K-(cit199)/*[position()=1]) 2014; 43
Taub (D0TA11255K-(cit255)/*[position()=1]) 2019; 49
Furukawa (D0TA11255K-(cit40)/*[position()=1]) 2013; 341
Horcajada (D0TA11255K-(cit14)/*[position()=1]) 2012; 112
Meilikhov (D0TA11255K-(cit282)/*[position()=1]) 2011; 40
Masoomi (D0TA11255K-(cit125)/*[position()=1]) 2017; 37
Mártire (D0TA11255K-(cit60)/*[position()=1]) 2019; 4
Yuan (D0TA11255K-(cit66)/*[position()=1]) 2015; 10
Liang (D0TA11255K-(cit138)/*[position()=1]) 2018; 18
Lv (D0TA11255K-(cit150)/*[position()=1]) 2017; 62
Schlesinger (D0TA11255K-(cit114)/*[position()=1]) 2010; 132
Stassen (D0TA11255K-(cit42)/*[position()=1]) 2017; 46
Bible (D0TA11255K-(cit257)/*[position()=1]) 2018; 5
Segura (D0TA11255K-(cit276)/*[position()=1]) 2019; 28
Ramezanzadeh (D0TA11255K-(cit206)/*[position()=1]) 2020
Garzón-Tovar (D0TA11255K-(cit141)/*[position()=1]) 2015; 3
Gu (D0TA11255K-(cit50)/*[position()=1]) 2020; 271
Dhara (D0TA11255K-(cit58)/*[position()=1]) 2016; 7
Yuan (D0TA11255K-(cit38)/*[position()=1]) 2018; 30
Jhung (D0TA11255K-(cit96)/*[position()=1]) 2007; 19
Zhang (D0TA11255K-(cit197)/*[position()=1]) 2015; 54
Wahiduzzaman (D0TA11255K-(cit126)/*[position()=1]) 2017; 12
Kim (D0TA11255K-(cit170)/*[position()=1]) 2012; 161
Nabipour (D0TA11255K-(cit245)/*[position()=1]) 2020; 129
Hou (D0TA11255K-(cit20)/*[position()=1]) 2017; 56
Yazaydın (D0TA11255K-(cit21)/*[position()=1]) 2009; 21
Tompsett (D0TA11255K-(cit104)/*[position()=1]) 2006; 7
Zhang (D0TA11255K-(cit166)/*[position()=1]) 2011; 47
Wu (D0TA11255K-(cit248)/*[position()=1]) 2019; 145
McKinstry (D0TA11255K-(cit97)/*[position()=1]) 2017; 326
Cai (D0TA11255K-(cit88)/*[position()=1]) 2018; 48
Shi (D0TA11255K-(cit210)/*[position()=1]) 2020
Mueller (D0TA11255K-(cit61)/*[position()=1]) 2006; 16
Khazalpour (D0TA11255K-(cit74)/*[position()=1]) 2015; 5
Zhou (D0TA11255K-(cit4)/*[position()=1]) 2012; 112
Beyer (D0TA11255K-(cit128)/*[position()=1]) 2016; 1
Son (D0TA11255K-(cit112)/*[position()=1]) 2008
Abuzalat (D0TA11255K-(cit115)/*[position()=1]) 2018; 45
Bennett (D0TA11255K-(cit129)/*[position()=1]) 2011; 133
Karagiaridi (D0TA11255K-(cit169)/*[position()=1]) 2012; 134
Hartmann (D0TA11255K-(cit76)/*[position()=1]) 2008; 24
Azad (D0TA11255K-(cit90)/*[position()=1]) 2016; 31
Cadiau (D0TA11255K-(cit171)/*[position()=1]) 2015; 27
Burrows (D0TA11255K-(cit28)/*[position()=1]) 2011
Yaghi (D0TA11255K-(cit72)/*[position()=1]) 1995; 117
Noman (D0TA11255K-(cit117)/*[position()=1]) 2018; 83
Cohen (D0TA11255K-(cit156)/*[position()=1]) 2012; 112
Munalli (D0TA11255K-(cit278)/*[position()=1]) 2019; 173
Zabihi (D0TA11255K-(cit218)/*[position()=1]) 2020; 2
Zhang (D0TA11255K-(cit258)/*[position()=1]) 2016; 3
Lee (D0TA11255K-(cit12)/*[position()=1]) 2009; 38
Do (D0TA11255K-(cit120)/*[position()=1]) 2017; 3
He (D0TA11255K-(cit211)/*[position()=1]) 2020
Wilke (D0TA11255K-(cit133)/*[position()=1]) 2016; 18
Schultz (D0TA11255K-(cit273)/*[position()=1]) 1987; 23
Li (D0TA11255K-(cit69)/*[position()=1]) 2016; 4
Hwang (D0TA11255K-(cit158)/*[position()=1]) 2018; 140
Chen (D0TA11255K-(cit32)/*[position()=1]) 2019; 162
Wang (D0TA11255K-(cit8)/*[position()=1]) 2007
Lee (D0TA11255K-(cit67)/*[position()=1]) 2014; 118
Haque (D0TA11255K-(cit98)/*[position()=1]) 2011; 11
Safarifard (D0TA11255K-(cit116)/*[position()=1]) 2018; 40
Tranchemontagne (D0TA11255K-(cit113)/*[position()=1]) 2008; 64
Karagiaridi (D0TA11255K-(cit168)/*[position()=1]) 2012; 3
Zimpel (D0TA11255K-(cit147)/*[position()=1]) 2016; 28
Böckenkamp (D0TA11255K-(cit91)/*[position()=1]) 2017
Evans (D0TA11255K-(cit249)/*[position()=1]) 2018; 10
Amer Hamzah (D0TA11255K-(cit157)/*[position()=1]) 2018; 47
Yuan (D0TA11255K-(cit192)/*[position()=1]) 2011; 131
Henke (D0TA11255K-(cit30)/*[position()=1]) 2013; 23
Zhang (D0TA11255K-(cit162)/*[position()=1]) 2015; 54
Zabihi (D0TA11255K-(cit217)/*[position()=1]) 2020; 184
Thakkar (D0TA11255K-(cit253)/*[position()=1]) 2017; 9
Laoutid (D0TA11255K-(cit244)/*[position()=1]) 2009; 63
Cai (D0TA11255K-(cit176)/*[position()=1]) 2020; 417
Brodowsky (D0TA11255K-(cit274)/*[position()=1]) 2012; 72
Wang (D0TA11255K-(cit57)/*[position()=1]) 2017; 228
MOF Technologies (D0TA11255K-(cit181)/*[position()=1])
Ameloot (D0TA11255K-(cit78)/*[position()=1]) 2009; 21
Michael Bible (D0TA11255K-(cit261)/*[position()=1]) 2018; 5
Al-Kutubi (D0TA11255K-(cit31)/*[position()=1]) 2015; 2
Zhao (D0TA11255K-(cit178)/*[position()=1]) 2018; 47
Ding (D0TA11255K-(cit204)/*[position()=1]) 2016; 138
Silva (D0TA11255K-(cit43)/*[position()=1]) 2015; 44
Henkelis (D0TA11255K-(cit173)/*[position()=1]) 2016; 65
Wiebe (D0TA11255K-(cit71)/*[position()=1]) 2017; 3
Pastore (D0TA11255K-(cit44)/*[position()=1]) 2018; 30
Xie (D0TA11255K-(cit256)/*[position()=1]) 2019; 43
Fakhrhoseini (D0TA11255K-(cit224)/*[position()=1]) 2019; 148
Jouyandeh (D0TA11255K-(cit222)/*[position()=1]) 2019; 136
Crake (D0TA11255K-(cit84)/*[position()=1]) 2019; 15
Seo (D0TA11255K-(cit93)/*[position()=1]) 2009; 119
Kappe (D0TA11255K-(cit106)/*[position()=1]) 2004; 43
Zhang (D0TA11255K-(cit262)/*[position()=1]) 2016; 138
Zabihi (D0TA11255K-(cit3)/*[position()=1]) 2018; 135
Maurin (D0TA11255K-(cit13)/*[position()=1]) 2017; 46
Yang (D0TA11255K-(cit79)/*[position()=1]) 2014; 4
Lin (D0TA11255K-(cit202)/*[position()=1]) 2020; 56
Mason (D0TA11255K-(cit17)/*[position()=1]) 2014; 5
Tan (D0TA11255K-(cit179)/*[position()=1]) 2017; 117
Julien (D0TA11255K-(cit33)/*[position()=1]) 2017; 19
Babaei (D0TA11255K-(cit175)/*[position()=1]) 2017; 8
Van Assche (D0TA11255K-(cit75)/*[position()=1]) 2016; 224
Benzaqui (D0TA11255K-(cit163)/*[position()=1]) 2019; 7
Friščić (D0TA11255K-(cit121)/*[position()=1]) 2009; 11
Mi (D0TA11255K-(cit164)/*[position()=1]) 2007; 7
Crawford (D0TA11255K-(cit135)/*[position()=1]) 2015; 6
Rojas (D0TA11255K-(cit189)/*[position()=1]) 2016; 55
Fallah (D0TA11255K-(cit143)/*[position()=1]) 2019; 30
Wang (D0TA11255K-(cit235)/*[position()=1]) 2019; 398
Li (D0TA11255K-(cit23)/*[position()=1]) 2016; 28
Zhu (D0TA11255K-(cit208)/*[position()=1]) 2014; 43
Nabipour (D0TA11255K-(cit267)/*[position()=1]) 2020; 139
Asghar (D0TA11255K-(cit49)/*[position()=1]) 2020; 181
Guo (D0TA11255K-(cit136)/*[position()=1]) 2016; 289
Zabihi (D0TA11255K-(cit227)/*[position()=1]) 2020; 247
Bigdeli (D0TA11255K-(cit107)/*[position()=1]) 2015; 27
Li (D0TA11255K-(cit134)/*[position()=1]) 2019; 7
S. Chemicals (D0TA11255K-(cit185)/*[position()=1])
Yang (D0TA11255K-(cit140)/*[position()=1]) 2013; 52
Martinez Joaristi (D0TA11255K-(cit63)/*[position()=1]) 2012; 12
Chen (D0TA11255K-(cit280)/*[position()=1]) 2016; 55
Yang (D0TA11255K-(cit149)/*[position()=1]) 2011; 143
Armstrong (D0TA11255K-(cit127)/*[position()=1]) 2017; 34
Lin (D0TA11255K-(cit26)/*[position()=1]) 2014; 43
Ali Akbar Razavi (D0TA11255K-(cit155)/*[position()=1]) 2019; 399
Cravillon (D0TA11255K-(cit83)/*[position()=1]) 2011; 23
Fallah (D0TA11255K-(cit195)/*[position()=1]) 2019; 33
Liu (D0TA11255K-(cit285)/*[position()=1]) 2019; 8
Yang (D0TA11255K-(cit284)/*[position()=1]) 2017; 9
Kathuria (D0TA11255K-(cit232)/*[position()=1]) 2013; 54
Alizadeh (D0TA11255K-(cit80)/*[position()=1]) 2017; 139
D0TA11255K-(cit184)/*[position()=1]
Schmidt (D0TA11255K-(cit54)/*[position()=1]) 2020; 41
Yuan (D0TA11255K-(cit65)/*[position()=1]) 2016; 222
Zayan (D0TA11255K-(cit203)/*[position()=1]) 2020; 12
Guo (D0TA11255K-(cit281)/*[position()=1]) 2018; 8
Rubio-Martinez (D0TA11255K-(cit15)/*[position()=1]) 2017; 46
Laybourn (D0TA11255K-(cit105)/*[position()=1]) 2019; 356
Karmakar (D0TA11255K-(cit159)/*[position()=1]) 2020; 59
Denny (D0TA11255K-(cit213)/*[position()=1]) 2016; 1
Parsa (D0TA11255K-(cit124)/*[position()=1]) 2018; 45
Kang (D0TA11255K-(cit102)/*[position()=1]) 2019; 795
Safarifard (D0TA11255K-(cit109)/*[position()=1]) 2015; 292
Zheng (D0TA11255K-(cit191)/*[position()=1]) 2017; 56
Zheng (D0TA11255K-(cit239)/*[position()=1]) 2019; 138
Au-Karagiaridi (D0TA11255K-(cit27)/*[position()=1]) 2014
Li (D0TA11255K-(cit220)/*[position()=1]) 2016; 90
Yang (D0TA11255K-(cit193)/*[position()=1]) 2021; 427
Usman (D0TA11255K-(cit186)/*[position()=1]) 2020; 12
Jiao (D0TA11255K-(cit236)/*[position()=1]) 2019; 27
Senthil Kumar (D0TA11255K-(cit77)/*[position()=1]) 2013; 168
Bosch (D0TA11255K-(cit53)/*[position()=1]) 2017; 50
Flügel (D0TA11255K-(cit188)/*[position()=1]) 2012; 22
Hu (D0TA11255K-(cit228)/*[position()=1]) 2019; 240
Young (D0TA11255K-(cit259)/*[position()=1]) 2019; 55
Chen (D0TA11255K-(cit152)/*[position()=1]) 2018; 57
Rubio-Martinez (D0TA11255K-(cit16)/*[position()=1]) 2014; 4
Howarth (D0TA11255K-(cit35)/*[position()=1]) 2017; 29
Bahr (D0TA11255K-(cit24)/*[position()=1]) 2007; 76
Xu (D0TA11255K-(cit272)/*[position()=1]) 2018; 29
Campagnol (D0TA11255K-(cit46)/*[position()=1]) 2013; 1
Ai (D0TA11255K-(cit209)/*[position()=1]) 2020
Mandegarzad (D0TA11255K-(cit73)/*[position()=1]) 2018; 436
Mahdi (D0TA11255K-(cit59)/*[position()=1]) 2016; 97
Vijayakanth (D0TA11255K-(cit260)/*[position()=1]) 2019; 31
Abdollahi (D0TA11255K-(cit123)/*[position()=1]) 2018; 45
Uemura (D0TA11255K-(cit196)/*[position()=1]) 2005
Dan-Hardi (D0TA11255K-(cit52)/*[position()=1]) 2009; 131
Kung (D0TA11255K-(cit11)/*[position()=1]) 2020; 53
Lee (D0TA11255K-(cit36)/*[position()=1]) 2013; 30
Zabihi (D0TA11255K-(cit225)/*[position()=1]) 2015; 39
Safaei (D0TA11255K-(cit103)/*[position()=1]) 2019; 118
Koo (D0TA11255K-(cit1)/*[posi
References_xml – publication-title: MOFapps
– doi: MOF Technologies
– doi: NuMat Technologies
– issn: 2004
  publication-title: Failure Criteria in Fibre Reinforced Polymer Composites: the World-wide Failure Exercise
  doi: Hinton Soden Kaddour
– issn: 2017
  end-page: p 541-559
  publication-title: Industrial Internet of Things: Cybermanufacturing Systems
  doi: Böckenkamp Mertens Prasse Stenzel Weichert
– issn: 2018
  publication-title: Functional Organic and Hybrid Nanostructured Materials: Fabrication, Properties, and Applications
  doi: Li
– doi: S. Chemicals
– issn: 2011
  end-page: p 1-24
  publication-title: Encyclopedia of Inorganic Bio Inorg. Chem.
  doi: Burrows
– issn: 1995
  publication-title: US Pat.
  doi: Yaghi
– issn: 2020
  end-page: p 725-738
  publication-title: Advances in Unconventional Machining and Composites
  doi: Rao Sarabhayya Balakrishna
– issn: 2006
  publication-title: Polymer Nanocomposites
  doi: Koo
– publication-title: ProfMOF
– issn: 2010
  publication-title: Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis
  doi: Schröder
– issn: 2020
  end-page: p 183-198
  publication-title: Fiber-Reinforced Nanocomposites: Fundamentals and Applications
  doi: Zhang Peijs
– volume: 3
  start-page: 126
  year: 2012
  ident: D0TA11255K-(cit165)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C1SC00394A
– volume: 111
  start-page: 8179
  year: 2007
  ident: D0TA11255K-(cit5)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp072085x
– volume: 43
  start-page: 373
  year: 2019
  ident: D0TA11255K-(cit256)/*[position()=1]
  publication-title: Fire Mater.
  doi: 10.1002/fam.2709
– volume: 184
  start-page: 107750
  year: 2020
  ident: D0TA11255K-(cit217)/*[position()=1]
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2020.107750
– volume: 118
  start-page: 401
  year: 2019
  ident: D0TA11255K-(cit103)/*[position()=1]
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.06.007
– volume: 28
  start-page: 8819
  year: 2016
  ident: D0TA11255K-(cit23)/*[position()=1]
  publication-title: J. Adv. Mater.
  doi: 10.1002/adma.201601133
– volume: 341
  start-page: 1230444
  issue: 6149
  year: 2013
  ident: D0TA11255K-(cit40)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 18
  start-page: 274
  year: 2018
  ident: D0TA11255K-(cit151)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b01211
– volume: 56
  start-page: 5899
  year: 2017
  ident: D0TA11255K-(cit191)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b00694
– volume: 23
  start-page: 45
  year: 1987
  ident: D0TA11255K-(cit273)/*[position()=1]
  publication-title: J. Adhes.
  doi: 10.1080/00218468708080469
– start-page: 31
  year: 2016
  ident: D0TA11255K-(cit86)/*[position()=1]
  publication-title: Ultrason. Sonochem.
– ident: D0TA11255K-(cit181)/*[position()=1]
– volume: 29
  start-page: 2816
  year: 2018
  ident: D0TA11255K-(cit272)/*[position()=1]
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.4404
– volume: 182
  start-page: 11
  year: 2020
  ident: D0TA11255K-(cit250)/*[position()=1]
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2019.107498
– volume: 795
  start-page: 462
  year: 2019
  ident: D0TA11255K-(cit102)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.04.325
– start-page: 6336
  year: 2008
  ident: D0TA11255K-(cit112)/*[position()=1]
  publication-title: ChemComm
– volume: 40
  start-page: 921
  year: 2018
  ident: D0TA11255K-(cit116)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.09.014
– volume: 134
  start-page: 18790
  year: 2012
  ident: D0TA11255K-(cit169)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308786r
– volume: 139
  start-page: 4753
  year: 2017
  ident: D0TA11255K-(cit80)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12564
– volume: 118
  start-page: 16328
  year: 2014
  ident: D0TA11255K-(cit67)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4079663
– volume: 9
  start-page: 5197
  year: 2018
  ident: D0TA11255K-(cit29)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC05217K
– volume: 352
  start-page: 187
  year: 2017
  ident: D0TA11255K-(cit41)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.005
– volume: 40
  start-page: 1059
  year: 2011
  ident: D0TA11255K-(cit265)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00163e
– volume: 112
  start-page: 1232
  year: 2012
  ident: D0TA11255K-(cit14)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200256v
– volume: 138
  start-page: 10100
  year: 2016
  ident: D0TA11255K-(cit204)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06051
– volume: 49
  start-page: 301
  year: 2020
  ident: D0TA11255K-(cit177)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00614D
– volume: 43
  start-page: 5867
  year: 2014
  ident: D0TA11255K-(cit26)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60483G
– volume: 2
  start-page: 13299
  year: 2014
  ident: D0TA11255K-(cit243)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01885K
– volume: 31
  start-page: 5964
  year: 2019
  ident: D0TA11255K-(cit260)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02409
– volume: 131
  start-page: 10857
  year: 2009
  ident: D0TA11255K-(cit52)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903726m
– volume: 112
  start-page: 673
  issue: 2
  year: 2012
  ident: D0TA11255K-(cit4)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr300014x
– volume: 181
  start-page: 5
  year: 2020
  ident: D0TA11255K-(cit49)/*[position()=1]
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2020.114463
– volume: 1
  start-page: 5827
  year: 2013
  ident: D0TA11255K-(cit46)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10419b
– volume-title: Fiber-Reinforced Nanocomposites: Fundamentals and Applications
  year: 2020
  ident: D0TA11255K-(cit279)/*[position()=1]
– volume: 23
  start-page: 2130
  year: 2011
  ident: D0TA11255K-(cit83)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm103571y
– volume: 49
  start-page: 327
  year: 2019
  ident: D0TA11255K-(cit255)/*[position()=1]
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070218-010134
– volume: 240
  start-page: 113
  year: 2019
  ident: D0TA11255K-(cit228)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.12.123
– volume: 247
  start-page: 119150
  year: 2020
  ident: D0TA11255K-(cit227)/*[position()=1]
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.119150
– volume: 2
  start-page: 11606
  year: 2014
  ident: D0TA11255K-(cit190)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01656D
– start-page: 108284
  year: 2020
  ident: D0TA11255K-(cit223)/*[position()=1]
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2020.108284
– volume: 5
  start-page: 36547
  year: 2015
  ident: D0TA11255K-(cit74)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04446D
– volume: 8
  start-page: 583
  year: 2017
  ident: D0TA11255K-(cit175)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC03704F
– volume: 2019
  start-page: 4273253
  year: 2019
  ident: D0TA11255K-(cit266)/*[position()=1]
  publication-title: Adv. Polym. Technol.
  doi: 10.1155/2019/4273253
– volume-title: MOFapps
  ident: D0TA11255K-(cit183)/*[position()=1]
– volume: 20
  start-page: 229
  year: 2005
  ident: D0TA11255K-(cit263)/*[position()=1]
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2005.02.010
– volume: 10
  start-page: 3826
  year: 2017
  ident: D0TA11255K-(cit174)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1595-2
– volume: 11
  start-page: 40564
  year: 2019
  ident: D0TA11255K-(cit207)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11840
– volume-title: Functional Organic and Hybrid Nanostructured Materials: Fabrication, Properties, and Applications
  year: 2018
  ident: D0TA11255K-(cit2)/*[position()=1]
  doi: 10.1002/9783527807369
– volume: 46
  start-page: 3104
  year: 2017
  ident: D0TA11255K-(cit13)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS90049J
– volume: 354
  start-page: 28
  year: 2018
  ident: D0TA11255K-(cit48)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.06.007
– volume: 217
  start-page: 117
  year: 2018
  ident: D0TA11255K-(cit87)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.01.052
– volume: 120
  start-page: 12879
  year: 2016
  ident: D0TA11255K-(cit47)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b03237
– volume: 3
  start-page: 191
  issue: 3
  year: 2018
  ident: D0TA11255K-(cit62)/*[position()=1]
  publication-title: Green Energy and Environment
  doi: 10.1016/j.gee.2018.03.001
– volume: 2
  start-page: 641
  year: 2020
  ident: D0TA11255K-(cit218)/*[position()=1]
  publication-title: Sustainability
  doi: 10.3390/su12020641
– volume: 112
  start-page: 970
  year: 2012
  ident: D0TA11255K-(cit156)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200179u
– volume: 54
  start-page: 4259
  year: 2015
  ident: D0TA11255K-(cit162)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201500207
– volume-title: Encyclopedia of Inorganic Bio Inorg. Chem.
  year: 2011
  ident: D0TA11255K-(cit28)/*[position()=1]
– volume: 55
  start-page: 3419
  year: 2016
  ident: D0TA11255K-(cit280)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201511063
– volume: 62
  start-page: 2030
  year: 2017
  ident: D0TA11255K-(cit150)/*[position()=1]
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.7b00049
– volume: 428
  start-page: 445
  year: 2013
  ident: D0TA11255K-(cit251)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.11.014
– volume: 116
  start-page: 727
  year: 2008
  ident: D0TA11255K-(cit95)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.04.033
– volume: 21
  start-page: 2580
  year: 2009
  ident: D0TA11255K-(cit78)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm900069f
– volume: 29
  start-page: 26
  year: 2017
  ident: D0TA11255K-(cit35)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02626
– volume: 45
  start-page: 50
  year: 2018
  ident: D0TA11255K-(cit123)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.03.001
– start-page: 127361
  year: 2020
  ident: D0TA11255K-(cit206)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127361
– volume: 63
  start-page: 100
  year: 2009
  ident: D0TA11255K-(cit244)/*[position()=1]
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2008.09.002
– volume: 40
  start-page: 4879
  year: 2011
  ident: D0TA11255K-(cit89)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt10115c
– volume: 135
  start-page: 1
  year: 2018
  ident: D0TA11255K-(cit3)/*[position()=1]
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2017.09.066
– volume: 30
  start-page: 1704303
  year: 2018
  ident: D0TA11255K-(cit38)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704303
– volume: 40
  start-page: 4838
  year: 2011
  ident: D0TA11255K-(cit282)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt01820a
– volume: 1
  start-page: 5905
  year: 2016
  ident: D0TA11255K-(cit128)/*[position()=1]
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201601513
– volume: 41
  start-page: 1900333
  year: 2020
  ident: D0TA11255K-(cit54)/*[position()=1]
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201900333
– volume: 50
  start-page: 857
  year: 2017
  ident: D0TA11255K-(cit53)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00457
– volume: 12
  start-page: 1764
  year: 2020
  ident: D0TA11255K-(cit203)/*[position()=1]
  publication-title: Polymers
  doi: 10.3390/polym12081764
– volume: 10
  start-page: 21
  year: 2020
  ident: D0TA11255K-(cit215)/*[position()=1]
  publication-title: Appl. Sci.
– volume: 38
  start-page: 1450
  year: 2009
  ident: D0TA11255K-(cit12)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807080f
– volume: 271
  start-page: 9
  year: 2020
  ident: D0TA11255K-(cit50)/*[position()=1]
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117598
– volume: 117
  start-page: 6225
  year: 2017
  ident: D0TA11255K-(cit179)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00558
– volume: 18
  start-page: 6609
  year: 2018
  ident: D0TA11255K-(cit138)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00854
– volume: 427
  start-page: 213525
  year: 2021
  ident: D0TA11255K-(cit193)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213525
– volume: 1
  start-page: 16078
  year: 2016
  ident: D0TA11255K-(cit213)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.78
– volume: 112
  start-page: 1126
  year: 2012
  ident: D0TA11255K-(cit234)/*[position()=1]
  publication-title: J. Chem. Rev.
  doi: 10.1021/cr200101d
– volume: 178
  start-page: 2491
  year: 2005
  ident: D0TA11255K-(cit7)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2005.05.019
– volume: 2
  start-page: 1
  year: 2019
  ident: D0TA11255K-(cit146)/*[position()=1]
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0184-6
– start-page: e52094
  year: 2014
  ident: D0TA11255K-(cit27)/*[position()=1]
  publication-title: J. Visualized Exp.
  doi: 10.3791/52094
– volume: 38
  start-page: 1315
  year: 2009
  ident: D0TA11255K-(cit153)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802258p
– volume: 696
  start-page: 118
  year: 2017
  ident: D0TA11255K-(cit131)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.11.220
– volume: 203
  start-page: 238
  year: 2015
  ident: D0TA11255K-(cit137)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2014.10.018
– volume: 8
  start-page: 6289
  year: 2019
  ident: D0TA11255K-(cit285)/*[position()=1]
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2019.10.022
– volume: 23
  start-page: 5990
  year: 2013
  ident: D0TA11255K-(cit30)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301256
– volume: 6
  start-page: 38194
  year: 2016
  ident: D0TA11255K-(cit241)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep38194
– volume: 3
  start-page: 3256
  year: 2012
  ident: D0TA11255K-(cit168)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20558k
– volume: 17
  start-page: 100334
  year: 2020
  ident: D0TA11255K-(cit254)/*[position()=1]
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2020.100334
– volume: 15
  start-page: 1805473
  year: 2019
  ident: D0TA11255K-(cit84)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201805473
– volume: 27
  start-page: 416
  year: 2015
  ident: D0TA11255K-(cit107)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.05.034
– ident: D0TA11255K-(cit185)/*[position()=1]
– volume: 162
  start-page: 59
  year: 2019
  ident: D0TA11255K-(cit32)/*[position()=1]
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2019.01.024
– volume: 39
  start-page: 2269
  year: 2015
  ident: D0TA11255K-(cit225)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ01768D
– volume: 28
  start-page: 105045
  year: 2019
  ident: D0TA11255K-(cit276)/*[position()=1]
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab3d59
– volume: 19
  start-page: 121
  year: 2007
  ident: D0TA11255K-(cit96)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200601604
– volume: 37
  start-page: 244
  year: 2017
  ident: D0TA11255K-(cit125)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.01.018
– volume: 436
  start-page: 451
  year: 2018
  ident: D0TA11255K-(cit73)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.12.034
– volume: 3
  start-page: eaao3920
  year: 2017
  ident: D0TA11255K-(cit71)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao3920
– volume: 398
  start-page: 213016
  year: 2019
  ident: D0TA11255K-(cit235)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213016
– volume: 66
  start-page: e16816
  year: 2020
  ident: D0TA11255K-(cit283)/*[position()=1]
  publication-title: AIChE J.
  doi: 10.1002/aic.16816
– volume: 53
  start-page: 1187
  year: 2020
  ident: D0TA11255K-(cit11)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00106
– volume: 399
  start-page: 213023
  year: 2019
  ident: D0TA11255K-(cit155)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213023
– volume: 10
  start-page: 10209
  year: 2019
  ident: D0TA11255K-(cit45)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03916C
– volume: 13
  start-page: 16
  year: 2020
  ident: D0TA11255K-(cit216)/*[position()=1]
  publication-title: Mater
  doi: 10.3390/ma13122881
– volume: 47
  start-page: 6425
  year: 2011
  ident: D0TA11255K-(cit166)/*[position()=1]
  publication-title: ChemComm
– volume: 43
  start-page: 5933
  year: 2014
  ident: D0TA11255K-(cit199)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00076E
– volume: 1
  start-page: 513
  year: 2014
  ident: D0TA11255K-(cit269)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00065J
– volume: 53
  start-page: 6454
  year: 2014
  ident: D0TA11255K-(cit70)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402950
– volume: 7
  start-page: 2945
  year: 2016
  ident: D0TA11255K-(cit58)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01236
– volume: 45
  start-page: 180
  year: 2018
  ident: D0TA11255K-(cit115)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.03.012
– volume: 6
  start-page: 206
  year: 2007
  ident: D0TA11255K-(cit130)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1848
– volume-title: Failure Criteria in Fibre Reinforced Polymer Composites: the World-wide Failure Exercise
  year: 2004
  ident: D0TA11255K-(cit275)/*[position()=1]
– volume: 50
  start-page: 6853
  year: 2011
  ident: D0TA11255K-(cit154)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic200744y
– start-page: 125829
  year: 2020
  ident: D0TA11255K-(cit210)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125829
– volume: 224
  start-page: 302
  year: 2016
  ident: D0TA11255K-(cit75)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.11.060
– volume: 98
  start-page: 308
  year: 2018
  ident: D0TA11255K-(cit100)/*[position()=1]
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2017.10.038
– volume: 90
  start-page: 174
  year: 2016
  ident: D0TA11255K-(cit220)/*[position()=1]
  publication-title: Composites, Part A
  doi: 10.1016/j.compositesa.2016.05.004
– volume: 8
  start-page: 4559
  year: 2008
  ident: D0TA11255K-(cit92)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg800623v
– volume: 83
  start-page: 203
  year: 2018
  ident: D0TA11255K-(cit117)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultras.2017.06.012
– volume: 54
  start-page: 4259
  year: 2015
  ident: D0TA11255K-(cit197)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201500207
– volume: 268
  start-page: 7
  year: 2020
  ident: D0TA11255K-(cit51)/*[position()=1]
  publication-title: Appl. Catal., B
– volume: 10
  start-page: 5586
  year: 2018
  ident: D0TA11255K-(cit101)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18506
– volume: 229
  start-page: 51
  year: 2016
  ident: D0TA11255K-(cit160)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2016.04.017
– volume: 6
  start-page: 1645
  year: 2015
  ident: D0TA11255K-(cit135)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC03217A
– volume: 15
  start-page: 3656
  year: 2003
  ident: D0TA11255K-(cit230)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm0300866
– volume: 10
  start-page: 1420
  year: 2015
  ident: D0TA11255K-(cit64)/*[position()=1]
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)05082-4
– volume: 7
  start-page: 5828
  year: 2016
  ident: D0TA11255K-(cit205)/*[position()=1]
  publication-title: Poly. Chem.
  doi: 10.1039/C6PY01008C
– volume: 222
  start-page: 632
  year: 2016
  ident: D0TA11255K-(cit65)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.08.100
– volume: 8
  start-page: 36114
  year: 2018
  ident: D0TA11255K-(cit281)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C8RA06355A
– volume: 289
  start-page: 479
  year: 2016
  ident: D0TA11255K-(cit136)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.12.099
– volume: 3
  start-page: 20819
  year: 2015
  ident: D0TA11255K-(cit141)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04923G
– volume: 10
  start-page: 4899
  year: 2015
  ident: D0TA11255K-(cit66)/*[position()=1]
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)06674-9
– volume: 4
  start-page: 1383
  year: 2016
  ident: D0TA11255K-(cit145)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09349J
– volume: 131
  start-page: 358
  year: 2011
  ident: D0TA11255K-(cit192)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.09.056
– volume: 40
  start-page: 498
  year: 2011
  ident: D0TA11255K-(cit198)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00031K
– volume: 112
  start-page: 558
  year: 2018
  ident: D0TA11255K-(cit246)/*[position()=1]
  publication-title: Composites, Part A
  doi: 10.1016/j.compositesa.2018.07.001
– volume: 27
  start-page: 43
  year: 2019
  ident: D0TA11255K-(cit236)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.10.038
– volume: 48
  start-page: 47
  year: 2018
  ident: D0TA11255K-(cit88)/*[position()=1]
  publication-title: J. Chem. Crystallogr.
  doi: 10.1007/s10870-018-0708-4
– volume: 97
  start-page: 31
  year: 2016
  ident: D0TA11255K-(cit59)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.05.012
– volume: 8
  start-page: 211
  year: 2006
  ident: D0TA11255K-(cit118)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/b513750k
– volume: 6
  start-page: 802
  year: 2019
  ident: D0TA11255K-(cit139)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01342J
– volume-title: ProfMOF
  ident: D0TA11255K-(cit184)/*[position()=1]
– volume: 46
  start-page: 59
  year: 2018
  ident: D0TA11255K-(cit110)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.02.001
– volume: 1
  start-page: 2509
  year: 2020
  ident: D0TA11255K-(cit55)/*[position()=1]
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00650E
– volume: 166
  start-page: A1799
  year: 2019
  ident: D0TA11255K-(cit85)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0291910jes
– volume: 57
  start-page: 703
  year: 2018
  ident: D0TA11255K-(cit152)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b03712
– volume: 31
  start-page: 93
  year: 2016
  ident: D0TA11255K-(cit108)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.12.007
– volume: 4
  start-page: 4375
  year: 2014
  ident: D0TA11255K-(cit219)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep04375
– volume: 153
  start-page: 407
  year: 2019
  ident: D0TA11255K-(cit268)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.07.003
– volume: 136
  start-page: 105245
  year: 2019
  ident: D0TA11255K-(cit222)/*[position()=1]
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105245
– volume: 148
  start-page: 361
  year: 2019
  ident: D0TA11255K-(cit224)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.03.078
– ident: D0TA11255K-(cit182)/*[position()=1]
– volume: 5
  start-page: 32
  year: 2014
  ident: D0TA11255K-(cit17)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC52633J
– volume: 52
  start-page: 10316
  year: 2013
  ident: D0TA11255K-(cit140)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201302682
– volume: 5
  start-page: 63
  year: 2018
  ident: D0TA11255K-(cit261)/*[position()=1]
  publication-title: 3D Print. Addit. Manuf.
  doi: 10.1089/3dp.2017.0067
– volume: 46
  start-page: 3185
  year: 2017
  ident: D0TA11255K-(cit42)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00122C
– volume: 18
  start-page: 1096
  year: 2016
  ident: D0TA11255K-(cit133)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C5CE01868D
– volume: 117
  start-page: 10401
  year: 1995
  ident: D0TA11255K-(cit72)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00146a033
– volume: 56
  start-page: 2036
  year: 2017
  ident: D0TA11255K-(cit20)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b04920
– volume: 7
  start-page: 7301
  year: 2019
  ident: D0TA11255K-(cit180)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12178H
– volume: 28
  start-page: 3318
  year: 2016
  ident: D0TA11255K-(cit147)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00180
– volume: 2
  start-page: 561
  year: 2017
  ident: D0TA11255K-(cit148)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.02.005
– volume: 228
  start-page: 18
  year: 2017
  ident: D0TA11255K-(cit57)/*[position()=1]
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2017.04.009
– volume-title: Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis
  year: 2010
  ident: D0TA11255K-(cit18)/*[position()=1]
  doi: 10.1007/978-3-642-14613-8
– volume: 7
  start-page: 6629
  year: 2019
  ident: D0TA11255K-(cit163)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05587
– volume: 173
  start-page: 106906
  year: 2019
  ident: D0TA11255K-(cit278)/*[position()=1]
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2019.106906
– volume: 61
  start-page: 30
  year: 2012
  ident: D0TA11255K-(cit252)/*[position()=1]
  publication-title: Polym. Int.
  doi: 10.1002/pi.3186
– volume: 162
  start-page: 36
  year: 2012
  ident: D0TA11255K-(cit99)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.06.009
– volume: 9
  start-page: 5590
  year: 2017
  ident: D0TA11255K-(cit284)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15098
– start-page: 100687
  year: 2020
  ident: D0TA11255K-(cit211)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100687
– volume: 4
  start-page: 12356
  year: 2016
  ident: D0TA11255K-(cit69)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02118B
– volume: 1
  start-page: 83
  year: 2010
  ident: D0TA11255K-(cit200)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1091
– volume: 4
  start-page: 52338
  year: 2014
  ident: D0TA11255K-(cit229)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA09126D
– volume: 30
  start-page: 1667
  year: 2013
  ident: D0TA11255K-(cit36)/*[position()=1]
  publication-title: Kor. J. Chem. Eng.
  doi: 10.1007/s11814-013-0140-6
– volume: 141
  start-page: 19565
  year: 2019
  ident: D0TA11255K-(cit194)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10880
– volume: 363
  start-page: 138
  year: 2019
  ident: D0TA11255K-(cit270)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.09.086
– volume: 19
  start-page: 2729
  year: 2017
  ident: D0TA11255K-(cit33)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC01078H
– volume: 30
  start-page: 336
  year: 2019
  ident: D0TA11255K-(cit143)/*[position()=1]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2018.11.011
– volume: 27
  start-page: 4775
  year: 2015
  ident: D0TA11255K-(cit171)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502418
– volume: 16
  start-page: 626
  year: 2006
  ident: D0TA11255K-(cit61)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/B511962F
– volume: 109
  start-page: 195502
  year: 2012
  ident: D0TA11255K-(cit25)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.195502
– volume: 4
  start-page: 5443
  year: 2014
  ident: D0TA11255K-(cit16)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep05443
– volume: 54
  start-page: 6979
  year: 2013
  ident: D0TA11255K-(cit232)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.11.005
– volume: 5
  start-page: 63
  year: 2018
  ident: D0TA11255K-(cit257)/*[position()=1]
  publication-title: 3D Print. Addit. Manuf.
  doi: 10.1089/3dp.2017.0067
– volume: 14
  start-page: 5753
  year: 2012
  ident: D0TA11255K-(cit167)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/c2ce26115d
– volume: 59
  start-page: 11003
  year: 2020
  ident: D0TA11255K-(cit159)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002384
– volume-title: Advances in Unconventional Machining and Composites
  year: 2020
  ident: D0TA11255K-(cit277)/*[position()=1]
– volume: 58
  start-page: 2336
  year: 2019
  ident: D0TA11255K-(cit56)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201812655
– volume: 64
  start-page: 8553
  year: 2008
  ident: D0TA11255K-(cit113)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.06.036
– volume: 76
  start-page: 184106
  year: 2007
  ident: D0TA11255K-(cit24)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.184106
– volume: 2016
  start-page: 4490
  year: 2016
  ident: D0TA11255K-(cit144)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201600295
– volume: 72
  start-page: 1160
  year: 2012
  ident: D0TA11255K-(cit274)/*[position()=1]
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2012.03.025
– volume: 143
  start-page: 37
  year: 2011
  ident: D0TA11255K-(cit149)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2011.02.003
– volume: 55
  start-page: 2650
  year: 2016
  ident: D0TA11255K-(cit189)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b00045
– volume: 30
  start-page: 8639
  year: 2018
  ident: D0TA11255K-(cit44)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03881
– volume: 119
  start-page: 331
  year: 2009
  ident: D0TA11255K-(cit93)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.10.035
– volume: 330
  start-page: 1222
  year: 2017
  ident: D0TA11255K-(cit271)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.059
– volume: 23
  start-page: 249
  year: 2011
  ident: D0TA11255K-(cit37)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002854
– start-page: 1
  year: 2019
  ident: D0TA11255K-(cit247)/*[position()=1]
  publication-title: Polym.-Plast. Technol. Mater.
  doi: 10.1080/25740881.2019.1625393
– volume: 7
  start-page: 296
  year: 2006
  ident: D0TA11255K-(cit104)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200500449
– start-page: 1127
  year: 2007
  ident: D0TA11255K-(cit8)/*[position()=1]
  publication-title: ChemComm
  doi: 10.1039/B616516H
– volume: 34
  start-page: 365
  year: 2017
  ident: D0TA11255K-(cit127)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.06.011
– volume: 8
  start-page: 15284
  year: 2018
  ident: D0TA11255K-(cit212)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33704-4
– volume: 10
  start-page: 15112
  issue: 17
  year: 2018
  ident: D0TA11255K-(cit249)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17565
– volume: 152
  start-page: 231
  year: 2017
  ident: D0TA11255K-(cit237)/*[position()=1]
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.08.032
– volume: 45
  start-page: 197
  year: 2018
  ident: D0TA11255K-(cit124)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.03.014
– volume: 129
  start-page: 14176
  year: 2007
  ident: D0TA11255K-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076877g
– volume: 47
  start-page: 14491
  year: 2018
  ident: D0TA11255K-(cit157)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT03312A
– volume: 7
  start-page: 2553
  year: 2007
  ident: D0TA11255K-(cit164)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg070468e
– volume: 139
  start-page: 106113
  year: 2020
  ident: D0TA11255K-(cit267)/*[position()=1]
  publication-title: Composites, Part A
  doi: 10.1016/j.compositesa.2020.106113
– volume: 423
  start-page: 705
  year: 2003
  ident: D0TA11255K-(cit10)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature01650
– volume: 55
  start-page: 2028
  year: 2014
  ident: D0TA11255K-(cit214)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.03.008
– volume: 49
  start-page: 712
  year: 2010
  ident: D0TA11255K-(cit122)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906583
– volume: 56
  start-page: 3887
  year: 2017
  ident: D0TA11255K-(cit233)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b04204
– volume: 253
  start-page: 251
  year: 2017
  ident: D0TA11255K-(cit34)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.07.003
– volume: 65
  start-page: 21
  year: 2016
  ident: D0TA11255K-(cit173)/*[position()=1]
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2016.01.007
– volume: 8
  start-page: 845
  year: 2020
  ident: D0TA11255K-(cit242)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10130F
– volume: 43
  start-page: 6250
  year: 2004
  ident: D0TA11255K-(cit106)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200400655
– volume: 103
  start-page: 10186
  year: 2006
  ident: D0TA11255K-(cit82)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0602439103
– volume: 2
  start-page: 273
  year: 2015
  ident: D0TA11255K-(cit172)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C4QI00209A
– volume: 12
  start-page: 58
  year: 2020
  ident: D0TA11255K-(cit186)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-020-00240-5
– volume: 44
  start-page: 6774
  year: 2015
  ident: D0TA11255K-(cit43)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00307E
– volume: 9
  start-page: 35908
  year: 2017
  ident: D0TA11255K-(cit253)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11626
– volume: 356
  start-page: 170
  year: 2019
  ident: D0TA11255K-(cit105)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.011
– start-page: 3642
  year: 2008
  ident: D0TA11255K-(cit111)/*[position()=1]
  publication-title: ChemComm
  doi: 10.1039/B804126A
– volume: 197
  start-page: 171
  year: 2017
  ident: D0TA11255K-(cit132)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.03.140
– volume: 4
  start-page: 893
  year: 2019
  ident: D0TA11255K-(cit60)/*[position()=1]
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C9ME00007K
– volume: 2
  start-page: 19473
  year: 2014
  ident: D0TA11255K-(cit68)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04203D
– volume: 33
  start-page: e4801
  year: 2019
  ident: D0TA11255K-(cit195)/*[position()=1]
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.4801
– volume: 55
  start-page: 2190
  year: 2019
  ident: D0TA11255K-(cit259)/*[position()=1]
  publication-title: ChemComm
– volume: 106
  start-page: 3587
  year: 2007
  ident: D0TA11255K-(cit221)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.27027
– volume: 12
  start-page: 108
  year: 2020
  ident: D0TA11255K-(cit238)/*[position()=1]
  publication-title: Polymers
  doi: 10.3390/polym12010108
– volume: 2
  start-page: 35
  year: 2016
  ident: D0TA11255K-(cit22)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.11.005
– volume: 168
  start-page: 57
  year: 2013
  ident: D0TA11255K-(cit77)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.09.028
– volume: 112
  start-page: 933
  year: 2012
  ident: D0TA11255K-(cit39)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200304e
– volume: 43
  start-page: 5468
  year: 2014
  ident: D0TA11255K-(cit208)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60472A
– volume: 4
  start-page: 15720
  year: 2014
  ident: D0TA11255K-(cit79)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C3RA47744D
– volume: 133
  start-page: 14546
  year: 2011
  ident: D0TA11255K-(cit129)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206082s
– volume: 44
  start-page: 19018
  year: 2015
  ident: D0TA11255K-(cit142)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT03359D
– volume: 138
  start-page: 5785
  year: 2016
  ident: D0TA11255K-(cit262)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02553
– volume: 10
  start-page: 4542
  year: 2019
  ident: D0TA11255K-(cit161)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC00135B
– volume: 132
  start-page: 18030
  year: 2010
  ident: D0TA11255K-(cit187)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109268m
– volume-title: Industrial Internet of Things: Cybermanufacturing Systems
  year: 2017
  ident: D0TA11255K-(cit91)/*[position()=1]
  doi: 10.1007/978-3-319-42559-7_22
– volume: 56
  start-page: 3609
  year: 2020
  ident: D0TA11255K-(cit202)/*[position()=1]
  publication-title: ChemComm
– volume: 132
  start-page: 121
  year: 2010
  ident: D0TA11255K-(cit114)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2010.02.008
– volume: 7
  start-page: 14504
  year: 2019
  ident: D0TA11255K-(cit134)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03578H
– volume: 2
  start-page: 462
  year: 2015
  ident: D0TA11255K-(cit31)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402429
– volume: 3
  start-page: 896
  year: 2016
  ident: D0TA11255K-(cit258)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C6QI00042H
– volume: 22
  start-page: 10119
  year: 2012
  ident: D0TA11255K-(cit188)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15675j
– volume: 129
  start-page: 105720
  year: 2020
  ident: D0TA11255K-(cit245)/*[position()=1]
  publication-title: Composites, Part A
  doi: 10.1016/j.compositesa.2019.105720
– volume: 5
  start-page: eaav5340
  year: 2019
  ident: D0TA11255K-(cit264)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5340
– start-page: 5968
  year: 2005
  ident: D0TA11255K-(cit196)/*[position()=1]
  publication-title: ChemComm
  doi: 10.1039/B508588H
– volume: 46
  start-page: 3453
  year: 2017
  ident: D0TA11255K-(cit15)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00109F
– start-page: 108019
  year: 2020
  ident: D0TA11255K-(cit209)/*[position()=1]
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2020.108019
– volume: 10
  start-page: 1250
  year: 2018
  ident: D0TA11255K-(cit231)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16711
– volume: 138
  start-page: 905
  year: 2019
  ident: D0TA11255K-(cit239)/*[position()=1]
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08267-9
– volume: 47
  start-page: 6267
  year: 2018
  ident: D0TA11255K-(cit178)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00268A
– volume: 24
  start-page: 8634
  year: 2008
  ident: D0TA11255K-(cit76)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la8008656
– volume: 24
  start-page: 475
  year: 1963
  ident: D0TA11255K-(cit240)/*[position()=1]
  publication-title: Am. Ind. Hyg. Assoc.
  doi: 10.1080/00028896309343250
– volume: 12
  start-page: 6
  year: 2017
  ident: D0TA11255K-(cit126)/*[position()=1]
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1798-6
– volume: 19
  start-page: 4949
  year: 2019
  ident: D0TA11255K-(cit94)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00170
– volume: 145
  start-page: 433
  year: 2019
  ident: D0TA11255K-(cit248)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.028
– volume: 161
  start-page: 48
  year: 2012
  ident: D0TA11255K-(cit170)/*[position()=1]
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.05.021
– volume: 3
  start-page: 13
  year: 2017
  ident: D0TA11255K-(cit120)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00277
– volume: 417
  start-page: 213366
  year: 2020
  ident: D0TA11255K-(cit176)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213366
– volume: 69
  start-page: 13
  year: 2017
  ident: D0TA11255K-(cit81)/*[position()=1]
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2017.05.002
– volume: 31
  start-page: 383
  year: 2016
  ident: D0TA11255K-(cit90)/*[position()=1]
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.01.024
– volume: 326
  start-page: 570
  year: 2017
  ident: D0TA11255K-(cit97)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.05.169
– volume: 54
  start-page: 6152
  year: 2015
  ident: D0TA11255K-(cit201)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502733
– volume: 56
  start-page: 6599
  year: 2017
  ident: D0TA11255K-(cit119)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00707
– volume: 292
  start-page: 1
  year: 2015
  ident: D0TA11255K-(cit109)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.02.014
– volume: 140
  start-page: 2947
  year: 2018
  ident: D0TA11255K-(cit158)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12633
– volume: 21
  start-page: 1425
  year: 2009
  ident: D0TA11255K-(cit21)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm900049x
– volume: 11
  start-page: 4413
  year: 2011
  ident: D0TA11255K-(cit98)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg200594e
– volume: 60
  start-page: 233
  year: 2020
  ident: D0TA11255K-(cit226)/*[position()=1]
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.25276
– volume: 11
  start-page: 743
  year: 2009
  ident: D0TA11255K-(cit121)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/b822934c
– volume: 12
  start-page: 3489
  year: 2012
  ident: D0TA11255K-(cit63)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg300552w
– volume-title: Polymer Nanocomposites
  year: 2006
  ident: D0TA11255K-(cit1)/*[position()=1]
– volume: 43
  start-page: 5815
  year: 2014
  ident: D0TA11255K-(cit19)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00010B
SSID ssj0000800699
Score 2.5462275
SecondaryResourceType review_article
Snippet Metal-organic frameworks (MOFs) have emerged as a new class of crystalline nanomaterials with ultrahigh porosities and high internal surface areas. Recently,...
Metal–organic frameworks (MOFs) have emerged as a new class of crystalline nanomaterials with ultrahigh porosities and high internal surface areas. Recently,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4348
SubjectTerms Aerospace industry
Boron
Boron nitride
chemistry
Composite structures
coordination polymers
Defense industry
Graphene
Hybrid composites
Hybridization
Industrial applications
Mechanical properties
Metal-organic frameworks
Nanocomposites
Nanomaterials
Nanotechnology
polymer nanocomposites
Polymers
Porous materials
Substrates
Synthesis
Title Metal-organic framework structure-property relationships for high-performance multifunctional polymer nanocomposite applications
URI https://www.proquest.com/docview/2494900840
https://www.proquest.com/docview/2551990780
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJsoGM4AVFGU4c5_JYwdCAFYTUob1VduLQsTWtulYCnvhn_DWO7dhxd5GAl8iyrbTJ-Wx_5-RcEHoRyaSSPBWhyEoZJrSOQwF6QwjUuswzUaSMqWjk0cf08Dh5f8JOer3fntfSeiX2y5_XxpX8j1ShD-SqomT_QbLuptABbZAvXEHCcP0rGY8kUOfQFGYqg9r6WQUmKex6KcOFsrUvgWgvrdPb9HShUzAEKlFxuPDiBrRvoTrnWvPgYn7-YyaXQcObufI8V-5dMvC_eN_AbIEEm6cPSltObj8YmsggO6IzjZu4Q226t3FcylXXWfmPm-b0DHahaVtE-Ytqrp2tG2brksTBp5n1ywfkTme80r2j-bcVF-7YOdKdn9e8-Q5L4qtv7oiNv5dnAY0JIyoBqtm0pd9nSuPabb3w0Jt7W3RCk9w77hNqSghdOUoIVZlYK7LiQEkZO-sOTOfG2A1uoe0Y9BTSR9vDg_G7I2fmU4Q81VVM3R-3SXJp8aq7wSYt6nSdraUtRKMJz_guutPKEw8N7O6hnmzuo9te_soH6NcGALEDIL4KQLwBQAzix5cBiC8BELcAxBsAxD4AH6Lx24Px68OwLekRlpRFq5CJMqK1BF5aJ6KWWQ4adVZnOY8KAUw4j4Hw86gCjp2AXgztTNCaJykRXFZ5THdQv5k38hHCRBJSFlXKU1YmGeV5WlRwFtW1YAWLBRugl_aFTso23b2qunI-0W4XtJi8IeOhfvkfBui5m7swSV6unbVn5TJpN4GLSayyO6miFGSAnrlhWFrquxtv5HwNc0ArAdIHDztAOyBP9xud-B_fNLCLbnWrYA_1QXzyCdDglXjaQu0PEe7ARQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-organic+framework+structure-property+relationships+for+high-performance+multifunctional+polymer+nanocomposite+applications&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Unnikrishnan%2C+Vishnu&rft.au=Zabihi%2C+Omid&rft.au=Ahmadi%2C+Mojtaba&rft.au=Li%2C+Quanxiang&rft.date=2021-03-02&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=8&rft.spage=4348&rft.epage=4378&rft_id=info:doi/10.1039%2Fd0ta11255k&rft.externalDocID=d0ta11255k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon