Intermittent Sampled-Data Control for Local Stabilization of Neural Networks Subject to Actuator Saturation: A Work-Interval-Dependent Functional Approach
This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation. The issue is presented for two reasons: 1) the control input and the network bandwidth are always limited in practical engineering application...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 1; pp. 1087 - 1097 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation. The issue is presented for two reasons: 1) the control input and the network bandwidth are always limited in practical engineering applications and 2) the existing analysis methods cannot handle the effect of the saturation nonlinearity and the ISC simultaneously. To overcome these difficulties, a work-interval-dependent Lyapunov functional is developed for the resulting closed-loop system, which is piecewise-defined, time-dependent, and also continuous. The main advantage of the proposed functional is that the information over the work interval is utilized. Based on the developed Lyapunov functional, the constraints on the basin of attraction (BoA) and the Lyapunov matrices are dropped. Then, using the generalized sector condition and the Lyapunov stability theory, two sufficient criteria for local exponential stability of the closed-loop system are developed. Moreover, two optimization strategies are put forward with the aim of enlarging the BoA and minimizing the actuator cost. Finally, two numerical examples are provided to exemplify the feasibility and reliability of the derived theoretical results. |
---|---|
AbstractList | This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation. The issue is presented for two reasons: 1) the control input and the network bandwidth are always limited in practical engineering applications and 2) the existing analysis methods cannot handle the effect of the saturation nonlinearity and the ISC simultaneously. To overcome these difficulties, a work-interval-dependent Lyapunov functional is developed for the resulting closed-loop system, which is piecewise-defined, time-dependent, and also continuous. The main advantage of the proposed functional is that the information over the work interval is utilized. Based on the developed Lyapunov functional, the constraints on the basin of attraction (BoA) and the Lyapunov matrices are dropped. Then, using the generalized sector condition and the Lyapunov stability theory, two sufficient criteria for local exponential stability of the closed-loop system are developed. Moreover, two optimization strategies are put forward with the aim of enlarging the BoA and minimizing the actuator cost. Finally, two numerical examples are provided to exemplify the feasibility and reliability of the derived theoretical results. This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation. The issue is presented for two reasons: 1) the control input and the network bandwidth are always limited in practical engineering applications and 2) the existing analysis methods cannot handle the effect of the saturation nonlinearity and the ISC simultaneously. To overcome these difficulties, a work-interval-dependent Lyapunov functional is developed for the resulting closed-loop system, which is piecewise-defined, time-dependent, and also continuous. The main advantage of the proposed functional is that the information over the work interval is utilized. Based on the developed Lyapunov functional, the constraints on the basin of attraction (BoA) and the Lyapunov matrices are dropped. Then, using the generalized sector condition and the Lyapunov stability theory, two sufficient criteria for local exponential stability of the closed-loop system are developed. Moreover, two optimization strategies are put forward with the aim of enlarging the BoA and minimizing the actuator cost. Finally, two numerical examples are provided to exemplify the feasibility and reliability of the derived theoretical results.This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation. The issue is presented for two reasons: 1) the control input and the network bandwidth are always limited in practical engineering applications and 2) the existing analysis methods cannot handle the effect of the saturation nonlinearity and the ISC simultaneously. To overcome these difficulties, a work-interval-dependent Lyapunov functional is developed for the resulting closed-loop system, which is piecewise-defined, time-dependent, and also continuous. The main advantage of the proposed functional is that the information over the work interval is utilized. Based on the developed Lyapunov functional, the constraints on the basin of attraction (BoA) and the Lyapunov matrices are dropped. Then, using the generalized sector condition and the Lyapunov stability theory, two sufficient criteria for local exponential stability of the closed-loop system are developed. Moreover, two optimization strategies are put forward with the aim of enlarging the BoA and minimizing the actuator cost. Finally, two numerical examples are provided to exemplify the feasibility and reliability of the derived theoretical results. |
Author | Ni, Yanyan Ma, Qian Huang, Xia Shen, Hao Wang, Zhen |
Author_xml | – sequence: 1 givenname: Yanyan surname: Ni fullname: Ni, Yanyan organization: College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China – sequence: 2 givenname: Zhen orcidid: 0000-0001-7188-5828 surname: Wang fullname: Wang, Zhen email: wangzhen_sd@126.com organization: College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China – sequence: 3 givenname: Xia orcidid: 0000-0002-4955-8318 surname: Huang fullname: Huang, Xia organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China – sequence: 4 givenname: Qian orcidid: 0000-0002-0593-0157 surname: Ma fullname: Ma, Qian organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 5 givenname: Hao orcidid: 0000-0001-7024-6573 surname: Shen fullname: Shen, Hao organization: School of Electrical and Information Engineering, Anhui University of Technology, Maanshan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35700241$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc2O0zAUhS00iBnKvABIyBIbNin-SfzDruowMFJVFhkEu-jWvREpSVwcBwSPwtPitKWLWeCFbVnfucc65ym56H2PhDznbM45s2_u1-tVORdMiLnkhjGtHpErwZXIhDTm4nzXXy7J9TDsWFqKFSq3T8ilLDRjIudX5M9dHzF0TYzYR1pCt29xm91ABLr0fQy-pbUPdOUdtLSMsGna5jfExvfU13SNY0jva4w_ffg20HLc7NBFGj1duDhCTNISYoImxVu6oJ8Tlx08f0Cb3eAe--3kfDv2bmLStMV-Hzy4r8_I4xraAa9P54x8un13v_yQrT6-v1suVpmTBY9ZwREw1zkziE4VZmsdk84pJoqUijU2r_Naa6ZqrEFpmfNCooQNSCOhUIWckdfHucn2-4hDrLpmcNi20KMfh0oorWzaEj8jrx6gOz-G9OlEWc5zY4SeqJcnatx0uK32oekg_Kr-pZ4AcQRc8MMQsD4jnFVTu9Wh3Wpqtzq1m0Tmgcg18ZBrDNC0_5e-OEobRDx7WW0Vl1b-BUNWswk |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_automatica_2024_111963 crossref_primary_10_1016_j_fss_2024_109204 crossref_primary_10_3390_fractalfract7050364 crossref_primary_10_1007_s11071_023_08679_1 crossref_primary_10_1002_rnc_7802 crossref_primary_10_1016_j_engappai_2025_110290 crossref_primary_10_1109_TII_2024_3465605 crossref_primary_10_3934_math_2024935 crossref_primary_10_3934_math_2024647 crossref_primary_10_1016_j_cnsns_2024_108579 crossref_primary_10_3934_math_2024723 crossref_primary_10_3934_era_2024211 crossref_primary_10_1016_j_cnsns_2024_108188 crossref_primary_10_1016_j_neucom_2025_129724 crossref_primary_10_1016_j_neunet_2024_106705 crossref_primary_10_1109_TIM_2024_3462990 crossref_primary_10_1016_j_neunet_2024_106530 crossref_primary_10_1007_s13042_023_01899_2 crossref_primary_10_1007_s12559_023_10178_9 crossref_primary_10_1016_j_neucom_2024_128262 crossref_primary_10_1007_s12559_023_10186_9 crossref_primary_10_1109_TSMC_2024_3408465 |
Cites_doi | 10.1016/j.neunet.2013.10.002 10.1109/TII.2016.2607150 10.1016/j.chaos.2016.06.004 10.1109/TCYB.2017.2729581 10.1109/TSMC.2017.2753944 10.1016/j.automatica.2021.110030 10.1016/j.automatica.2011.01.045 10.1109/TAC.2012.2206694 10.1109/TNNLS.2016.2619345 10.1016/j.neucom.2010.03.020 10.1007/s11071-012-0404-4 10.1109/TCST.2021.3070861 10.1016/j.automatica.2017.04.051 10.1109/TII.2012.2219540 10.1016/0893-6080(89)90035-X 10.1109/TNNLS.2021.3107607 10.1109/TAC.2017.2670786 10.1109/TNNLS.2021.3053652 10.1109/TNNLS.2014.2345125 10.1109/TNNLS.2019.2896162 10.1109/TCYB.2018.2839686 10.1016/j.sysconle.2012.09.003 10.1109/TAC.2004.841128 10.1007/s11071-014-1681-x 10.1109/TSMC.2020.3035173 10.1109/MCS.2014.2364708 10.1109/TNNLS.2021.3069926 10.1109/TNNLS.2018.2836339 10.1007/978-0-85729-941-3 10.1007/s11071-018-4376-x 10.1109/72.125863 10.1109/JPROC.2006.887288 10.1016/j.neunet.2019.05.014 10.1109/MCS.2003.1213600 10.1109/TCYB.2014.2312004 10.1016/j.neucom.2016.05.022 10.1109/TNNLS.2018.2854841 10.1109/TCYB.2021.3052098 10.1016/j.neunet.2015.12.003 10.1016/j.neucom.2019.12.031 10.1109/TAC.2006.878743 10.1109/TCYB.2018.2879327 10.1109/TNNLS.2016.2580609 10.1109/TNNLS.2018.2853650 10.1016/j.neucom.2012.06.017 10.1109/TSMC.2018.2850157 10.1109/TII.2015.2506545 10.1109/TCYB.2017.2711496 10.1109/TCYB.2019.2912890 10.1016/j.isatra.2021.06.015 10.1109/TII.2020.3026336 10.1016/j.neucom.2017.02.063 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2022.3180076 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 1097 |
ExternalDocumentID | 35700241 10_1109_TNNLS_2022_3180076 9796139 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62173214; 61973199; 62003794 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-51eae47408eec658d9c03cc60250079894f4f7706fefa6734153e3aba383a5653 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 19:19:07 EDT 2025 Mon Jun 30 06:05:34 EDT 2025 Mon Jul 21 05:44:17 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Tue Jul 01 00:27:46 EDT 2025 Wed Aug 27 02:37:21 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-51eae47408eec658d9c03cc60250079894f4f7706fefa6734153e3aba383a5653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4955-8318 0000-0002-0593-0157 0000-0001-7024-6573 0000-0001-7188-5828 |
PMID | 35700241 |
PQID | 2911488278 |
PQPubID | 85436 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2676926738 ieee_primary_9796139 proquest_journals_2911488278 pubmed_primary_35700241 crossref_primary_10_1109_TNNLS_2022_3180076 crossref_citationtrail_10_1109_TNNLS_2022_3180076 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref52 doi: 10.1016/j.neunet.2013.10.002 – ident: ref6 doi: 10.1109/TII.2016.2607150 – ident: ref8 doi: 10.1016/j.chaos.2016.06.004 – ident: ref17 doi: 10.1109/TCYB.2017.2729581 – ident: ref9 doi: 10.1109/TSMC.2017.2753944 – ident: ref34 doi: 10.1016/j.automatica.2021.110030 – ident: ref51 doi: 10.1016/j.automatica.2011.01.045 – ident: ref18 doi: 10.1109/TAC.2012.2206694 – ident: ref32 doi: 10.1109/TNNLS.2016.2619345 – ident: ref12 doi: 10.1016/j.neucom.2010.03.020 – ident: ref38 doi: 10.1007/s11071-012-0404-4 – ident: ref20 doi: 10.1109/TCST.2021.3070861 – ident: ref13 doi: 10.1016/j.automatica.2017.04.051 – ident: ref2 doi: 10.1109/TII.2012.2219540 – ident: ref29 doi: 10.1016/0893-6080(89)90035-X – ident: ref5 doi: 10.1109/TNNLS.2021.3107607 – ident: ref16 doi: 10.1109/TAC.2017.2670786 – ident: ref19 doi: 10.1109/TNNLS.2021.3053652 – ident: ref33 doi: 10.1109/TNNLS.2014.2345125 – ident: ref46 doi: 10.1109/TNNLS.2019.2896162 – ident: ref23 doi: 10.1109/TCYB.2018.2839686 – ident: ref43 doi: 10.1016/j.sysconle.2012.09.003 – ident: ref50 doi: 10.1109/TAC.2004.841128 – ident: ref14 doi: 10.1007/s11071-014-1681-x – ident: ref39 doi: 10.1109/TSMC.2020.3035173 – ident: ref3 doi: 10.1109/MCS.2014.2364708 – ident: ref25 doi: 10.1109/TNNLS.2021.3069926 – ident: ref27 doi: 10.1109/TNNLS.2018.2836339 – ident: ref49 doi: 10.1007/978-0-85729-941-3 – ident: ref24 doi: 10.1007/s11071-018-4376-x – ident: ref30 doi: 10.1109/72.125863 – ident: ref1 doi: 10.1109/JPROC.2006.887288 – ident: ref22 doi: 10.1016/j.neunet.2019.05.014 – ident: ref42 doi: 10.1109/MCS.2003.1213600 – ident: ref44 doi: 10.1109/TCYB.2014.2312004 – ident: ref7 doi: 10.1016/j.neucom.2016.05.022 – ident: ref47 doi: 10.1109/TNNLS.2018.2854841 – ident: ref21 doi: 10.1109/TCYB.2021.3052098 – ident: ref37 doi: 10.1016/j.neunet.2015.12.003 – ident: ref41 doi: 10.1016/j.neucom.2019.12.031 – ident: ref48 doi: 10.1109/TAC.2006.878743 – ident: ref11 doi: 10.1109/TCYB.2018.2879327 – ident: ref40 doi: 10.1109/TNNLS.2016.2580609 – ident: ref28 doi: 10.1109/TNNLS.2018.2853650 – ident: ref31 doi: 10.1016/j.neucom.2012.06.017 – ident: ref10 doi: 10.1109/TSMC.2018.2850157 – ident: ref4 doi: 10.1109/TII.2015.2506545 – ident: ref35 doi: 10.1109/TCYB.2017.2711496 – ident: ref36 doi: 10.1109/TCYB.2019.2912890 – ident: ref26 doi: 10.1016/j.isatra.2021.06.015 – ident: ref15 doi: 10.1109/TII.2020.3026336 – ident: ref45 doi: 10.1016/j.neucom.2017.02.063 |
SSID | ssj0000605649 |
Score | 2.5824313 |
Snippet | This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1087 |
SubjectTerms | Actuator saturation Actuators Artificial neural networks Closed loop systems Closed loops Control systems Feedback control intermittent sampled-data control (ISC) Linear matrix inequalities local stabilization Lyapunov functional Neural networks neural networks (NNs) Nonlinear systems Stability criteria Stabilization Symmetric matrices Synchronization |
Title | Intermittent Sampled-Data Control for Local Stabilization of Neural Networks Subject to Actuator Saturation: A Work-Interval-Dependent Functional Approach |
URI | https://ieeexplore.ieee.org/document/9796139 https://www.ncbi.nlm.nih.gov/pubmed/35700241 https://www.proquest.com/docview/2911488278 https://www.proquest.com/docview/2676926738 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PaBeKKV8hLbISNzA28R24pjbqmVVoXYvbaW9RY7jSKiwQW320p_Cr-2MnUQCAeISRYnjJPLY82Y88wbgvTQ297puuUlbz1VTF7w2paWDdN7iAhjIni-XxfmN-rLKV1vwccqF8d6H4DM_o9Owl990bkOushOjDWofsw3baLjFXK3Jn5IiLi8C2hVZIbiQejXmyKTm5Hq5vLhCa1AINFJL2n7ahSeSuN2Fyn5RSaHGyt_hZlA7iz24HD84RpvczjZ9PXMPv3E5_u8fPYOnA_5k8ygw-7Dl189hb6ztwIapfgA_g6vw-9ceMXXPriyRCDf8zPaWncbodoZwl12QKmSIWCnGNmZ0sq5lRPmB15cxxvye4fJE_h7Wd2xOGSto6GOfRPlBT3xic0ZOex7eiaLPz4bSvD1boN6N7ko2H-jPX8DN4vP16Tkf6jhwJ_Os53nmrVdapaX3DhFPY1wqnSsIfqWaGOBb1WqdFq1vbaFRr-bSS1tbtJ4tAk75EnbW3dq_BlZY52RdKtUKgz2q0raaOOQK15R17VwC2TiUlRtIzqnWxrcqGDupqYIkVCQJ1SAJCXyYnvkRKT7-2fqAhnFqOYxgAkejxFTDKnBfCUPWZil0mcC76TbOX9qUsWvfbbANxRgLqr2awKsoaVPfo4C--fM7D2EXv0xFh9AR7PR3G3-MEKmv34a58QjW0wyP |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NjtMwEB4tiwR7YYFlIbCAkeCE0k0c58dIHKotVZft5tKu1FtwHEdCQIOoKwSPgngV3o0Z50cCAbeVuFRVazuVO575ZjzzDcDTSKrYpGXty6A2vqjKxC9lpugl0kahAnRkz-d5MrsQr1fxage-D7UwxhiXfGZG9Nbd5VeN3lKo7FimEq2P7FIoz8yXz-igbV6eTvDffMb59NXyZOZ3PQR8HcWh9ePQKCNSEWTGaLS2ldRBpHVCpj9IiX28FnWaBkltapWkqNPjyESqVOi5KQQ7Ea57Ba4izoh5Wx02RHAC9AQSh695mHCfR-mqr8oJ5PEyz-cL9D85R7c4owuvPbgWEZs8F-EvRtB1dfk7wHWGbroPP_otavNb3o22thzpr7-xR_6ve3gTbnQIm43bI3ELdsz6Nuz33StYp8wO4JsLhn54a9FrsGyhiCa58ifKKnbS5u8zBPRsTsaeISanLOK2ZpU1NSNSE_w8b7PoNwwVMEW0mG3YmGpyLE5dEGmqm_GCjRldS_jumXi4_UnXfNiyKSKLNiDLxh3B-x24uJQdOoTddbM294AlSuuozISoucQVRabqlFjyEl1lZam1B2EvOoXuaNypm8j7wrlzgSyc5BUkeUUneR48H-Z8bElM_jn6gMRmGNlJjAdHvYQWnZ7bFFySP53xNPPgyfA1aii6dlJr02xxDGVRc-ou68HdVrKHtfsDcf_Pz3wM12fL83kxP83PHsAe_krRhr-OYNd-2pqHCAht-cidSwZvLluIfwKhqWgl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intermittent+Sampled-Data+Control+for+Local+Stabilization+of+Neural+Networks+Subject+to+Actuator+Saturation%3A+A+Work-Interval-Dependent+Functional+Approach&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Ni%2C+Yanyan&rft.au=Wang%2C+Zhen&rft.au=Huang%2C+Xia&rft.au=Ma%2C+Qian&rft.date=2024-01-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=1&rft.spage=1087&rft.epage=1097&rft_id=info:doi/10.1109%2FTNNLS.2022.3180076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2022_3180076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |