EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network
In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG signals vary significantly among different subjects and recording sessions. Many efforts have been made to use deep learning methods for mental sta...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 10; pp. 7921 - 7933 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG signals vary significantly among different subjects and recording sessions. Many efforts have been made to use deep learning methods for mental state recognition from EEG signals. However, existing work mostly treats deep learning models as black-box classifiers, while what have been learned by the models and to which extent they are affected by the noise in EEG data are still underexplored. In this article, we develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification. The network has a compact structure and takes advantage of separable convolutions to process the EEG signals in a spatial-temporal sequence. Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject drowsiness recognition, which is higher than the conventional baseline methods of 53.40%-72.68% and state-of-the-art deep learning methods of 71.75%-75.19%. Interpretation results indicate the model has learned to recognize biologically meaningful features from EEG signals, e.g., alpha spindles, as strong indicators of drowsiness across different subjects. In addition, we also explore reasons behind some wrongly classified samples with the interpretation technique and discuss potential ways to improve the recognition accuracy. Our work illustrates a promising direction on using interpretable deep learning models to discover meaningful patterns related to different mental states from complex EEG signals. |
---|---|
AbstractList | In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG signals vary significantly among different subjects and recording sessions. Many efforts have been made to use deep learning methods for mental state recognition from EEG signals. However, existing work mostly treats deep learning models as black-box classifiers, while what have been learned by the models and to which extent they are affected by the noise in EEG data are still underexplored. In this article, we develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification. The network has a compact structure and takes advantage of separable convolutions to process the EEG signals in a spatial-temporal sequence. Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject drowsiness recognition, which is higher than the conventional baseline methods of 53.40%-72.68% and state-of-the-art deep learning methods of 71.75%-75.19%. Interpretation results indicate the model has learned to recognize biologically meaningful features from EEG signals, e.g., alpha spindles, as strong indicators of drowsiness across different subjects. In addition, we also explore reasons behind some wrongly classified samples with the interpretation technique and discuss potential ways to improve the recognition accuracy. Our work illustrates a promising direction on using interpretable deep learning models to discover meaningful patterns related to different mental states from complex EEG signals.In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG signals vary significantly among different subjects and recording sessions. Many efforts have been made to use deep learning methods for mental state recognition from EEG signals. However, existing work mostly treats deep learning models as black-box classifiers, while what have been learned by the models and to which extent they are affected by the noise in EEG data are still underexplored. In this article, we develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification. The network has a compact structure and takes advantage of separable convolutions to process the EEG signals in a spatial-temporal sequence. Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject drowsiness recognition, which is higher than the conventional baseline methods of 53.40%-72.68% and state-of-the-art deep learning methods of 71.75%-75.19%. Interpretation results indicate the model has learned to recognize biologically meaningful features from EEG signals, e.g., alpha spindles, as strong indicators of drowsiness across different subjects. In addition, we also explore reasons behind some wrongly classified samples with the interpretation technique and discuss potential ways to improve the recognition accuracy. Our work illustrates a promising direction on using interpretable deep learning models to discover meaningful patterns related to different mental states from complex EEG signals. In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG signals vary significantly among different subjects and recording sessions. Many efforts have been made to use deep learning methods for mental state recognition from EEG signals. However, existing work mostly treats deep learning models as black-box classifiers, while what have been learned by the models and to which extent they are affected by the noise in EEG data are still underexplored. In this article, we develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification. The network has a compact structure and takes advantage of separable convolutions to process the EEG signals in a spatial-temporal sequence. Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject drowsiness recognition, which is higher than the conventional baseline methods of 53.40%–72.68% and state-of-the-art deep learning methods of 71.75%–75.19%. Interpretation results indicate the model has learned to recognize biologically meaningful features from EEG signals, e.g., alpha spindles, as strong indicators of drowsiness across different subjects. In addition, we also explore reasons behind some wrongly classified samples with the interpretation technique and discuss potential ways to improve the recognition accuracy. Our work illustrates a promising direction on using interpretable deep learning models to discover meaningful patterns related to different mental states from complex EEG signals. |
Author | Muller-Wittig, Wolfgang Cui, Jian Lan, Zirui Sourina, Olga |
Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0003-1371-4945 surname: Cui fullname: Cui, Jian organization: Fraunhofer IDM@NTU, Nanyang Technological University, Singapore – sequence: 2 givenname: Zirui orcidid: 0000-0001-7619-0582 surname: Lan fullname: Lan, Zirui email: lan.zirui@fraunhofer.sg organization: Fraunhofer Singapore, Singapore – sequence: 3 givenname: Olga orcidid: 0000-0001-9405-8841 surname: Sourina fullname: Sourina, Olga organization: Fraunhofer IDM@NTU, Nanyang Technological University, Singapore – sequence: 4 givenname: Wolfgang surname: Muller-Wittig fullname: Muller-Wittig, Wolfgang organization: Fraunhofer IDM@NTU, Nanyang Technological University, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35171778$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1UREvpHwAJjcSGzQQ_xo9Z0hBKpShItAh2lse5Qx0mdrA9rfj3eJq0iy7w5li637m6OuclOvLBA0KvCZ4RgtsP16vV8mpGMaUzRhpJsXqGTigRtKZMqaPHv_x5jM5S2uDyBOaiaV-gY8aJJFKqE3SzWFzU5ybBuprHkFJ9NXYbsLn6FN0txCLhLjkPKVXfwIZf3mUXfPXD5ZvK-OrSZ4i7CNl0A1Tz4G_DME6EGaoVjPFe8l2Iv1-h570ZEpwd9BR9_7y4nn-pl18vLucfl7UtR-WaC8Ilt7jvZS-tkk3XUmpbKy0jnZVd01hseAEwoT2XIDFhvAyV7BRZC8FO0fv93l0Mf0ZIWW9dsjAMxkMYk6aCtooLgSf03RN0E8ZYTi-Ukowr1UpcqLcHauy2sNa76LYm_tUPGRZA7QE7BRih19ZlM4WQo3GDJlhPjen7xvTUmD40Vqz0ifVh-39Nb_YmBwCPhlaWMRPsHx7noEY |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1007_s11517_024_03138_4 crossref_primary_10_1016_j_bspc_2024_107189 crossref_primary_10_1088_1741_2552_ad44d7 crossref_primary_10_1109_TNSRE_2022_3209155 crossref_primary_10_1109_TITS_2023_3347075 crossref_primary_10_1109_TITS_2024_3522308 crossref_primary_10_3390_math10152819 crossref_primary_10_1109_JSEN_2024_3492176 crossref_primary_10_1109_TNSRE_2023_3307481 crossref_primary_10_1088_1741_2552_ad6593 crossref_primary_10_1109_TIV_2022_3224690 crossref_primary_10_1080_10447318_2023_2278926 crossref_primary_10_1016_j_neucom_2024_128961 crossref_primary_10_1109_JBHI_2022_3185587 crossref_primary_10_1109_TNSRE_2023_3336897 crossref_primary_10_1080_10255842_2024_2359635 crossref_primary_10_1109_TCSI_2024_3364715 crossref_primary_10_1109_JBHI_2024_3377373 crossref_primary_10_3390_systems10020047 crossref_primary_10_3390_s24134256 crossref_primary_10_1088_1741_2552_ad0c61 crossref_primary_10_3390_s24123754 crossref_primary_10_3389_fnins_2024_1508747 crossref_primary_10_1061_AJRUA6_RUENG_1447 crossref_primary_10_1088_2516_1091_ad8530 crossref_primary_10_1080_27706710_2024_2400063 crossref_primary_10_3389_fncom_2023_1232925 crossref_primary_10_3390_s23229052 crossref_primary_10_1109_JSEN_2023_3273556 crossref_primary_10_1109_JSEN_2024_3389685 crossref_primary_10_1109_TIM_2024_3384559 crossref_primary_10_3390_biomedicines11092370 crossref_primary_10_1016_j_asoc_2025_112722 crossref_primary_10_1016_j_aei_2024_102522 crossref_primary_10_1016_j_compeleceng_2024_110005 crossref_primary_10_1109_JBHI_2024_3519730 crossref_primary_10_1109_TIM_2022_3216409 crossref_primary_10_1016_j_compeleceng_2024_109540 crossref_primary_10_1080_20479700_2022_2130645 crossref_primary_10_1109_JBHI_2024_3498916 crossref_primary_10_3390_electronics13112084 crossref_primary_10_3390_s23208528 crossref_primary_10_1007_s11517_024_03033_y crossref_primary_10_1016_j_compeleceng_2025_110204 crossref_primary_10_1016_j_eswa_2024_125089 crossref_primary_10_1016_j_eswa_2024_126013 |
Cites_doi | 10.1038/s41597-019-0027-4 10.1109/TIP.2018.2881920 10.1007/s10462-019-09694-8 10.1109/TBME.2006.889160 10.1017/S0048577201393095 10.1016/s1388-2457(03)00093-2 10.1179/147683008X301478 10.1002/cnm.3225 10.1109/BIBM47256.2019.8982938 10.1088/1741-2552/aaf3f6 10.1109/TCSI.2005.857555 10.1093/sleep/14.3.221 10.1016/j.jneumeth.2015.01.015 10.1016/j.neunet.2020.05.032 10.1109/TNSRE.2018.2790359 10.1155/2008/519480 10.1016/j.eswa.2007.12.043 10.1142/S021800141854023X 10.1007/978-3-030-49345-5_30 10.1109/CVPR.2018.00474 10.1109/TBME.2006.886577 10.1109/CVPR.2016.319 10.1166/jnsne.2014.1098 10.1109/CW52790.2021.00041 10.1016/j.ymeth.2021.04.017 10.1016/j.jneumeth.2012.07.003 10.1016/j.clinph.2010.10.044 10.1007/s11571-018-9485-1 10.1109/CVPR.2017.195 10.1109/TNNLS.2018.2886414 10.1016/S0165-0173(98)00056-3 10.5698/978-0-9979756-0-4 10.1049/iet-ipr.2019.0312 10.1109/IEMBS.2005.1615701 10.1093/sleep/15.6.550 10.1109/SLT.2018.8639585 10.1109/CW.2019.00048 10.3389/fnins.2012.00039 10.1007/s11571-018-9496-y 10.1016/j.aei.2020.101157 10.1088/1741-2552/aace8c |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2022.3147208 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 7933 |
ExternalDocumentID | 35171778 10_1109_TNNLS_2022_3147208 9714736 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Fraunhofer Singapore – fundername: National Research Foundation, Singapore, under its International Research Centers in Singapore Funding Initiative funderid: 10.13039/501100001381 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-561575c0ff7f7c874b922c9c7c31bc7b44c0a55c0012f57e701357c387b81d663 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 12:22:59 EDT 2025 Sun Jun 29 15:39:42 EDT 2025 Thu Jan 02 22:54:40 EST 2025 Thu Apr 24 23:00:10 EDT 2025 Tue Jul 01 00:27:44 EDT 2025 Wed Aug 27 02:50:36 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-561575c0ff7f7c874b922c9c7c31bc7b44c0a55c0012f57e701357c387b81d663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7619-0582 0000-0001-9405-8841 0000-0003-1371-4945 |
PMID | 35171778 |
PQID | 2873588970 |
PQPubID | 85436 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2873588970 crossref_citationtrail_10_1109_TNNLS_2022_3147208 ieee_primary_9714736 proquest_miscellaneous_2629856606 crossref_primary_10_1109_TNNLS_2022_3147208 pubmed_primary_35171778 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 ref11 ref10 (ref1) 2006 (ref2) 2021 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 Benbadis (ref5) 2018 ref42 Lin (ref32) 2013 ref41 ref44 ref43 Makeig (ref23) ref8 ref7 ref9 ref6 Kingma (ref52) 2014 (ref53) 2021 Krizhevsky (ref36) ref40 Cui (ref20) 2021 ref35 ref34 ref37 ref31 ref30 ref33 (ref3) 2012 ref39 Howard (ref29) 2017 ref38 (ref55) 2022 (ref54) 2022 Shaw (ref57) 2003 (ref4) 2015 ref24 ref26 ref25 Cui (ref21) 2021 ref22 Sifre (ref28) 2014 ref27 (ref49) 2022 ref60 |
References_xml | – ident: ref17 doi: 10.1038/s41597-019-0027-4 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref23 article-title: Independent component analysis of electroencephalographic data – ident: ref37 doi: 10.1109/TIP.2018.2881920 – ident: ref22 doi: 10.1007/s10462-019-09694-8 – ident: ref25 doi: 10.1109/TBME.2006.889160 – ident: ref9 doi: 10.1017/S0048577201393095 – ident: ref59 doi: 10.1016/s1388-2457(03)00093-2 – volume-title: The Brain’s Alpha Rhythms and the Mind year: 2003 ident: ref57 – ident: ref60 doi: 10.1179/147683008X301478 – ident: ref51 doi: 10.1002/cnm.3225 – volume-title: EEG Driver Drowsiness Dataset (Unbalanced) year: 2021 ident: ref21 – ident: ref12 doi: 10.1109/BIBM47256.2019.8982938 – year: 2015 ident: ref4 publication-title: Nissan’s Driver ‘Attention Alert’ Helps Detect Erratic Driving Caused by Drowsiness and Inattention – volume-title: Army Research Laboratory (ARL) EEGModels Project: A Collection of Convolutional Neural Network (CNN) Models for EEG Signal Classification, Using Keras and Tensorflow year: 2022 ident: ref49 – ident: ref34 doi: 10.1088/1741-2552/aaf3f6 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref36 article-title: ImageNet classification with deep convolutional neural networks – ident: ref27 doi: 10.1109/TCSI.2005.857555 – volume-title: arXiv:1704.04861 year: 2017 ident: ref29 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications – ident: ref7 doi: 10.1093/sleep/14.3.221 – ident: ref48 doi: 10.1016/j.jneumeth.2015.01.015 – ident: ref41 doi: 10.1016/j.neunet.2020.05.032 – volume-title: EEG Driver Drowsiness Dataset year: 2021 ident: ref20 – volume-title: S.R.B. Normal Sleep EEG year: 2018 ident: ref5 – ident: ref19 doi: 10.1109/TNSRE.2018.2790359 – ident: ref43 doi: 10.1155/2008/519480 – ident: ref44 doi: 10.1016/j.eswa.2007.12.043 – ident: ref45 doi: 10.1142/S021800141854023X – ident: ref11 doi: 10.1007/978-3-030-49345-5_30 – ident: ref30 doi: 10.1109/CVPR.2018.00474 – ident: ref26 doi: 10.1109/TBME.2006.886577 – volume-title: Scipy year: 2022 ident: ref54 – ident: ref35 doi: 10.1109/CVPR.2016.319 – volume-title: What Is the Ford Driver Alert System? year: 2021 ident: ref2 – ident: ref6 doi: 10.1166/jnsne.2014.1098 – ident: ref16 doi: 10.1109/CW52790.2021.00041 – volume-title: N. Ford Developing Biometric Driver Stress Detectors to Improve Safety year: 2012 ident: ref3 – ident: ref15 doi: 10.1016/j.ymeth.2021.04.017 – ident: ref47 doi: 10.1016/j.jneumeth.2012.07.003 – ident: ref58 doi: 10.1016/j.clinph.2010.10.044 – volume-title: EEG-based-Cross-Subject-Driver-Drowsiness-Recognition-With-an-Interpretable-CNN year: 2021 ident: ref53 – ident: ref46 doi: 10.1007/s11571-018-9485-1 – ident: ref31 doi: 10.1109/CVPR.2017.195 – ident: ref13 doi: 10.1109/TNNLS.2018.2886414 – volume-title: Scikit-Learn Machine Learning in Python year: 2022 ident: ref55 – ident: ref10 doi: 10.1016/S0165-0173(98)00056-3 – ident: ref56 doi: 10.5698/978-0-9979756-0-4 – volume-title: arXiv:1312.4400 year: 2013 ident: ref32 article-title: Network in network – year: 2014 ident: ref28 article-title: Rigid-motion scattering for image classification – ident: ref50 doi: 10.1049/iet-ipr.2019.0312 – volume-title: arXiv:1412.6980 year: 2014 ident: ref52 article-title: Adam: A method for stochastic optimization – volume-title: LS460 Achieves a World-First in Preventative Safety year: 2006 ident: ref1 – ident: ref24 doi: 10.1109/IEMBS.2005.1615701 – ident: ref8 doi: 10.1093/sleep/15.6.550 – ident: ref42 doi: 10.1109/SLT.2018.8639585 – ident: ref39 doi: 10.1109/CW.2019.00048 – ident: ref38 doi: 10.3389/fnins.2012.00039 – ident: ref14 doi: 10.1007/s11571-018-9496-y – ident: ref18 doi: 10.1038/s41597-019-0027-4 – ident: ref40 doi: 10.1016/j.aei.2020.101157 – ident: ref33 doi: 10.1088/1741-2552/aace8c |
SSID | ssj0000605649 |
Score | 2.655204 |
Snippet | In the context of electroencephalogram (EEG)-based driver drowsiness recognition, it is still challenging to design a calibration-free system, since EEG... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7921 |
SubjectTerms | Accuracy Artificial neural networks Automobiles Brain modeling Convolutional neural network (CNN) Convolutional neural networks Deep learning depthwise separable convolution driver drowsiness recognition Driver fatigue Drowsiness EEG Electroencephalography electroencephalography (EEG) interpretable deep learning interpretation techniques Machine learning Monitoring Neural networks Recognition Sleepiness Teaching methods Vehicles |
Title | EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network |
URI | https://ieeexplore.ieee.org/document/9714736 https://www.ncbi.nlm.nih.gov/pubmed/35171778 https://www.proquest.com/docview/2873588970 https://www.proquest.com/docview/2629856606 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnLhAebTdApWReqNeHMeJ4yNsFxBi99CC2FsUO45AoARBFqT--o6dBxVqEadE8sR2MuP4m_E8AL6F0jKW5THVocmo4AWjSWEETYxwgSAue6Uz6E9n8emlOJtH8wF872NhrLXe-cyO3K0_y88rs3CmsgMlAyHDeAmWUHFrYrV6ewpDXB57tMuDmFMeynkXI8PUwcVsdv4LtUHOUUkVkjNXpy-MAlRmXIG1v7YkX2Pl_3DTbzvHazDtJtx4m9yOFrUemd-vcjm-940-wGqLP8lhIzDrMLDlBqx1tR1Iu9Q34XoyOaFHuMXlZOxmTfEP40w25MeD8-TAS_XcuMyTn50PUlWSq5v6mmQlefFl1HeWjKvyqRVxHNvlA_EX74C-BZfHk4vxKW2rMlCDH6ymCLgQ4hlWFLKQBrmpFedGGWnCQBuphTAsi5AAt74iklYiyIywMZEasTECnI-wXFal_QwkUUUmpGIWYaqIY57pXNiwiAzCiixXbAhBx5jUtCnLXeWMu9SrLkylnq-p42va8nUI-_0z903CjjepNx1TesqWH0PY6fiftmv6MUXdMoySREmc117fjKvRHbFkpa0WSBNzlSBCZtjFp0Zu-r47cfvy7zG3YcWVsm8cBXdguX5Y2F0EPLX-6iX9D7JC-GY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615UAvFPpiSwFX6o166zhOHB9h2bKF3T3AVuwtih1HrVolVZsFiV_P2HmAEKCeEskT28mMM9-MxzMAx6G0jGV5THVoMip4wWhSGEETI9xBEJe90jn0Z_N4ciE-LqPlGpz0Z2GstT74zA7drd_Lzyuzcq6yUyUDIcN4HR6h3o94c1qr96gwROaxx7s8iDnloVx2p2SYOl3M59MvaA9yjmaqkJy5Sn1hFKA540qs_aaUfJWVfwNOr3jOtmDWTbmJN7kermo9ND_-yOb40Hd6Ck9aBEreNiLzDNZsuQ1bXXUH0i72Hbgcjz_Qd6jkcjJys6b4j3FOG_L-zsVy4KX63gTNk89dFFJVkq9X9SXJSvIrmlHfWDKqym-tkOPYLiOIv_gQ9F24OBsvRhPa1mWgBj9YTRFyIcgzrChkIQ3yUyvOjTLShIE2UgthWBYhASq_IpJWIsyMsDGRGtExQpw92Cir0j4HkqgiE1Ixi0BVxDHPdC5sWEQGgUWWKzaAoGNMatqk5a52xk3qjRemUs_X1PE1bfk6gDf9M7dNyo7_Uu84pvSULT8GcNjxP21X9X2K1mUYJYmSOK-jvhnXo9tkyUpbrZAm5ipBjMywi_1Gbvq-O3E7-PuYr-HxZDGbptPz-acXsOkK2zdhg4ewUd-t7EuEP7V-5aX-J9B--7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Cross-Subject+Driver+Drowsiness+Recognition+With+an+Interpretable+Convolutional+Neural+Network&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Cui%2C+Jian&rft.au=Lan%2C+Zirui&rft.au=Sourina%2C+Olga&rft.au=Muller-Wittig%2C+Wolfgang&rft.date=2023-10-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=34&rft.issue=10&rft.spage=7921&rft_id=info:doi/10.1109%2FTNNLS.2022.3147208&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |