Intermittent Sampled-Data Control for Local Stabilization of Neural Networks Subject to Actuator Saturation: A Work-Interval-Dependent Functional Approach

This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation. The issue is presented for two reasons: 1) the control input and the network bandwidth are always limited in practical engineering application...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 1; pp. 1087 - 1097
Main Authors Ni, Yanyan, Wang, Zhen, Huang, Xia, Ma, Qian, Shen, Hao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation. The issue is presented for two reasons: 1) the control input and the network bandwidth are always limited in practical engineering applications and 2) the existing analysis methods cannot handle the effect of the saturation nonlinearity and the ISC simultaneously. To overcome these difficulties, a work-interval-dependent Lyapunov functional is developed for the resulting closed-loop system, which is piecewise-defined, time-dependent, and also continuous. The main advantage of the proposed functional is that the information over the work interval is utilized. Based on the developed Lyapunov functional, the constraints on the basin of attraction (BoA) and the Lyapunov matrices are dropped. Then, using the generalized sector condition and the Lyapunov stability theory, two sufficient criteria for local exponential stability of the closed-loop system are developed. Moreover, two optimization strategies are put forward with the aim of enlarging the BoA and minimizing the actuator cost. Finally, two numerical examples are provided to exemplify the feasibility and reliability of the derived theoretical results.
AbstractList This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation. The issue is presented for two reasons: 1) the control input and the network bandwidth are always limited in practical engineering applications and 2) the existing analysis methods cannot handle the effect of the saturation nonlinearity and the ISC simultaneously. To overcome these difficulties, a work-interval-dependent Lyapunov functional is developed for the resulting closed-loop system, which is piecewise-defined, time-dependent, and also continuous. The main advantage of the proposed functional is that the information over the work interval is utilized. Based on the developed Lyapunov functional, the constraints on the basin of attraction (BoA) and the Lyapunov matrices are dropped. Then, using the generalized sector condition and the Lyapunov stability theory, two sufficient criteria for local exponential stability of the closed-loop system are developed. Moreover, two optimization strategies are put forward with the aim of enlarging the BoA and minimizing the actuator cost. Finally, two numerical examples are provided to exemplify the feasibility and reliability of the derived theoretical results.
This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation. The issue is presented for two reasons: 1) the control input and the network bandwidth are always limited in practical engineering applications and 2) the existing analysis methods cannot handle the effect of the saturation nonlinearity and the ISC simultaneously. To overcome these difficulties, a work-interval-dependent Lyapunov functional is developed for the resulting closed-loop system, which is piecewise-defined, time-dependent, and also continuous. The main advantage of the proposed functional is that the information over the work interval is utilized. Based on the developed Lyapunov functional, the constraints on the basin of attraction (BoA) and the Lyapunov matrices are dropped. Then, using the generalized sector condition and the Lyapunov stability theory, two sufficient criteria for local exponential stability of the closed-loop system are developed. Moreover, two optimization strategies are put forward with the aim of enlarging the BoA and minimizing the actuator cost. Finally, two numerical examples are provided to exemplify the feasibility and reliability of the derived theoretical results.This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation. The issue is presented for two reasons: 1) the control input and the network bandwidth are always limited in practical engineering applications and 2) the existing analysis methods cannot handle the effect of the saturation nonlinearity and the ISC simultaneously. To overcome these difficulties, a work-interval-dependent Lyapunov functional is developed for the resulting closed-loop system, which is piecewise-defined, time-dependent, and also continuous. The main advantage of the proposed functional is that the information over the work interval is utilized. Based on the developed Lyapunov functional, the constraints on the basin of attraction (BoA) and the Lyapunov matrices are dropped. Then, using the generalized sector condition and the Lyapunov stability theory, two sufficient criteria for local exponential stability of the closed-loop system are developed. Moreover, two optimization strategies are put forward with the aim of enlarging the BoA and minimizing the actuator cost. Finally, two numerical examples are provided to exemplify the feasibility and reliability of the derived theoretical results.
Author Ni, Yanyan
Ma, Qian
Huang, Xia
Shen, Hao
Wang, Zhen
Author_xml – sequence: 1
  givenname: Yanyan
  surname: Ni
  fullname: Ni, Yanyan
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0001-7188-5828
  surname: Wang
  fullname: Wang, Zhen
  email: wangzhen_sd@126.com
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Xia
  orcidid: 0000-0002-4955-8318
  surname: Huang
  fullname: Huang, Xia
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China
– sequence: 4
  givenname: Qian
  orcidid: 0000-0002-0593-0157
  surname: Ma
  fullname: Ma, Qian
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 5
  givenname: Hao
  orcidid: 0000-0001-7024-6573
  surname: Shen
  fullname: Shen, Hao
  organization: School of Electrical and Information Engineering, Anhui University of Technology, Maanshan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35700241$$D View this record in MEDLINE/PubMed
BookMark eNp9kc2O0zAUhS00iBnKvABIyBIbNin-SfzDruowMFJVFhkEu-jWvREpSVwcBwSPwtPitKWLWeCFbVnfucc65ym56H2PhDznbM45s2_u1-tVORdMiLnkhjGtHpErwZXIhDTm4nzXXy7J9TDsWFqKFSq3T8ilLDRjIudX5M9dHzF0TYzYR1pCt29xm91ABLr0fQy-pbUPdOUdtLSMsGna5jfExvfU13SNY0jva4w_ffg20HLc7NBFGj1duDhCTNISYoImxVu6oJ8Tlx08f0Cb3eAe--3kfDv2bmLStMV-Hzy4r8_I4xraAa9P54x8un13v_yQrT6-v1suVpmTBY9ZwREw1zkziE4VZmsdk84pJoqUijU2r_Naa6ZqrEFpmfNCooQNSCOhUIWckdfHucn2-4hDrLpmcNi20KMfh0oorWzaEj8jrx6gOz-G9OlEWc5zY4SeqJcnatx0uK32oekg_Kr-pZ4AcQRc8MMQsD4jnFVTu9Wh3Wpqtzq1m0Tmgcg18ZBrDNC0_5e-OEobRDx7WW0Vl1b-BUNWswk
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_automatica_2024_111963
crossref_primary_10_1016_j_fss_2024_109204
crossref_primary_10_3390_fractalfract7050364
crossref_primary_10_1007_s11071_023_08679_1
crossref_primary_10_1002_rnc_7802
crossref_primary_10_1016_j_engappai_2025_110290
crossref_primary_10_1109_TII_2024_3465605
crossref_primary_10_3934_math_2024935
crossref_primary_10_3934_math_2024647
crossref_primary_10_1016_j_cnsns_2024_108579
crossref_primary_10_3934_math_2024723
crossref_primary_10_3934_era_2024211
crossref_primary_10_1016_j_cnsns_2024_108188
crossref_primary_10_1016_j_neucom_2025_129724
crossref_primary_10_1016_j_neunet_2024_106705
crossref_primary_10_1109_TIM_2024_3462990
crossref_primary_10_1016_j_neunet_2024_106530
crossref_primary_10_1007_s13042_023_01899_2
crossref_primary_10_1007_s12559_023_10178_9
crossref_primary_10_1016_j_neucom_2024_128262
crossref_primary_10_1007_s12559_023_10186_9
crossref_primary_10_1109_TSMC_2024_3408465
Cites_doi 10.1016/j.neunet.2013.10.002
10.1109/TII.2016.2607150
10.1016/j.chaos.2016.06.004
10.1109/TCYB.2017.2729581
10.1109/TSMC.2017.2753944
10.1016/j.automatica.2021.110030
10.1016/j.automatica.2011.01.045
10.1109/TAC.2012.2206694
10.1109/TNNLS.2016.2619345
10.1016/j.neucom.2010.03.020
10.1007/s11071-012-0404-4
10.1109/TCST.2021.3070861
10.1016/j.automatica.2017.04.051
10.1109/TII.2012.2219540
10.1016/0893-6080(89)90035-X
10.1109/TNNLS.2021.3107607
10.1109/TAC.2017.2670786
10.1109/TNNLS.2021.3053652
10.1109/TNNLS.2014.2345125
10.1109/TNNLS.2019.2896162
10.1109/TCYB.2018.2839686
10.1016/j.sysconle.2012.09.003
10.1109/TAC.2004.841128
10.1007/s11071-014-1681-x
10.1109/TSMC.2020.3035173
10.1109/MCS.2014.2364708
10.1109/TNNLS.2021.3069926
10.1109/TNNLS.2018.2836339
10.1007/978-0-85729-941-3
10.1007/s11071-018-4376-x
10.1109/72.125863
10.1109/JPROC.2006.887288
10.1016/j.neunet.2019.05.014
10.1109/MCS.2003.1213600
10.1109/TCYB.2014.2312004
10.1016/j.neucom.2016.05.022
10.1109/TNNLS.2018.2854841
10.1109/TCYB.2021.3052098
10.1016/j.neunet.2015.12.003
10.1016/j.neucom.2019.12.031
10.1109/TAC.2006.878743
10.1109/TCYB.2018.2879327
10.1109/TNNLS.2016.2580609
10.1109/TNNLS.2018.2853650
10.1016/j.neucom.2012.06.017
10.1109/TSMC.2018.2850157
10.1109/TII.2015.2506545
10.1109/TCYB.2017.2711496
10.1109/TCYB.2019.2912890
10.1016/j.isatra.2021.06.015
10.1109/TII.2020.3026336
10.1016/j.neucom.2017.02.063
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3180076
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1097
ExternalDocumentID 35700241
10_1109_TNNLS_2022_3180076
9796139
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62173214; 61973199; 62003794
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-51eae47408eec658d9c03cc60250079894f4f7706fefa6734153e3aba383a5653
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 19:19:07 EDT 2025
Mon Jun 30 06:05:34 EDT 2025
Mon Jul 21 05:44:17 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Tue Jul 01 00:27:46 EDT 2025
Wed Aug 27 02:37:21 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-51eae47408eec658d9c03cc60250079894f4f7706fefa6734153e3aba383a5653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4955-8318
0000-0002-0593-0157
0000-0001-7024-6573
0000-0001-7188-5828
PMID 35700241
PQID 2911488278
PQPubID 85436
PageCount 11
ParticipantIDs proquest_miscellaneous_2676926738
ieee_primary_9796139
proquest_journals_2911488278
pubmed_primary_35700241
crossref_primary_10_1109_TNNLS_2022_3180076
crossref_citationtrail_10_1109_TNNLS_2022_3180076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref52
  doi: 10.1016/j.neunet.2013.10.002
– ident: ref6
  doi: 10.1109/TII.2016.2607150
– ident: ref8
  doi: 10.1016/j.chaos.2016.06.004
– ident: ref17
  doi: 10.1109/TCYB.2017.2729581
– ident: ref9
  doi: 10.1109/TSMC.2017.2753944
– ident: ref34
  doi: 10.1016/j.automatica.2021.110030
– ident: ref51
  doi: 10.1016/j.automatica.2011.01.045
– ident: ref18
  doi: 10.1109/TAC.2012.2206694
– ident: ref32
  doi: 10.1109/TNNLS.2016.2619345
– ident: ref12
  doi: 10.1016/j.neucom.2010.03.020
– ident: ref38
  doi: 10.1007/s11071-012-0404-4
– ident: ref20
  doi: 10.1109/TCST.2021.3070861
– ident: ref13
  doi: 10.1016/j.automatica.2017.04.051
– ident: ref2
  doi: 10.1109/TII.2012.2219540
– ident: ref29
  doi: 10.1016/0893-6080(89)90035-X
– ident: ref5
  doi: 10.1109/TNNLS.2021.3107607
– ident: ref16
  doi: 10.1109/TAC.2017.2670786
– ident: ref19
  doi: 10.1109/TNNLS.2021.3053652
– ident: ref33
  doi: 10.1109/TNNLS.2014.2345125
– ident: ref46
  doi: 10.1109/TNNLS.2019.2896162
– ident: ref23
  doi: 10.1109/TCYB.2018.2839686
– ident: ref43
  doi: 10.1016/j.sysconle.2012.09.003
– ident: ref50
  doi: 10.1109/TAC.2004.841128
– ident: ref14
  doi: 10.1007/s11071-014-1681-x
– ident: ref39
  doi: 10.1109/TSMC.2020.3035173
– ident: ref3
  doi: 10.1109/MCS.2014.2364708
– ident: ref25
  doi: 10.1109/TNNLS.2021.3069926
– ident: ref27
  doi: 10.1109/TNNLS.2018.2836339
– ident: ref49
  doi: 10.1007/978-0-85729-941-3
– ident: ref24
  doi: 10.1007/s11071-018-4376-x
– ident: ref30
  doi: 10.1109/72.125863
– ident: ref1
  doi: 10.1109/JPROC.2006.887288
– ident: ref22
  doi: 10.1016/j.neunet.2019.05.014
– ident: ref42
  doi: 10.1109/MCS.2003.1213600
– ident: ref44
  doi: 10.1109/TCYB.2014.2312004
– ident: ref7
  doi: 10.1016/j.neucom.2016.05.022
– ident: ref47
  doi: 10.1109/TNNLS.2018.2854841
– ident: ref21
  doi: 10.1109/TCYB.2021.3052098
– ident: ref37
  doi: 10.1016/j.neunet.2015.12.003
– ident: ref41
  doi: 10.1016/j.neucom.2019.12.031
– ident: ref48
  doi: 10.1109/TAC.2006.878743
– ident: ref11
  doi: 10.1109/TCYB.2018.2879327
– ident: ref40
  doi: 10.1109/TNNLS.2016.2580609
– ident: ref28
  doi: 10.1109/TNNLS.2018.2853650
– ident: ref31
  doi: 10.1016/j.neucom.2012.06.017
– ident: ref10
  doi: 10.1109/TSMC.2018.2850157
– ident: ref4
  doi: 10.1109/TII.2015.2506545
– ident: ref35
  doi: 10.1109/TCYB.2017.2711496
– ident: ref36
  doi: 10.1109/TCYB.2019.2912890
– ident: ref26
  doi: 10.1016/j.isatra.2021.06.015
– ident: ref15
  doi: 10.1109/TII.2020.3026336
– ident: ref45
  doi: 10.1016/j.neucom.2017.02.063
SSID ssj0000605649
Score 2.5824313
Snippet This article is concerned with the local stabilization of neural networks (NNs) under intermittent sampled-data control (ISC) subject to actuator saturation....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1087
SubjectTerms Actuator saturation
Actuators
Artificial neural networks
Closed loop systems
Closed loops
Control systems
Feedback control
intermittent sampled-data control (ISC)
Linear matrix inequalities
local stabilization
Lyapunov functional
Neural networks
neural networks (NNs)
Nonlinear systems
Stability criteria
Stabilization
Symmetric matrices
Synchronization
Title Intermittent Sampled-Data Control for Local Stabilization of Neural Networks Subject to Actuator Saturation: A Work-Interval-Dependent Functional Approach
URI https://ieeexplore.ieee.org/document/9796139
https://www.ncbi.nlm.nih.gov/pubmed/35700241
https://www.proquest.com/docview/2911488278
https://www.proquest.com/docview/2676926738
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PaBeKKV8hLbISNzA28R24pjbqmVVoXYvbaW9RY7jSKiwQW320p_Cr-2MnUQCAeISRYnjJPLY82Y88wbgvTQ297puuUlbz1VTF7w2paWDdN7iAhjIni-XxfmN-rLKV1vwccqF8d6H4DM_o9Owl990bkOushOjDWofsw3baLjFXK3Jn5IiLi8C2hVZIbiQejXmyKTm5Hq5vLhCa1AINFJL2n7ahSeSuN2Fyn5RSaHGyt_hZlA7iz24HD84RpvczjZ9PXMPv3E5_u8fPYOnA_5k8ygw-7Dl189hb6ztwIapfgA_g6vw-9ceMXXPriyRCDf8zPaWncbodoZwl12QKmSIWCnGNmZ0sq5lRPmB15cxxvye4fJE_h7Wd2xOGSto6GOfRPlBT3xic0ZOex7eiaLPz4bSvD1boN6N7ko2H-jPX8DN4vP16Tkf6jhwJ_Os53nmrVdapaX3DhFPY1wqnSsIfqWaGOBb1WqdFq1vbaFRr-bSS1tbtJ4tAk75EnbW3dq_BlZY52RdKtUKgz2q0raaOOQK15R17VwC2TiUlRtIzqnWxrcqGDupqYIkVCQJ1SAJCXyYnvkRKT7-2fqAhnFqOYxgAkejxFTDKnBfCUPWZil0mcC76TbOX9qUsWvfbbANxRgLqr2awKsoaVPfo4C--fM7D2EXv0xFh9AR7PR3G3-MEKmv34a58QjW0wyP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NjtMwEB4tiwR7YYFlIbCAkeCE0k0c58dIHKotVZft5tKu1FtwHEdCQIOoKwSPgngV3o0Z50cCAbeVuFRVazuVO575ZjzzDcDTSKrYpGXty6A2vqjKxC9lpugl0kahAnRkz-d5MrsQr1fxage-D7UwxhiXfGZG9Nbd5VeN3lKo7FimEq2P7FIoz8yXz-igbV6eTvDffMb59NXyZOZ3PQR8HcWh9ePQKCNSEWTGaLS2ldRBpHVCpj9IiX28FnWaBkltapWkqNPjyESqVOi5KQQ7Ea57Ba4izoh5Wx02RHAC9AQSh695mHCfR-mqr8oJ5PEyz-cL9D85R7c4owuvPbgWEZs8F-EvRtB1dfk7wHWGbroPP_otavNb3o22thzpr7-xR_6ve3gTbnQIm43bI3ELdsz6Nuz33StYp8wO4JsLhn54a9FrsGyhiCa58ifKKnbS5u8zBPRsTsaeISanLOK2ZpU1NSNSE_w8b7PoNwwVMEW0mG3YmGpyLE5dEGmqm_GCjRldS_jumXi4_UnXfNiyKSKLNiDLxh3B-x24uJQdOoTddbM294AlSuuozISoucQVRabqlFjyEl1lZam1B2EvOoXuaNypm8j7wrlzgSyc5BUkeUUneR48H-Z8bElM_jn6gMRmGNlJjAdHvYQWnZ7bFFySP53xNPPgyfA1aii6dlJr02xxDGVRc-ou68HdVrKHtfsDcf_Pz3wM12fL83kxP83PHsAe_krRhr-OYNd-2pqHCAht-cidSwZvLluIfwKhqWgl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intermittent+Sampled-Data+Control+for+Local+Stabilization+of+Neural+Networks+Subject+to+Actuator+Saturation%3A+A+Work-Interval-Dependent+Functional+Approach&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Ni%2C+Yanyan&rft.au=Wang%2C+Zhen&rft.au=Huang%2C+Xia&rft.au=Ma%2C+Qian&rft.date=2024-01-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=1&rft.spage=1087&rft.epage=1097&rft_id=info:doi/10.1109%2FTNNLS.2022.3180076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2022_3180076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon