Fabrication of a microcantilever-based aerosol detector with integrated electrostatic on-chip ultrafine particle separation and collection
In this paper, fabrication and testing of a miniaturized microcantilever-based particulate matter detector with integrated electrostatic on-chip ultrafine particle (UFP) separation and collection are presented. Mass added to the sensor causes a resonance frequency shift. To attract naturally charged...
Saved in:
Published in | Journal of micromechanics and microengineering Vol. 30; no. 1; pp. 14001 - 14013 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-1317 1361-6439 |
DOI | 10.1088/1361-6439/ab4e56 |
Cover
Abstract | In this paper, fabrication and testing of a miniaturized microcantilever-based particulate matter detector with integrated electrostatic on-chip ultrafine particle (UFP) separation and collection are presented. Mass added to the sensor causes a resonance frequency shift. To attract naturally charged particles, the cantilever is equipped with a collection electrode. In addition, a µ-channel is integrated, to improve the particle collection efficiency and to enable a size/mass-related particle separation. For electrical read-out, piezo-resistive struts are attached to the cantilever sidewalls near its clamping. This design offers high miniaturization potential, since no integration of transducing electronics on the cantilever beam is needed. The sensors are fabricated using Si bulk material and standard micromachining technology; the cantilevers have a thickness of 3 ± 0.5 µm, a width of 3.1 ± 0.3 µm, 5.9 ± 0.4 µm or 10.5 ± 0.4 µm and a length of 118.7 ± 0.8 µm, 168.8 ± 0.8 µm or 171.2 ± 1 µm, respectively. To this end, a front-side release process using cryogenic inductive-coupled plasma reactive ion etching was developed, which does not require additional sidewall passivation steps. Testing of the resonator function by operating the sensor inside a scanning electron microscope and reference measurements inside a temperature-controlled test chamber using synthetic carbon UFPs (~160 nm average mass concentration distribution) and a fast mobility particle sizer as a reference instrument were carried out. Here, the ability to detect low UFP mass concentrations in the range <10 µg m−3 could be shown with a limit of detection of ~1 µg m−3 and a collection time of ~10 min. In addition, a voltage dependence of the collection efficiency was found at constant UFP-concentration conditions, which is an indication of size-selective UFP collection. |
---|---|
AbstractList | In this paper, fabrication and testing of a miniaturized microcantilever-based particulate matter detector with integrated electrostatic on-chip ultrafine particle (UFP) separation and collection are presented. Mass added to the sensor causes a resonance frequency shift. To attract naturally charged particles, the cantilever is equipped with a collection electrode. In addition, a µ-channel is integrated, to improve the particle collection efficiency and to enable a size/mass-related particle separation. For electrical read-out, piezo-resistive struts are attached to the cantilever sidewalls near its clamping. This design offers high miniaturization potential, since no integration of transducing electronics on the cantilever beam is needed. The sensors are fabricated using Si bulk material and standard micromachining technology; the cantilevers have a thickness of 3 ± 0.5 µm, a width of 3.1 ± 0.3 µm, 5.9 ± 0.4 µm or 10.5 ± 0.4 µm and a length of 118.7 ± 0.8 µm, 168.8 ± 0.8 µm or 171.2 ± 1 µm, respectively. To this end, a front-side release process using cryogenic inductive-coupled plasma reactive ion etching was developed, which does not require additional sidewall passivation steps. Testing of the resonator function by operating the sensor inside a scanning electron microscope and reference measurements inside a temperature-controlled test chamber using synthetic carbon UFPs (~160 nm average mass concentration distribution) and a fast mobility particle sizer as a reference instrument were carried out. Here, the ability to detect low UFP mass concentrations in the range <10 µg m−3 could be shown with a limit of detection of ~1 µg m−3 and a collection time of ~10 min. In addition, a voltage dependence of the collection efficiency was found at constant UFP-concentration conditions, which is an indication of size-selective UFP collection. |
Author | Kirsch, Ina Bertke, Maik Uhde, Erik Setiono, Andi Peiner, Erwin Xu, Jiushuai |
Author_xml | – sequence: 1 givenname: Maik orcidid: 0000-0003-3902-8521 surname: Bertke fullname: Bertke, Maik email: M.Bertke@tu-braunschweig.de organization: Laboratory for Emerging Nanometrology (LENA) , Langer Kamp 6a, D-38106 Braunschweig, Germany – sequence: 2 givenname: Jiushuai orcidid: 0000-0002-7279-4378 surname: Xu fullname: Xu, Jiushuai organization: Laboratory for Emerging Nanometrology (LENA) , Langer Kamp 6a, D-38106 Braunschweig, Germany – sequence: 3 givenname: Andi orcidid: 0000-0002-2271-2792 surname: Setiono fullname: Setiono, Andi organization: Laboratory for Emerging Nanometrology (LENA) , Langer Kamp 6a, D-38106 Braunschweig, Germany – sequence: 4 givenname: Ina surname: Kirsch fullname: Kirsch, Ina organization: Fraunhofer Wilhelm-Klauditz-Institut (WKI) , Bienroder Weg 54E, D-38108 Braunschweig, Germany – sequence: 5 givenname: Erik orcidid: 0000-0002-8704-3702 surname: Uhde fullname: Uhde, Erik organization: Fraunhofer Wilhelm-Klauditz-Institut (WKI) , Bienroder Weg 54E, D-38108 Braunschweig, Germany – sequence: 6 givenname: Erwin orcidid: 0000-0001-5801-813X surname: Peiner fullname: Peiner, Erwin organization: Laboratory for Emerging Nanometrology (LENA) , Langer Kamp 6a, D-38106 Braunschweig, Germany |
BookMark | eNp9kUtPAyEUhYnRxLa6d8nOjWOhPGa6NI2vpIkbXZM7zB1LM4UJQzX-BX-11BoXRl0Bl_Md7j2MyaEPHgk54-ySs6qacqF5oaWYT6GWqPQBGX2XDsmIzTUruODlMRkPw5oxzitejcj7DdTRWUgueBpaCnTjbAwWfHIdvmAsahiwoYAxDKGjDSa0KUT66tKKOp_wOULKAuxyPWtStrI0-MKuXE-3XYrQOo-0h5gvOqQD5u3-PfANtaHbkfl4Qo5a6AY8_Von5Onm-nFxVywfbu8XV8vCCsVTobSWisu2gVo0ogLJSixLizNV2VIi07Ww86YpJXBt1Wxua6lKBdbOWjWTtRITove-ec5hiNga69JnQ7lX1xnOzC5Rs4vP7OIz-0QzyH6AfXQbiG__Ied7xIXerMM2-jyZWW82RmTEMC7zT5i-abPy4hfln8YfG0KaYw |
CODEN | JMMIEZ |
CitedBy_id | crossref_primary_10_3390_bios12040191 crossref_primary_10_1088_2631_8695_ac743a crossref_primary_10_1063_5_0166284 crossref_primary_10_3390_s21124088 crossref_primary_10_3390_mi11010007 crossref_primary_10_3390_s20030618 crossref_primary_10_3390_s21113731 crossref_primary_10_1016_j_snb_2025_137665 crossref_primary_10_3390_s20174784 |
Cites_doi | 10.1016/j.snb.2018.06.017 10.1016/j.sna.2018.06.012 10.1016/j.mee.2015.03.037 10.1109/MEMSYS.2018.8346486 10.1016/j.rser.2019.01.007 10.1016/j.snb.2013.02.053 10.3390/mi7090160 10.1016/j.nantod.2019.03.010 10.1080/10408436.2016.1244656 10.5194/jsss-8-1-2019 10.5194/jsss-4-111-2015 10.1007/s00542-013-1991-9 10.1016/j.bios.2018.05.028 10.1016/j.apr.2017.10.009 10.1088/1361-6439/aa6b0d 10.3390/chemosensors7010001 10.1021/acs.analchem.7b00723 10.5162/sensoren2019/3.2.1 10.1007/s00542-013-1992-8 10.1109/JSEN.2018.2879233 10.1109/TRANSDUCERS.2017.7994342 10.1007/s11051-017-4105-2 10.1021/acsnano.6b08551 10.1039/C4CS00362D 10.1007/s00542-013-2032-4 10.1016/j.aca.2015.11.008 10.3390/chemosensors5010007 10.1117/12.2266084 10.31438/trf.hh2016.91 10.1007/s10646-008-0210-4 10.1088/0960-1317/19/10/105005 10.1016/j.sna.2019.01.013 10.1038/srep01288 10.1109/JSEN.2016.2638964 |
ContentType | Journal Article |
Copyright | 2019 IOP Publishing Ltd |
Copyright_xml | – notice: 2019 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6439/ab4e56 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Fabrication of a microcantilever-based aerosol detector with integrated electrostatic on-chip ultrafine particle separation and collection |
EISSN | 1361-6439 |
ExternalDocumentID | 10_1088_1361_6439_ab4e56 jmmab4e56 |
GrantInformation_xml | – fundername: Niedersächsisches Vorab, Germany grantid: Quantum- and Nanometrology (QUANOMET); NP 2-2 – fundername: Ministry of Research, Technology and Higher Education of the Republic of Indonesia (RISTEKDIKTI) grantid: 343/RISET-Pro/FGS/VII/2016 (World Bank Loan No. 8245-ID) – fundername: China Scholarship Council (CSC) grantid: Grant CSC 201506300019 |
GroupedDBID | -~X 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAHTB AAJIO AAJKP AATNI ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c351t-5664514fdab3d38a407e77ce258c74e06b3c9dd74a16c529cb4575acc2f524b53 |
IEDL.DBID | IOP |
ISSN | 0960-1317 |
IngestDate | Tue Jul 01 02:48:17 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 Wed Aug 21 03:33:25 EDT 2024 Thu Jan 07 13:53:44 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-5664514fdab3d38a407e77ce258c74e06b3c9dd74a16c529cb4575acc2f524b53 |
Notes | JMM-104368.R1 |
ORCID | 0000-0002-8704-3702 0000-0001-5801-813X 0000-0002-7279-4378 0000-0003-3902-8521 0000-0002-2271-2792 |
PageCount | 13 |
ParticipantIDs | iop_journals_10_1088_1361_6439_ab4e56 crossref_citationtrail_10_1088_1361_6439_ab4e56 crossref_primary_10_1088_1361_6439_ab4e56 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of micromechanics and microengineering |
PublicationTitleAbbrev | JMM |
PublicationTitleAlternate | J. Micromech. Microeng |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 23 24 25 26 Sökmen Ü (28) 2009; 19 27 29 Vishwakarma V (3) 2010; 9 30 31 10 32 11 33 12 34 13 Bertke M (18) 2017; 27 35 36 15 16 17 19 1 2 4 Pavani M (14) 2017; 9 5 6 7 8 9 20 21 |
References_xml | – ident: 29 doi: 10.1016/j.snb.2018.06.017 – ident: 22 doi: 10.1016/j.sna.2018.06.012 – ident: 17 doi: 10.1016/j.mee.2015.03.037 – ident: 33 doi: 10.1109/MEMSYS.2018.8346486 – ident: 6 doi: 10.1016/j.rser.2019.01.007 – ident: 19 doi: 10.1016/j.snb.2013.02.053 – ident: 15 doi: 10.3390/mi7090160 – ident: 1 doi: 10.1016/j.nantod.2019.03.010 – ident: 10 doi: 10.1080/10408436.2016.1244656 – ident: 30 doi: 10.5194/jsss-8-1-2019 – ident: 35 doi: 10.5194/jsss-4-111-2015 – ident: 23 doi: 10.1007/s00542-013-1991-9 – ident: 12 doi: 10.1016/j.bios.2018.05.028 – ident: 5 doi: 10.1016/j.apr.2017.10.009 – volume: 27 issn: 0960-1317 year: 2017 ident: 18 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aa6b0d – ident: 24 doi: 10.3390/chemosensors7010001 – ident: 13 doi: 10.1021/acs.analchem.7b00723 – ident: 16 doi: 10.5162/sensoren2019/3.2.1 – ident: 25 doi: 10.1007/s00542-013-1992-8 – ident: 27 doi: 10.1109/JSEN.2018.2879233 – ident: 36 doi: 10.1109/TRANSDUCERS.2017.7994342 – ident: 4 doi: 10.1007/s11051-017-4105-2 – ident: 2 doi: 10.1021/acsnano.6b08551 – ident: 8 doi: 10.1039/C4CS00362D – volume: 9 start-page: 455 year: 2010 ident: 3 publication-title: J. Miner. Mater. Charact. Eng. – ident: 26 doi: 10.1007/s00542-013-2032-4 – ident: 9 doi: 10.1016/j.aca.2015.11.008 – ident: 11 doi: 10.3390/chemosensors5010007 – ident: 20 doi: 10.1117/12.2266084 – volume: 9 start-page: 439 year: 2017 ident: 14 publication-title: Int. J. Commun. Netw. Inf. Secur. – ident: 31 doi: 10.31438/trf.hh2016.91 – ident: 7 doi: 10.1007/s10646-008-0210-4 – volume: 19 issn: 0960-1317 year: 2009 ident: 28 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/19/10/105005 – ident: 34 doi: 10.1016/j.sna.2019.01.013 – ident: 21 doi: 10.1038/srep01288 – ident: 32 doi: 10.1109/JSEN.2016.2638964 |
SSID | ssj0011818 |
Score | 2.340243 |
Snippet | In this paper, fabrication and testing of a miniaturized microcantilever-based particulate matter detector with integrated electrostatic on-chip ultrafine... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 14001 |
SubjectTerms | deep reactive ion etching N/MEMS nanoparticle particle detection particle separation sensors under-etching |
Title | Fabrication of a microcantilever-based aerosol detector with integrated electrostatic on-chip ultrafine particle separation and collection |
URI | https://iopscience.iop.org/article/10.1088/1361-6439/ab4e56 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BVSU4QEtBPErlAxw4eHcT21mvOKGKFa0E9FAkDpUsvyIWdpNoN3vhJ_CrGSdmBRVCVW85TGxnPPF88_AMwCFqxEHutKDeGkY5Qn6qtZZUJkIjHhCc9cLd4YvL7Pya_7wRN0twsrgLU1bx6O_gY1souGVhTIiT3YRlCQ2KtKsN9yJbhg-hcWUQ7x9XvxYhBFRdzTGMEJ0mqCVjjPKtEV7ppGWc94WKGW7An-fFtZkl9515bTr24a-6jf-5-k-wHqEnOW1JP8OSLzZh7UVBwk342CSE2tkXeBxqM43-PFLmRJNJSN0LG4HnCMo_DfrPEe3xk8oxcb5u_P8kOHbJogiFI7HPTri4NLKkLKi9HVVkPq6nOseJSRWXTma-LUOO8-nCkSCgTZpYsQXXw7Pf389p7NtALRNJTREhcsRhKAKGOSY12oy-37c-FdL2ue9lhtmBc32uk8yKdGANR9CorU1zkXIj2DasFGXhd4Bwy4VhgnE-kFwyNAfCGBnTvidsnppd6D7vnLKxqHnorTFWTXBdShX4rQK_VcvvXThevFG1BT3eoT3CbVTxr569Q0de0d1NJoohrQrmay9Rlcv3_nGofVhNg0XfOHm-wko9nfsDhD21-daI9xMa7fvD |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUCs4QEuLoDzqQ3vowbub2M56jwhYQR-UQ5G4uX5FBXaTaDd74SfwqztOzAoqhCpxy2Hix9ie-cYzngH4hBpxkDstqLeGUY6Qn2qtJZWJ0IgHBGe98Hb4x1l2csG_XorLWOe0eQtTVlH0d_CzTRTcsjAGxMluwrKEBkXa1YZ7kXUrly_CskBRHGK6Tn-ez90IqL4aUYwwnSaoKaOf8qlWHumlRez7gZoZrsPv-wG20SU3nVltOvb2n9yNL5jBG1iLEJQctORvYcEXG7D6IDHhBrxqAkPt9B3cDbWZxHs9UuZEk3EI4QsLgvIEzwENetAR7XFa5Yg4Xzd-ABIueMk8GYUjsd5OeMB0ZUlZUPvnqiKzUT3ROXZMqjh8MvVtOnLsTxeOhI3ahIsV7-FiePzr8ITG-g3UMpHUFJEiRzyGW8Ewx6RG29H3-9anQto-973MMDtwrs91klmRDqzhCB61tWkuUm4E24Sloiz8FhBuuTBMMM4HkkuGZkFoI2Pa94TNU7MN3fvVUzYmNw81NkaqcbJLqQLPVeC5anm-DV_mf1RtYo9naD_jUqp4uqfP0JFHdNfjsWJIq4IZ20sULvOH_2zqI7w-Pxqq76dn33ZgJQ1GfnPvswtL9WTm9xAJ1Wa_2e1_ASslATY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+a+microcantilever-based+aerosol+detector+with+integrated+electrostatic+on-chip+ultrafine+particle+separation+and+collection&rft.jtitle=Journal+of+micromechanics+and+microengineering&rft.au=Bertke%2C+Maik&rft.au=Xu%2C+Jiushuai&rft.au=Setiono%2C+Andi&rft.au=Kirsch%2C+Ina&rft.date=2020-01-01&rft.issn=0960-1317&rft.eissn=1361-6439&rft.volume=30&rft.issue=1&rft.spage=14001&rft_id=info:doi/10.1088%2F1361-6439%2Fab4e56&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6439_ab4e56 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1317&client=summon |