EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network

In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG signals vary significantly among different subjects and recording sessions. Many efforts have been made to use deep learning methods for mental sta...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 10; pp. 7921 - 7933
Main Authors Cui, Jian, Lan, Zirui, Sourina, Olga, Muller-Wittig, Wolfgang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG signals vary significantly among different subjects and recording sessions. Many efforts have been made to use deep learning methods for mental state recognition from EEG signals. However, existing work mostly treats deep learning models as black-box classifiers, while what have been learned by the models and to which extent they are affected by the noise in EEG data are still underexplored. In this article, we develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification. The network has a compact structure and takes advantage of separable convolutions to process the EEG signals in a spatial-temporal sequence. Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject drowsiness recognition, which is higher than the conventional baseline methods of 53.40%-72.68% and state-of-the-art deep learning methods of 71.75%-75.19%. Interpretation results indicate the model has learned to recognize biologically meaningful features from EEG signals, e.g., alpha spindles, as strong indicators of drowsiness across different subjects. In addition, we also explore reasons behind some wrongly classified samples with the interpretation technique and discuss potential ways to improve the recognition accuracy. Our work illustrates a promising direction on using interpretable deep learning models to discover meaningful patterns related to different mental states from complex EEG signals.
AbstractList In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG signals vary significantly among different subjects and recording sessions. Many efforts have been made to use deep learning methods for mental state recognition from EEG signals. However, existing work mostly treats deep learning models as black-box classifiers, while what have been learned by the models and to which extent they are affected by the noise in EEG data are still underexplored. In this article, we develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification. The network has a compact structure and takes advantage of separable convolutions to process the EEG signals in a spatial-temporal sequence. Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject drowsiness recognition, which is higher than the conventional baseline methods of 53.40%-72.68% and state-of-the-art deep learning methods of 71.75%-75.19%. Interpretation results indicate the model has learned to recognize biologically meaningful features from EEG signals, e.g., alpha spindles, as strong indicators of drowsiness across different subjects. In addition, we also explore reasons behind some wrongly classified samples with the interpretation technique and discuss potential ways to improve the recognition accuracy. Our work illustrates a promising direction on using interpretable deep learning models to discover meaningful patterns related to different mental states from complex EEG signals.In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG signals vary significantly among different subjects and recording sessions. Many efforts have been made to use deep learning methods for mental state recognition from EEG signals. However, existing work mostly treats deep learning models as black-box classifiers, while what have been learned by the models and to which extent they are affected by the noise in EEG data are still underexplored. In this article, we develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification. The network has a compact structure and takes advantage of separable convolutions to process the EEG signals in a spatial-temporal sequence. Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject drowsiness recognition, which is higher than the conventional baseline methods of 53.40%-72.68% and state-of-the-art deep learning methods of 71.75%-75.19%. Interpretation results indicate the model has learned to recognize biologically meaningful features from EEG signals, e.g., alpha spindles, as strong indicators of drowsiness across different subjects. In addition, we also explore reasons behind some wrongly classified samples with the interpretation technique and discuss potential ways to improve the recognition accuracy. Our work illustrates a promising direction on using interpretable deep learning models to discover meaningful patterns related to different mental states from complex EEG signals.
In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG signals vary significantly among different subjects and recording sessions. Many efforts have been made to use deep learning methods for mental state recognition from EEG signals. However, existing work mostly treats deep learning models as black-box classifiers, while what have been learned by the models and to which extent they are affected by the noise in EEG data are still underexplored. In this article, we develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification. The network has a compact structure and takes advantage of separable convolutions to process the EEG signals in a spatial-temporal sequence. Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject drowsiness recognition, which is higher than the conventional baseline methods of 53.40%–72.68% and state-of-the-art deep learning methods of 71.75%–75.19%. Interpretation results indicate the model has learned to recognize biologically meaningful features from EEG signals, e.g., alpha spindles, as strong indicators of drowsiness across different subjects. In addition, we also explore reasons behind some wrongly classified samples with the interpretation technique and discuss potential ways to improve the recognition accuracy. Our work illustrates a promising direction on using interpretable deep learning models to discover meaningful patterns related to different mental states from complex EEG signals.
Author Muller-Wittig, Wolfgang
Cui, Jian
Lan, Zirui
Sourina, Olga
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0003-1371-4945
  surname: Cui
  fullname: Cui, Jian
  organization: Fraunhofer IDM@NTU, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Zirui
  orcidid: 0000-0001-7619-0582
  surname: Lan
  fullname: Lan, Zirui
  email: lan.zirui@fraunhofer.sg
  organization: Fraunhofer Singapore, Singapore
– sequence: 3
  givenname: Olga
  orcidid: 0000-0001-9405-8841
  surname: Sourina
  fullname: Sourina, Olga
  organization: Fraunhofer IDM@NTU, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Wolfgang
  surname: Muller-Wittig
  fullname: Muller-Wittig, Wolfgang
  organization: Fraunhofer IDM@NTU, Nanyang Technological University, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35171778$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1UREvpHwAJjcSGzQQ_xo9Z0hBKpShItAh2lse5Qx0mdrA9rfj3eJq0iy7w5li637m6OuclOvLBA0KvCZ4RgtsP16vV8mpGMaUzRhpJsXqGTigRtKZMqaPHv_x5jM5S2uDyBOaiaV-gY8aJJFKqE3SzWFzU5ybBuprHkFJ9NXYbsLn6FN0txCLhLjkPKVXfwIZf3mUXfPXD5ZvK-OrSZ4i7CNl0A1Tz4G_DME6EGaoVjPFe8l2Iv1-h570ZEpwd9BR9_7y4nn-pl18vLucfl7UtR-WaC8Ilt7jvZS-tkk3XUmpbKy0jnZVd01hseAEwoT2XIDFhvAyV7BRZC8FO0fv93l0Mf0ZIWW9dsjAMxkMYk6aCtooLgSf03RN0E8ZYTi-Ukowr1UpcqLcHauy2sNa76LYm_tUPGRZA7QE7BRih19ZlM4WQo3GDJlhPjen7xvTUmD40Vqz0ifVh-39Nb_YmBwCPhlaWMRPsHx7noEY
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s11517_024_03138_4
crossref_primary_10_1016_j_bspc_2024_107189
crossref_primary_10_1088_1741_2552_ad44d7
crossref_primary_10_1109_TNSRE_2022_3209155
crossref_primary_10_1109_TITS_2023_3347075
crossref_primary_10_1109_TITS_2024_3522308
crossref_primary_10_3390_math10152819
crossref_primary_10_1109_JSEN_2024_3492176
crossref_primary_10_1109_TNSRE_2023_3307481
crossref_primary_10_1088_1741_2552_ad6593
crossref_primary_10_1109_TIV_2022_3224690
crossref_primary_10_1080_10447318_2023_2278926
crossref_primary_10_1016_j_neucom_2024_128961
crossref_primary_10_1109_JBHI_2022_3185587
crossref_primary_10_1109_TNSRE_2023_3336897
crossref_primary_10_1080_10255842_2024_2359635
crossref_primary_10_1109_TCSI_2024_3364715
crossref_primary_10_1109_JBHI_2024_3377373
crossref_primary_10_3390_systems10020047
crossref_primary_10_3390_s24134256
crossref_primary_10_1088_1741_2552_ad0c61
crossref_primary_10_3390_s24123754
crossref_primary_10_3389_fnins_2024_1508747
crossref_primary_10_1061_AJRUA6_RUENG_1447
crossref_primary_10_1088_2516_1091_ad8530
crossref_primary_10_1080_27706710_2024_2400063
crossref_primary_10_3389_fncom_2023_1232925
crossref_primary_10_3390_s23229052
crossref_primary_10_1109_JSEN_2023_3273556
crossref_primary_10_1109_JSEN_2024_3389685
crossref_primary_10_1109_TIM_2024_3384559
crossref_primary_10_3390_biomedicines11092370
crossref_primary_10_1016_j_asoc_2025_112722
crossref_primary_10_1016_j_aei_2024_102522
crossref_primary_10_1016_j_compeleceng_2024_110005
crossref_primary_10_1109_JBHI_2024_3519730
crossref_primary_10_1109_TIM_2022_3216409
crossref_primary_10_1016_j_compeleceng_2024_109540
crossref_primary_10_1080_20479700_2022_2130645
crossref_primary_10_1109_JBHI_2024_3498916
crossref_primary_10_3390_electronics13112084
crossref_primary_10_3390_s23208528
crossref_primary_10_1007_s11517_024_03033_y
crossref_primary_10_1016_j_compeleceng_2025_110204
crossref_primary_10_1016_j_eswa_2024_125089
crossref_primary_10_1016_j_eswa_2024_126013
Cites_doi 10.1038/s41597-019-0027-4
10.1109/TIP.2018.2881920
10.1007/s10462-019-09694-8
10.1109/TBME.2006.889160
10.1017/S0048577201393095
10.1016/s1388-2457(03)00093-2
10.1179/147683008X301478
10.1002/cnm.3225
10.1109/BIBM47256.2019.8982938
10.1088/1741-2552/aaf3f6
10.1109/TCSI.2005.857555
10.1093/sleep/14.3.221
10.1016/j.jneumeth.2015.01.015
10.1016/j.neunet.2020.05.032
10.1109/TNSRE.2018.2790359
10.1155/2008/519480
10.1016/j.eswa.2007.12.043
10.1142/S021800141854023X
10.1007/978-3-030-49345-5_30
10.1109/CVPR.2018.00474
10.1109/TBME.2006.886577
10.1109/CVPR.2016.319
10.1166/jnsne.2014.1098
10.1109/CW52790.2021.00041
10.1016/j.ymeth.2021.04.017
10.1016/j.jneumeth.2012.07.003
10.1016/j.clinph.2010.10.044
10.1007/s11571-018-9485-1
10.1109/CVPR.2017.195
10.1109/TNNLS.2018.2886414
10.1016/S0165-0173(98)00056-3
10.5698/978-0-9979756-0-4
10.1049/iet-ipr.2019.0312
10.1109/IEMBS.2005.1615701
10.1093/sleep/15.6.550
10.1109/SLT.2018.8639585
10.1109/CW.2019.00048
10.3389/fnins.2012.00039
10.1007/s11571-018-9496-y
10.1016/j.aei.2020.101157
10.1088/1741-2552/aace8c
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3147208
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 7933
ExternalDocumentID 35171778
10_1109_TNNLS_2022_3147208
9714736
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Fraunhofer Singapore
– fundername: National Research Foundation, Singapore, under its International Research Centers in Singapore Funding Initiative
  funderid: 10.13039/501100001381
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-561575c0ff7f7c874b922c9c7c31bc7b44c0a55c0012f57e701357c387b81d663
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 12:22:59 EDT 2025
Sun Jun 29 15:39:42 EDT 2025
Thu Jan 02 22:54:40 EST 2025
Thu Apr 24 23:00:10 EDT 2025
Tue Jul 01 00:27:44 EDT 2025
Wed Aug 27 02:50:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-561575c0ff7f7c874b922c9c7c31bc7b44c0a55c0012f57e701357c387b81d663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7619-0582
0000-0001-9405-8841
0000-0003-1371-4945
PMID 35171778
PQID 2873588970
PQPubID 85436
PageCount 13
ParticipantIDs proquest_journals_2873588970
crossref_citationtrail_10_1109_TNNLS_2022_3147208
ieee_primary_9714736
proquest_miscellaneous_2629856606
crossref_primary_10_1109_TNNLS_2022_3147208
pubmed_primary_35171778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref11
ref10
(ref1) 2006
(ref2) 2021
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
Benbadis (ref5) 2018
ref42
Lin (ref32) 2013
ref41
ref44
ref43
Makeig (ref23)
ref8
ref7
ref9
ref6
Kingma (ref52) 2014
(ref53) 2021
Krizhevsky (ref36)
ref40
Cui (ref20) 2021
ref35
ref34
ref37
ref31
ref30
ref33
(ref3) 2012
ref39
Howard (ref29) 2017
ref38
(ref55) 2022
(ref54) 2022
Shaw (ref57) 2003
(ref4) 2015
ref24
ref26
ref25
Cui (ref21) 2021
ref22
Sifre (ref28) 2014
ref27
(ref49) 2022
ref60
References_xml – ident: ref17
  doi: 10.1038/s41597-019-0027-4
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Independent component analysis of electroencephalographic data
– ident: ref37
  doi: 10.1109/TIP.2018.2881920
– ident: ref22
  doi: 10.1007/s10462-019-09694-8
– ident: ref25
  doi: 10.1109/TBME.2006.889160
– ident: ref9
  doi: 10.1017/S0048577201393095
– ident: ref59
  doi: 10.1016/s1388-2457(03)00093-2
– volume-title: The Brain’s Alpha Rhythms and the Mind
  year: 2003
  ident: ref57
– ident: ref60
  doi: 10.1179/147683008X301478
– ident: ref51
  doi: 10.1002/cnm.3225
– volume-title: EEG Driver Drowsiness Dataset (Unbalanced)
  year: 2021
  ident: ref21
– ident: ref12
  doi: 10.1109/BIBM47256.2019.8982938
– year: 2015
  ident: ref4
  publication-title: Nissan’s Driver ‘Attention Alert’ Helps Detect Erratic Driving Caused by Drowsiness and Inattention
– volume-title: Army Research Laboratory (ARL) EEGModels Project: A Collection of Convolutional Neural Network (CNN) Models for EEG Signal Classification, Using Keras and Tensorflow
  year: 2022
  ident: ref49
– ident: ref34
  doi: 10.1088/1741-2552/aaf3f6
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref27
  doi: 10.1109/TCSI.2005.857555
– volume-title: arXiv:1704.04861
  year: 2017
  ident: ref29
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
– ident: ref7
  doi: 10.1093/sleep/14.3.221
– ident: ref48
  doi: 10.1016/j.jneumeth.2015.01.015
– ident: ref41
  doi: 10.1016/j.neunet.2020.05.032
– volume-title: EEG Driver Drowsiness Dataset
  year: 2021
  ident: ref20
– volume-title: S.R.B. Normal Sleep EEG
  year: 2018
  ident: ref5
– ident: ref19
  doi: 10.1109/TNSRE.2018.2790359
– ident: ref43
  doi: 10.1155/2008/519480
– ident: ref44
  doi: 10.1016/j.eswa.2007.12.043
– ident: ref45
  doi: 10.1142/S021800141854023X
– ident: ref11
  doi: 10.1007/978-3-030-49345-5_30
– ident: ref30
  doi: 10.1109/CVPR.2018.00474
– ident: ref26
  doi: 10.1109/TBME.2006.886577
– volume-title: Scipy
  year: 2022
  ident: ref54
– ident: ref35
  doi: 10.1109/CVPR.2016.319
– volume-title: What Is the Ford Driver Alert System?
  year: 2021
  ident: ref2
– ident: ref6
  doi: 10.1166/jnsne.2014.1098
– ident: ref16
  doi: 10.1109/CW52790.2021.00041
– volume-title: N. Ford Developing Biometric Driver Stress Detectors to Improve Safety
  year: 2012
  ident: ref3
– ident: ref15
  doi: 10.1016/j.ymeth.2021.04.017
– ident: ref47
  doi: 10.1016/j.jneumeth.2012.07.003
– ident: ref58
  doi: 10.1016/j.clinph.2010.10.044
– volume-title: EEG-based-Cross-Subject-Driver-Drowsiness-Recognition-With-an-Interpretable-CNN
  year: 2021
  ident: ref53
– ident: ref46
  doi: 10.1007/s11571-018-9485-1
– ident: ref31
  doi: 10.1109/CVPR.2017.195
– ident: ref13
  doi: 10.1109/TNNLS.2018.2886414
– volume-title: Scikit-Learn Machine Learning in Python
  year: 2022
  ident: ref55
– ident: ref10
  doi: 10.1016/S0165-0173(98)00056-3
– ident: ref56
  doi: 10.5698/978-0-9979756-0-4
– volume-title: arXiv:1312.4400
  year: 2013
  ident: ref32
  article-title: Network in network
– year: 2014
  ident: ref28
  article-title: Rigid-motion scattering for image classification
– ident: ref50
  doi: 10.1049/iet-ipr.2019.0312
– volume-title: arXiv:1412.6980
  year: 2014
  ident: ref52
  article-title: Adam: A method for stochastic optimization
– volume-title: LS460 Achieves a World-First in Preventative Safety
  year: 2006
  ident: ref1
– ident: ref24
  doi: 10.1109/IEMBS.2005.1615701
– ident: ref8
  doi: 10.1093/sleep/15.6.550
– ident: ref42
  doi: 10.1109/SLT.2018.8639585
– ident: ref39
  doi: 10.1109/CW.2019.00048
– ident: ref38
  doi: 10.3389/fnins.2012.00039
– ident: ref14
  doi: 10.1007/s11571-018-9496-y
– ident: ref18
  doi: 10.1038/s41597-019-0027-4
– ident: ref40
  doi: 10.1016/j.aei.2020.101157
– ident: ref33
  doi: 10.1088/1741-2552/aace8c
SSID ssj0000605649
Score 2.655204
Snippet In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7921
SubjectTerms Accuracy
Artificial neural networks
Automobiles
Brain modeling
Convolutional neural network (CNN)
Convolutional neural networks
Deep learning
depthwise separable convolution
driver drowsiness recognition
Driver fatigue
Drowsiness
EEG
Electroencephalography
electroencephalography (EEG)
interpretable deep learning
interpretation techniques
Machine learning
Monitoring
Neural networks
Recognition
Sleepiness
Teaching methods
Vehicles
Title EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/9714736
https://www.ncbi.nlm.nih.gov/pubmed/35171778
https://www.proquest.com/docview/2873588970
https://www.proquest.com/docview/2629856606
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnLhAebTdApWReqNeHMeJ4yNsFxBi99CC2FsUO45AoARBFqT--o6dBxVqEadE8sR2MuP4m_E8AL6F0jKW5THVocmo4AWjSWEETYxwgSAue6Uz6E9n8emlOJtH8wF872NhrLXe-cyO3K0_y88rs3CmsgMlAyHDeAmWUHFrYrV6ewpDXB57tMuDmFMeynkXI8PUwcVsdv4LtUHOUUkVkjNXpy-MAlRmXIG1v7YkX2Pl_3DTbzvHazDtJtx4m9yOFrUemd-vcjm-940-wGqLP8lhIzDrMLDlBqx1tR1Iu9Q34XoyOaFHuMXlZOxmTfEP40w25MeD8-TAS_XcuMyTn50PUlWSq5v6mmQlefFl1HeWjKvyqRVxHNvlA_EX74C-BZfHk4vxKW2rMlCDH6ymCLgQ4hlWFLKQBrmpFedGGWnCQBuphTAsi5AAt74iklYiyIywMZEasTECnI-wXFal_QwkUUUmpGIWYaqIY57pXNiwiAzCiixXbAhBx5jUtCnLXeWMu9SrLkylnq-p42va8nUI-_0z903CjjepNx1TesqWH0PY6fiftmv6MUXdMoySREmc117fjKvRHbFkpa0WSBNzlSBCZtjFp0Zu-r47cfvy7zG3YcWVsm8cBXdguX5Y2F0EPLX-6iX9D7JC-GY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615UAvFPpiSwFX6o166zhOHB9h2bKF3T3AVuwtih1HrVolVZsFiV_P2HmAEKCeEskT28mMM9-MxzMAx6G0jGV5THVoMip4wWhSGEETI9xBEJe90jn0Z_N4ciE-LqPlGpz0Z2GstT74zA7drd_Lzyuzcq6yUyUDIcN4HR6h3o94c1qr96gwROaxx7s8iDnloVx2p2SYOl3M59MvaA9yjmaqkJy5Sn1hFKA540qs_aaUfJWVfwNOr3jOtmDWTbmJN7kermo9ND_-yOb40Hd6Ck9aBEreNiLzDNZsuQ1bXXUH0i72Hbgcjz_Qd6jkcjJys6b4j3FOG_L-zsVy4KX63gTNk89dFFJVkq9X9SXJSvIrmlHfWDKqym-tkOPYLiOIv_gQ9F24OBsvRhPa1mWgBj9YTRFyIcgzrChkIQ3yUyvOjTLShIE2UgthWBYhASq_IpJWIsyMsDGRGtExQpw92Cir0j4HkqgiE1Ixi0BVxDHPdC5sWEQGgUWWKzaAoGNMatqk5a52xk3qjRemUs_X1PE1bfk6gDf9M7dNyo7_Uu84pvSULT8GcNjxP21X9X2K1mUYJYmSOK-jvhnXo9tkyUpbrZAm5ipBjMywi_1Gbvq-O3E7-PuYr-HxZDGbptPz-acXsOkK2zdhg4ewUd-t7EuEP7V-5aX-J9B--7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Cross-Subject+Driver+Drowsiness+Recognition+With+an+Interpretable+Convolutional+Neural+Network&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Cui%2C+Jian&rft.au=Lan%2C+Zirui&rft.au=Sourina%2C+Olga&rft.au=Muller-Wittig%2C+Wolfgang&rft.date=2023-10-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=34&rft.issue=10&rft.spage=7921&rft_id=info:doi/10.1109%2FTNNLS.2022.3147208&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon