Fabrication of a microcantilever-based aerosol detector with integrated electrostatic on-chip ultrafine particle separation and collection

In this paper, fabrication and testing of a miniaturized microcantilever-based particulate matter detector with integrated electrostatic on-chip ultrafine particle (UFP) separation and collection are presented. Mass added to the sensor causes a resonance frequency shift. To attract naturally charged...

Full description

Saved in:
Bibliographic Details
Published inJournal of micromechanics and microengineering Vol. 30; no. 1; pp. 14001 - 14013
Main Authors Bertke, Maik, Xu, Jiushuai, Setiono, Andi, Kirsch, Ina, Uhde, Erik, Peiner, Erwin
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.01.2020
Subjects
Online AccessGet full text
ISSN0960-1317
1361-6439
DOI10.1088/1361-6439/ab4e56

Cover

Abstract In this paper, fabrication and testing of a miniaturized microcantilever-based particulate matter detector with integrated electrostatic on-chip ultrafine particle (UFP) separation and collection are presented. Mass added to the sensor causes a resonance frequency shift. To attract naturally charged particles, the cantilever is equipped with a collection electrode. In addition, a µ-channel is integrated, to improve the particle collection efficiency and to enable a size/mass-related particle separation. For electrical read-out, piezo-resistive struts are attached to the cantilever sidewalls near its clamping. This design offers high miniaturization potential, since no integration of transducing electronics on the cantilever beam is needed. The sensors are fabricated using Si bulk material and standard micromachining technology; the cantilevers have a thickness of 3  ±  0.5 µm, a width of 3.1  ±  0.3 µm, 5.9  ±  0.4 µm or 10.5  ±  0.4 µm and a length of 118.7  ±  0.8 µm, 168.8  ±  0.8 µm or 171.2  ±  1 µm, respectively. To this end, a front-side release process using cryogenic inductive-coupled plasma reactive ion etching was developed, which does not require additional sidewall passivation steps. Testing of the resonator function by operating the sensor inside a scanning electron microscope and reference measurements inside a temperature-controlled test chamber using synthetic carbon UFPs (~160 nm average mass concentration distribution) and a fast mobility particle sizer as a reference instrument were carried out. Here, the ability to detect low UFP mass concentrations in the range  <10 µg m−3 could be shown with a limit of detection of ~1 µg m−3 and a collection time of ~10 min. In addition, a voltage dependence of the collection efficiency was found at constant UFP-concentration conditions, which is an indication of size-selective UFP collection.
AbstractList In this paper, fabrication and testing of a miniaturized microcantilever-based particulate matter detector with integrated electrostatic on-chip ultrafine particle (UFP) separation and collection are presented. Mass added to the sensor causes a resonance frequency shift. To attract naturally charged particles, the cantilever is equipped with a collection electrode. In addition, a µ-channel is integrated, to improve the particle collection efficiency and to enable a size/mass-related particle separation. For electrical read-out, piezo-resistive struts are attached to the cantilever sidewalls near its clamping. This design offers high miniaturization potential, since no integration of transducing electronics on the cantilever beam is needed. The sensors are fabricated using Si bulk material and standard micromachining technology; the cantilevers have a thickness of 3  ±  0.5 µm, a width of 3.1  ±  0.3 µm, 5.9  ±  0.4 µm or 10.5  ±  0.4 µm and a length of 118.7  ±  0.8 µm, 168.8  ±  0.8 µm or 171.2  ±  1 µm, respectively. To this end, a front-side release process using cryogenic inductive-coupled plasma reactive ion etching was developed, which does not require additional sidewall passivation steps. Testing of the resonator function by operating the sensor inside a scanning electron microscope and reference measurements inside a temperature-controlled test chamber using synthetic carbon UFPs (~160 nm average mass concentration distribution) and a fast mobility particle sizer as a reference instrument were carried out. Here, the ability to detect low UFP mass concentrations in the range  <10 µg m−3 could be shown with a limit of detection of ~1 µg m−3 and a collection time of ~10 min. In addition, a voltage dependence of the collection efficiency was found at constant UFP-concentration conditions, which is an indication of size-selective UFP collection.
Author Kirsch, Ina
Bertke, Maik
Uhde, Erik
Setiono, Andi
Peiner, Erwin
Xu, Jiushuai
Author_xml – sequence: 1
  givenname: Maik
  orcidid: 0000-0003-3902-8521
  surname: Bertke
  fullname: Bertke, Maik
  email: M.Bertke@tu-braunschweig.de
  organization: Laboratory for Emerging Nanometrology (LENA) , Langer Kamp 6a, D-38106 Braunschweig, Germany
– sequence: 2
  givenname: Jiushuai
  orcidid: 0000-0002-7279-4378
  surname: Xu
  fullname: Xu, Jiushuai
  organization: Laboratory for Emerging Nanometrology (LENA) , Langer Kamp 6a, D-38106 Braunschweig, Germany
– sequence: 3
  givenname: Andi
  orcidid: 0000-0002-2271-2792
  surname: Setiono
  fullname: Setiono, Andi
  organization: Laboratory for Emerging Nanometrology (LENA) , Langer Kamp 6a, D-38106 Braunschweig, Germany
– sequence: 4
  givenname: Ina
  surname: Kirsch
  fullname: Kirsch, Ina
  organization: Fraunhofer Wilhelm-Klauditz-Institut (WKI) , Bienroder Weg 54E, D-38108 Braunschweig, Germany
– sequence: 5
  givenname: Erik
  orcidid: 0000-0002-8704-3702
  surname: Uhde
  fullname: Uhde, Erik
  organization: Fraunhofer Wilhelm-Klauditz-Institut (WKI) , Bienroder Weg 54E, D-38108 Braunschweig, Germany
– sequence: 6
  givenname: Erwin
  orcidid: 0000-0001-5801-813X
  surname: Peiner
  fullname: Peiner, Erwin
  organization: Laboratory for Emerging Nanometrology (LENA) , Langer Kamp 6a, D-38106 Braunschweig, Germany
BookMark eNp9kUtPAyEUhYnRxLa6d8nOjWOhPGa6NI2vpIkbXZM7zB1LM4UJQzX-BX-11BoXRl0Bl_Md7j2MyaEPHgk54-ySs6qacqF5oaWYT6GWqPQBGX2XDsmIzTUruODlMRkPw5oxzitejcj7DdTRWUgueBpaCnTjbAwWfHIdvmAsahiwoYAxDKGjDSa0KUT66tKKOp_wOULKAuxyPWtStrI0-MKuXE-3XYrQOo-0h5gvOqQD5u3-PfANtaHbkfl4Qo5a6AY8_Von5Onm-nFxVywfbu8XV8vCCsVTobSWisu2gVo0ogLJSixLizNV2VIi07Ww86YpJXBt1Wxua6lKBdbOWjWTtRITove-ec5hiNga69JnQ7lX1xnOzC5Rs4vP7OIz-0QzyH6AfXQbiG__Ied7xIXerMM2-jyZWW82RmTEMC7zT5i-abPy4hfln8YfG0KaYw
CODEN JMMIEZ
CitedBy_id crossref_primary_10_3390_bios12040191
crossref_primary_10_1088_2631_8695_ac743a
crossref_primary_10_1063_5_0166284
crossref_primary_10_3390_s21124088
crossref_primary_10_3390_mi11010007
crossref_primary_10_3390_s20030618
crossref_primary_10_3390_s21113731
crossref_primary_10_1016_j_snb_2025_137665
crossref_primary_10_3390_s20174784
Cites_doi 10.1016/j.snb.2018.06.017
10.1016/j.sna.2018.06.012
10.1016/j.mee.2015.03.037
10.1109/MEMSYS.2018.8346486
10.1016/j.rser.2019.01.007
10.1016/j.snb.2013.02.053
10.3390/mi7090160
10.1016/j.nantod.2019.03.010
10.1080/10408436.2016.1244656
10.5194/jsss-8-1-2019
10.5194/jsss-4-111-2015
10.1007/s00542-013-1991-9
10.1016/j.bios.2018.05.028
10.1016/j.apr.2017.10.009
10.1088/1361-6439/aa6b0d
10.3390/chemosensors7010001
10.1021/acs.analchem.7b00723
10.5162/sensoren2019/3.2.1
10.1007/s00542-013-1992-8
10.1109/JSEN.2018.2879233
10.1109/TRANSDUCERS.2017.7994342
10.1007/s11051-017-4105-2
10.1021/acsnano.6b08551
10.1039/C4CS00362D
10.1007/s00542-013-2032-4
10.1016/j.aca.2015.11.008
10.3390/chemosensors5010007
10.1117/12.2266084
10.31438/trf.hh2016.91
10.1007/s10646-008-0210-4
10.1088/0960-1317/19/10/105005
10.1016/j.sna.2019.01.013
10.1038/srep01288
10.1109/JSEN.2016.2638964
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-6439/ab4e56
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Fabrication of a microcantilever-based aerosol detector with integrated electrostatic on-chip ultrafine particle separation and collection
EISSN 1361-6439
ExternalDocumentID 10_1088_1361_6439_ab4e56
jmmab4e56
GrantInformation_xml – fundername: Niedersächsisches Vorab, Germany
  grantid: Quantum- and Nanometrology (QUANOMET); NP 2-2
– fundername: Ministry of Research, Technology and Higher Education of the Republic of Indonesia (RISTEKDIKTI)
  grantid: 343/RISET-Pro/FGS/VII/2016 (World Bank Loan No. 8245-ID)
– fundername: China Scholarship Council (CSC)
  grantid: Grant CSC 201506300019
GroupedDBID -~X
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAHTB
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c351t-5664514fdab3d38a407e77ce258c74e06b3c9dd74a16c529cb4575acc2f524b53
IEDL.DBID IOP
ISSN 0960-1317
IngestDate Tue Jul 01 02:48:17 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Wed Aug 21 03:33:25 EDT 2024
Thu Jan 07 13:53:44 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-5664514fdab3d38a407e77ce258c74e06b3c9dd74a16c529cb4575acc2f524b53
Notes JMM-104368.R1
ORCID 0000-0002-8704-3702
0000-0001-5801-813X
0000-0002-7279-4378
0000-0003-3902-8521
0000-0002-2271-2792
PageCount 13
ParticipantIDs iop_journals_10_1088_1361_6439_ab4e56
crossref_citationtrail_10_1088_1361_6439_ab4e56
crossref_primary_10_1088_1361_6439_ab4e56
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of micromechanics and microengineering
PublicationTitleAbbrev JMM
PublicationTitleAlternate J. Micromech. Microeng
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
24
25
26
Sökmen Ü (28) 2009; 19
27
29
Vishwakarma V (3) 2010; 9
30
31
10
32
11
33
12
34
13
Bertke M (18) 2017; 27
35
36
15
16
17
19
1
2
4
Pavani M (14) 2017; 9
5
6
7
8
9
20
21
References_xml – ident: 29
  doi: 10.1016/j.snb.2018.06.017
– ident: 22
  doi: 10.1016/j.sna.2018.06.012
– ident: 17
  doi: 10.1016/j.mee.2015.03.037
– ident: 33
  doi: 10.1109/MEMSYS.2018.8346486
– ident: 6
  doi: 10.1016/j.rser.2019.01.007
– ident: 19
  doi: 10.1016/j.snb.2013.02.053
– ident: 15
  doi: 10.3390/mi7090160
– ident: 1
  doi: 10.1016/j.nantod.2019.03.010
– ident: 10
  doi: 10.1080/10408436.2016.1244656
– ident: 30
  doi: 10.5194/jsss-8-1-2019
– ident: 35
  doi: 10.5194/jsss-4-111-2015
– ident: 23
  doi: 10.1007/s00542-013-1991-9
– ident: 12
  doi: 10.1016/j.bios.2018.05.028
– ident: 5
  doi: 10.1016/j.apr.2017.10.009
– volume: 27
  issn: 0960-1317
  year: 2017
  ident: 18
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aa6b0d
– ident: 24
  doi: 10.3390/chemosensors7010001
– ident: 13
  doi: 10.1021/acs.analchem.7b00723
– ident: 16
  doi: 10.5162/sensoren2019/3.2.1
– ident: 25
  doi: 10.1007/s00542-013-1992-8
– ident: 27
  doi: 10.1109/JSEN.2018.2879233
– ident: 36
  doi: 10.1109/TRANSDUCERS.2017.7994342
– ident: 4
  doi: 10.1007/s11051-017-4105-2
– ident: 2
  doi: 10.1021/acsnano.6b08551
– ident: 8
  doi: 10.1039/C4CS00362D
– volume: 9
  start-page: 455
  year: 2010
  ident: 3
  publication-title: J. Miner. Mater. Charact. Eng.
– ident: 26
  doi: 10.1007/s00542-013-2032-4
– ident: 9
  doi: 10.1016/j.aca.2015.11.008
– ident: 11
  doi: 10.3390/chemosensors5010007
– ident: 20
  doi: 10.1117/12.2266084
– volume: 9
  start-page: 439
  year: 2017
  ident: 14
  publication-title: Int. J. Commun. Netw. Inf. Secur.
– ident: 31
  doi: 10.31438/trf.hh2016.91
– ident: 7
  doi: 10.1007/s10646-008-0210-4
– volume: 19
  issn: 0960-1317
  year: 2009
  ident: 28
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/19/10/105005
– ident: 34
  doi: 10.1016/j.sna.2019.01.013
– ident: 21
  doi: 10.1038/srep01288
– ident: 32
  doi: 10.1109/JSEN.2016.2638964
SSID ssj0011818
Score 2.340243
Snippet In this paper, fabrication and testing of a miniaturized microcantilever-based particulate matter detector with integrated electrostatic on-chip ultrafine...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 14001
SubjectTerms deep reactive ion etching
N/MEMS
nanoparticle
particle detection
particle separation
sensors
under-etching
Title Fabrication of a microcantilever-based aerosol detector with integrated electrostatic on-chip ultrafine particle separation and collection
URI https://iopscience.iop.org/article/10.1088/1361-6439/ab4e56
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BVSU4QEtBPErlAxw4eHcT21mvOKGKFa0E9FAkDpUsvyIWdpNoN3vhJ_CrGSdmBRVCVW85TGxnPPF88_AMwCFqxEHutKDeGkY5Qn6qtZZUJkIjHhCc9cLd4YvL7Pya_7wRN0twsrgLU1bx6O_gY1souGVhTIiT3YRlCQ2KtKsN9yJbhg-hcWUQ7x9XvxYhBFRdzTGMEJ0mqCVjjPKtEV7ppGWc94WKGW7An-fFtZkl9515bTr24a-6jf-5-k-wHqEnOW1JP8OSLzZh7UVBwk342CSE2tkXeBxqM43-PFLmRJNJSN0LG4HnCMo_DfrPEe3xk8oxcb5u_P8kOHbJogiFI7HPTri4NLKkLKi9HVVkPq6nOseJSRWXTma-LUOO8-nCkSCgTZpYsQXXw7Pf389p7NtALRNJTREhcsRhKAKGOSY12oy-37c-FdL2ue9lhtmBc32uk8yKdGANR9CorU1zkXIj2DasFGXhd4Bwy4VhgnE-kFwyNAfCGBnTvidsnppd6D7vnLKxqHnorTFWTXBdShX4rQK_VcvvXThevFG1BT3eoT3CbVTxr569Q0de0d1NJoohrQrmay9Rlcv3_nGofVhNg0XfOHm-wko9nfsDhD21-daI9xMa7fvD
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUCs4QEuLoDzqQ3vowbub2M56jwhYQR-UQ5G4uX5FBXaTaDd74SfwqztOzAoqhCpxy2Hix9ie-cYzngH4hBpxkDstqLeGUY6Qn2qtJZWJ0IgHBGe98Hb4x1l2csG_XorLWOe0eQtTVlH0d_CzTRTcsjAGxMluwrKEBkXa1YZ7kXUrly_CskBRHGK6Tn-ez90IqL4aUYwwnSaoKaOf8qlWHumlRez7gZoZrsPv-wG20SU3nVltOvb2n9yNL5jBG1iLEJQctORvYcEXG7D6IDHhBrxqAkPt9B3cDbWZxHs9UuZEk3EI4QsLgvIEzwENetAR7XFa5Yg4Xzd-ABIueMk8GYUjsd5OeMB0ZUlZUPvnqiKzUT3ROXZMqjh8MvVtOnLsTxeOhI3ahIsV7-FiePzr8ITG-g3UMpHUFJEiRzyGW8Ewx6RG29H3-9anQto-973MMDtwrs91klmRDqzhCB61tWkuUm4E24Sloiz8FhBuuTBMMM4HkkuGZkFoI2Pa94TNU7MN3fvVUzYmNw81NkaqcbJLqQLPVeC5anm-DV_mf1RtYo9naD_jUqp4uqfP0JFHdNfjsWJIq4IZ20sULvOH_2zqI7w-Pxqq76dn33ZgJQ1GfnPvswtL9WTm9xAJ1Wa_2e1_ASslATY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+a+microcantilever-based+aerosol+detector+with+integrated+electrostatic+on-chip+ultrafine+particle+separation+and+collection&rft.jtitle=Journal+of+micromechanics+and+microengineering&rft.au=Bertke%2C+Maik&rft.au=Xu%2C+Jiushuai&rft.au=Setiono%2C+Andi&rft.au=Kirsch%2C+Ina&rft.date=2020-01-01&rft.issn=0960-1317&rft.eissn=1361-6439&rft.volume=30&rft.issue=1&rft.spage=14001&rft_id=info:doi/10.1088%2F1361-6439%2Fab4e56&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6439_ab4e56
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1317&client=summon