Dynamics of Sutterby fluid flow due to a spinning stretching disk with non-Fourier/Fick heat and mass flux models
The magnetohydrodynamic Sutterby fluid flow instigated by a spinning stretchable disk is modeled in this study. The Stefan blowing and heat and mass flux aspects are incorporated in the thermal phenomenon. The conventional models for heat and mass flux, i.e., Fourier and Fick models, are modified us...
Saved in:
Published in | Applied mathematics and mechanics Vol. 42; no. 9; pp. 1247 - 1258 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Shanghai
Shanghai University
01.09.2021
Springer Nature B.V Department of Information Technology,Fanshawe College London,ON N5Y 5R6,Canada%Department of Mathematics,CHRIST (Deemed to be University),Bangalore 560029,India%Department of Mathematics,COMSATS University Islamabad,Sahiwal 57000,Pakistan |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The magnetohydrodynamic Sutterby fluid flow instigated by a spinning stretchable disk is modeled in this study. The Stefan blowing and heat and mass flux aspects are incorporated in the thermal phenomenon. The conventional models for heat and mass flux, i.e., Fourier and Fick models, are modified using the Cattaneo-Christov (CC) model for the more accurate modeling of the process. The boundary layer equations that govern this problem are solved using the apt similarity variables. The subsequent system of equations is tackled by the Runge-Kutta-Fehlberg (RKF) scheme. The graphical visualizations of the results are discussed with the physical significance. The rates of mass and heat transmission are evaluated for the augmentation in the pertinent parameters. The Stefan blowing leads to more species diffusion which in turn increases the concentration field of the fluid. The external magnetism is observed to decrease the velocity field. Also, more thermal relaxation leads to a lower thermal field which is due to the increased time required to transfer the heat among fluid particles. The heat transport is enhanced by the stretching of the rotating disk. |
---|---|
AbstractList | The magnetohydrodynamic Sutterby fluid flow instigated by a spinning stretchable disk is modeled in this study. The Stefan blowing and heat and mass flux aspects are incorporated in the thermal phenomenon. The conventional models for heat and mass flux, i.e., Fourier and Fick models, are modified using the Cattaneo-Christov (CC) model for the more accurate modeling of the process. The boundary layer equations that govern this problem are solved using the apt similarity variables. The subsequent system of equations is tackled by the Runge-Kutta-Fehlberg (RKF) scheme. The graphical visualizations of the results are discussed with the physical significance. The rates of mass and heat transmission are evaluated for the augmentation in the pertinent parameters. The Stefan blowing leads to more species diffusion which in turn increases the concentration field of the fluid. The external magnetism is observed to decrease the velocity field. Also, more thermal relaxation leads to a lower thermal field which is due to the increased time required to transfer the heat among fluid particles. The heat transport is enhanced by the stretching of the rotating disk. O361; The magnetohydrodynamic Sutterby fluid flow instigated by a spinning stretchable disk is modeled in this study.The Stefan blowing and heat and mass flux as-pects are incorporated in the thermal phenomenon.The conventional models for heat and mass flux,i.e.,Fourier and Fick models,are modified using the Cattaneo-Christov (CC)model for the more accurate modeling of the process.The boundary layer equations that govern this problem are solved using the apt similarity variables.The subsequent system of equations is tackled by the Runge-Kutta-Fehlberg (RKF) scheme.The graphical visu-alizations of the results are discussed with the physical significance.The rates of mass and heat transmission are evaluated for the augmentation in the pertinent parameters.The Stefan blowing leads to more species diffusion which in turn increases the concentration field of the fluid.The external magnetism is observed to decrease the velocity field.Also,more thermal relaxation leads to a lower thermal field which is due to the increased time required to transfer the heat among fluid particles.The heat transport is enhanced by the stretching of the rotating disk. |
Author | Shehzad, S. A. Mabood, F. Mackolil, J. Rauf, A. Mahanthesh, B. |
AuthorAffiliation | Department of Information Technology,Fanshawe College London,ON N5Y 5R6,Canada%Department of Mathematics,CHRIST (Deemed to be University),Bangalore 560029,India%Department of Mathematics,COMSATS University Islamabad,Sahiwal 57000,Pakistan |
AuthorAffiliation_xml | – name: Department of Information Technology,Fanshawe College London,ON N5Y 5R6,Canada%Department of Mathematics,CHRIST (Deemed to be University),Bangalore 560029,India%Department of Mathematics,COMSATS University Islamabad,Sahiwal 57000,Pakistan |
Author_xml | – sequence: 1 givenname: F. surname: Mabood fullname: Mabood, F. organization: Department of Information Technology, Fanshawe College – sequence: 2 givenname: J. surname: Mackolil fullname: Mackolil, J. organization: Department of Mathematics, CHRIST (Deemed to be University) – sequence: 3 givenname: B. surname: Mahanthesh fullname: Mahanthesh, B. organization: Department of Mathematics, CHRIST (Deemed to be University) – sequence: 4 givenname: A. surname: Rauf fullname: Rauf, A. email: raufamar@cuisahiwal.edu.pk organization: Department of Mathematics, COMSATS University Islamabad – sequence: 5 givenname: S. A. surname: Shehzad fullname: Shehzad, S. A. organization: Department of Mathematics, COMSATS University Islamabad |
BookMark | eNp9kc1KAzEUhYNUsK0-gLuAO2E0fzNpllKtCoILdR1iJtNGp0mbZGjn7U0ZQRB0k-TCd849N3cCRs47A8A5RlcYIX4dMWIzWiCCC8I5KsQRGOOS01yVbATGiJS0YDPCT8Akxg-EEOOMjcH2tndqbXWEvoEvXUomvPewaTtb59PvYN0ZmDxUMG6sc9YtYUzBJL06PGsbP-HOphXMcYqF74I14Xph9SdcGZWgcjVcqxgPhnu49rVp4yk4blQbzdn3PQVvi7vX-UPx9Hz_OL95KjQtcSqYqUlTVaUgnCCB8yxihhXNYzIkUGYUo5zV70hRImgllDairISelaw2TDM6BZeD7065Rrml_MjxXO4o-z7uV-1eGpK_K5shmuGLAd4Ev-1MTD80KTnjnIuKZwoPlA4-xmAauQl2rUIvMZKHNchhDTL7ysMapMga_kujbVLJepeCsu2_SjIoY-7ilib8ZPpb9AUfCZz3 |
CitedBy_id | crossref_primary_10_1038_s41598_023_28967_5 crossref_primary_10_1177_23977914241304625 crossref_primary_10_1038_s41598_022_15094_w crossref_primary_10_3390_math11051096 crossref_primary_10_1007_s10973_023_12547_w crossref_primary_10_1080_10407782_2024_2320273 crossref_primary_10_1177_09544089241274054 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2023046440 crossref_primary_10_3389_fphy_2022_1014644 crossref_primary_10_1016_j_heliyon_2023_e21189 crossref_primary_10_1080_17455030_2022_2038816 crossref_primary_10_3390_mi14010048 crossref_primary_10_1080_17455030_2022_2121443 crossref_primary_10_1038_s41598_022_18609_7 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2023046194 crossref_primary_10_1080_10407782_2023_2285357 crossref_primary_10_1016_j_cjph_2022_05_014 crossref_primary_10_1016_j_csite_2023_102889 crossref_primary_10_1177_09544089211068245 crossref_primary_10_1088_1402_4896_ad6642 crossref_primary_10_1007_s10973_022_11248_0 crossref_primary_10_1080_10407790_2023_2186549 crossref_primary_10_1038_s41598_023_32902_z crossref_primary_10_1142_S0217984925500198 crossref_primary_10_1016_j_heliyon_2024_e34056 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2024048971 crossref_primary_10_1007_s10483_022_2832_9 crossref_primary_10_1016_j_csite_2024_104268 crossref_primary_10_1080_17455030_2022_2147243 crossref_primary_10_1615_JPorMedia_2022043529 |
Cites_doi | 10.1016/j.euromechflu.2020.09.010 10.1002/htj.22132 10.1016/j.icheatmasstransfer.2020.105009 10.1016/j.molliq.2018.10.038 10.1016/j.jmrt.2020.04.071 10.1007/s10483-020-2629-9 10.1016/j.jmrt.2020.03.082 10.1016/j.csite.2021.100861 10.1016/j.jmrt.2020.04.019 10.1140/epjp/s13360-019-00024-z 10.1088/1402-4896/ab18ba 10.1108/HFF-12-2018-0762 10.1016/j.powtec.2020.09.008 10.1016/j.ijheatmasstransfer.2015.11.015 10.1016/j.ijheatmasstransfer.2009.10.001 10.1016/j.mechrescom.2008.11.003 10.1002/aic.690120114 10.1007/s00542-019-04522-z 10.1016/j.icheatmasstransfer.2021.105179 10.1016/j.cmpb.2019.105247 10.1007/s10483-020-2632-8 10.1142/S021798492150202X 10.1038/s41598-020-74865-5 10.1016/j.jppr.2016.11.002 10.1088/1402-4896/abecf7 10.1016/j.icheatmasstransfer.2021.105262 10.1016/j.aej.2020.07.006 10.1007/s10973-020-10007-3 10.1016/j.jppr.2020.07.001 |
ClassificationCodes | O361 |
ContentType | Journal Article |
Copyright | Shanghai University 2021 Shanghai University 2021. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Shanghai University 2021 – notice: Shanghai University 2021. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s10483-021-2770-9 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-2754 |
Edition | English ed. |
EndPage | 1258 |
ExternalDocumentID | yysxhlx_e202109003 10_1007_s10483_021_2770_9 |
GroupedDBID | -01 -0A -52 -5D -5G -BR -EM -SA -S~ -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 1SB 2.D 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 67Z 6NX 8RM 8TC 8UJ 92E 92I 92M 92Q 93N 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LAK LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P9R PF0 PT4 PT5 Q-- Q-0 QOK QOS R-A R89 R9I REI RHV RNI ROL RPX RSV RT1 RZC RZE RZK S.. S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T8Q TCJ TEORI TGP TSG TSK TSV TUC TUS U1F U1G U2A U5A U5K UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W ZMTXR ZWQNP ~8M ~A9 ~L9 ~LB AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR AYFIA CITATION ABRTQ 4A8 PSX |
ID | FETCH-LOGICAL-c351t-4ed2f6659272091157981a31044090c35a4374db0a329369ace9569c854de4c43 |
IEDL.DBID | U2A |
ISSN | 0253-4827 |
IngestDate | Thu May 29 03:56:06 EDT 2025 Fri Jul 25 11:15:15 EDT 2025 Thu Apr 24 22:59:32 EDT 2025 Tue Jul 01 02:11:07 EDT 2025 Fri Feb 21 02:48:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Stefan blowing magnetic field 76Bxx 76Sxx rotating stretching disk Cattaneo-Christov (CC) theory O361 Sutterby fluid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-4ed2f6659272091157981a31044090c35a4374db0a329369ace9569c854de4c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2574777967 |
PQPubID | 2043692 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_yysxhlx_e202109003 proquest_journals_2574777967 crossref_primary_10_1007_s10483_021_2770_9 crossref_citationtrail_10_1007_s10483_021_2770_9 springer_journals_10_1007_s10483_021_2770_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Shanghai |
PublicationPlace_xml | – name: Shanghai – name: Dordrecht |
PublicationSubtitle | English Edition |
PublicationTitle | Applied mathematics and mechanics |
PublicationTitleAbbrev | Appl. Math. Mech.-Engl. Ed |
PublicationTitle_FL | Applied Mathematics and Mechanics |
PublicationYear | 2021 |
Publisher | Shanghai University Springer Nature B.V Department of Information Technology,Fanshawe College London,ON N5Y 5R6,Canada%Department of Mathematics,CHRIST (Deemed to be University),Bangalore 560029,India%Department of Mathematics,COMSATS University Islamabad,Sahiwal 57000,Pakistan |
Publisher_xml | – name: Shanghai University – name: Springer Nature B.V – name: Department of Information Technology,Fanshawe College London,ON N5Y 5R6,Canada%Department of Mathematics,CHRIST (Deemed to be University),Bangalore 560029,India%Department of Mathematics,COMSATS University Islamabad,Sahiwal 57000,Pakistan |
References | Naz, Mabood, Sohail, Tlili (CR9) 2020; 9 Sarkar, Sahoo (CR13) 2021; 85 Ali, Hussein, Nie, Hussein, Habib (CR23) 2021; 377 Hayat, Bibi, Khan, Alsaedi (CR3) 2021; 143 Ali, Hussain, Abdal, Mehdi (CR28) 2020; 135 Ibrahim, Gadisa (CR24) 2020; 9 Latiff, Uddin, Ismail (CR32) 2016; 5 Sutterby (CR1) 1966; 12 Hafeez, Khan, Ahmed, Ahmed (CR11) 2020; 41 Khan, Qayyum, Hayat (CR31) 2019; 29 Straughan (CR18) 2010; 53 Imran, Javed, Sohail, Thounthong, Abdelmalek (CR4) 2020; 9 Ahmed, Khan, Ahmed, Hafeez (CR12) 2020; 41 Khan, Khan, Alzahrani, Hobiny, Ali (CR19) 2020; 9 Rehman, Mir, Alqarni, Farooq, Malik (CR2) 2019; 25 Waqas (CR14) 2021; 126 Fourier (CR15) 1888 Usman, Lin, Ghaffari (CR5) 2021; 96 Karman (CR7) 1939; 61 Hafeez, Khan (CR20) 2021; 123 Alamri, Ellahi, Shehzad, Zeeshan (CR25) 2019; 273 Cattaneo (CR16) 1948; 3 Khan, Waqas, Farooq, Khan, Chu, Kadry (CR10) 2021; 35 Hayat, Khan, Bibi, Alsaedi (CR6) 2021; 122 Hayat, Khan, Khan, Momani, Alsaedi (CR21) 2020; 187 Abid, Ramzan, Chung, Kadry, Chu (CR22) 2020; 10 Christov (CR17) 2009; 36 Mahanthesh, Gireesha, Animasaun, Muhammad, Shashikumar (CR8) 2019; 94 Abdelmalek, Mahanthesh, Basir, Imtiaz, Mackolil, Khan, Nabwey, Tlili (CR27) 2020; 59 Uddin, Kabir, Beg (CR29) 2016; 95 Basir, Bilal, Choudhary, Mackolil, Mahanthesh, Nisar (CR30) 2021; 50 Beg, Zohra, Uddin, Ismail, Sathasivam (CR26) 2021; 24 M Usman (2770_CR5) 2021; 96 T Hayat (2770_CR3) 2021; 143 B Straughan (2770_CR18) 2010; 53 S Rehman (2770_CR2) 2019; 25 A Hafeez (2770_CR11) 2020; 41 B Ali (2770_CR23) 2021; 377 S Z Alamri (2770_CR25) 2019; 273 J B J Fourier (2770_CR15) 1888 T Hayat (2770_CR21) 2020; 187 M F M Basir (2770_CR30) 2021; 50 A Hafeez (2770_CR20) 2021; 123 B Ali (2770_CR28) 2020; 135 W Ibrahim (2770_CR24) 2020; 9 M J Uddin (2770_CR29) 2016; 95 Z Abdelmalek (2770_CR27) 2020; 59 N Imran (2770_CR4) 2020; 9 O A Beg (2770_CR26) 2021; 24 A Ahmed (2770_CR12) 2020; 41 B Mahanthesh (2770_CR8) 2019; 94 N A Latiff (2770_CR32) 2016; 5 M I Khan (2770_CR10) 2021; 35 M I Khan (2770_CR19) 2020; 9 T Hayat (2770_CR6) 2021; 122 N Abid (2770_CR22) 2020; 10 J L Sutterby (2770_CR1) 1966; 12 M Waqas (2770_CR14) 2021; 126 G M Sarkar (2770_CR13) 2021; 85 T V Karman (2770_CR7) 1939; 61 M I Khan (2770_CR31) 2019; 29 C I Christov (2770_CR17) 2009; 36 R Naz (2770_CR9) 2020; 9 C Cattaneo (2770_CR16) 1948; 3 |
References_xml | – volume: 61 start-page: 705 year: 1939 ident: CR7 article-title: Classical problem of rotating disk publication-title: Transfer ASME – volume: 85 start-page: 149 year: 2021 end-page: 157 ident: CR13 article-title: On dual solutions of the unsteady MHD flow on a stretchable rotating disk with heat transfer and a linear temporal stability analysis publication-title: European Journal of Mechanics-B/Fluids doi: 10.1016/j.euromechflu.2020.09.010 – volume: 50 start-page: 5439 year: 2021 end-page: 5466 ident: CR30 article-title: Numerical and sensitivity analysis of MHD bioconvective slip flow of nanomaterial with binary chemical reaction and Newtonian heating publication-title: Heat Transfer doi: 10.1002/htj.22132 – volume: 122 start-page: 105009 year: 2021 ident: CR6 article-title: Entropy minimization for magneto peristaltic transport of Sutterby materials subject to temperature dependent thermal conductivity and non-linear thermal radiation publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.105009 – volume: 273 start-page: 292 year: 2019 end-page: 304 ident: CR25 article-title: Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing publication-title: Journal of Molecular Liquids doi: 10.1016/j.molliq.2018.10.038 – volume: 9 start-page: 7449 year: 2020 end-page: 7459 ident: CR4 article-title: Theoretical exploration of thermal transportation with chemical reactions for Sutterby fluid model obeying peristaltic mechanism publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2020.04.071 – volume: 41 start-page: 1083 issue: 7 year: 2020 end-page: 1094 ident: CR11 article-title: Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory publication-title: Applied Mathematics and Mechanics (English Edition doi: 10.1007/s10483-020-2629-9 – volume: 9 start-page: 5577 year: 2020 end-page: 5590 ident: CR9 article-title: Thermal and species transportation of Eyring-Powell material over a rotating disk with swimming microorganisms: applications to metallurgy publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2020.03.082 – volume: 24 start-page: 100861 year: 2021 ident: CR26 article-title: Energy conservation of nanofluids from a biomagnetic needle in the presence of Stefan blowing: Lie symmetry and numerical simulation publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2021.100861 – volume: 9 start-page: 6172 year: 2020 end-page: 6177 ident: CR19 article-title: Modeling of Cattaneo-Christov double diffusions (CCDD) in Williamson nanomaterial slip flow subject to porous medium publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2020.04.019 – volume: 135 start-page: 10 year: 2020 ident: CR28 article-title: Impact of Stefan blowing on thermal radiation and Cattaneo-Christov characteristics for nanofluid flow containing microorganisms with ablation/accretion of leading edge: FEM approach publication-title: The European Physical Journal Plus doi: 10.1140/epjp/s13360-019-00024-z – volume: 94 start-page: 085214 year: 2019 ident: CR8 article-title: MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source publication-title: Physica Scripta doi: 10.1088/1402-4896/ab18ba – volume: 29 start-page: 2977 year: 2019 end-page: 2992 ident: CR31 article-title: Stratified flow of Sutterby fluid with homogeneous-heterogeneous reactions and Cattaneo-Christov heat flux publication-title: International Journal of Numerical Methods for Heat & Fluid Flow doi: 10.1108/HFF-12-2018-0762 – volume: 377 start-page: 439 year: 2021 end-page: 452 ident: CR23 article-title: Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model publication-title: Powder Technology doi: 10.1016/j.powtec.2020.09.008 – volume: 95 start-page: 116 year: 2016 end-page: 130 ident: CR29 article-title: Computational investigation of Stefan blowing and multiple-slip effects on buoyancy-driven bioconvection nanofluid flow with microorganisms publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.11.015 – volume: 53 start-page: 95 year: 2010 end-page: 98 ident: CR18 article-title: Thermal convection with the Cattaneo-Christov model publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.10.001 – volume: 36 start-page: 481 year: 2009 end-page: 486 ident: CR17 article-title: On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction publication-title: Mechanics, Research Communications doi: 10.1016/j.mechrescom.2008.11.003 – volume: 12 start-page: 63 year: 1966 end-page: 68 ident: CR1 article-title: Laminar converging flow of dilute polymer solutions in conical sections: part I, viscosity data, new viscosity model, tube flow solution publication-title: AIChE Journal doi: 10.1002/aic.690120114 – volume: 25 start-page: 3365 year: 2019 end-page: 3373 ident: CR2 article-title: Analysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo-Christov theory publication-title: Microsystem Technologies doi: 10.1007/s00542-019-04522-z – volume: 123 start-page: 105179 year: 2021 ident: CR20 article-title: Flow of Oldroyd-B fluid caused by a rotating disk featuring the Cattaneo-Christov theory with heat generation/absorption publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105179 – volume: 187 start-page: 105247 year: 2020 ident: CR21 article-title: Cattaneo-Christov (CC) heat flux model for nanomaterial stagnation point flow of Oldroyd-B fluid publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2019.105247 – volume: 41 start-page: 1195 issue: 8 year: 2020 end-page: 1208 ident: CR12 article-title: Von Kármán rotating flow of Maxwell nanofluids featuring the Cattaneo-Christov theory with a Buongiorno model publication-title: Applied Mathematics and Mechanics doi: 10.1007/s10483-020-2632-8 – volume: 3 start-page: 83 year: 1948 end-page: 101 ident: CR16 article-title: Sulla conduzione del calore publication-title: Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia – volume: 35 start-page: 2150202 year: 2021 ident: CR10 article-title: Assessment of bioconvection in magnetized Sutterby nanofluid configured by a rotating disk: a numerical approach publication-title: Modern Physics Letters B doi: 10.1142/S021798492150202X – volume: 10 start-page: 19300 year: 2020 ident: CR22 article-title: Comparative analysis of magnetized partially ionized copper, copper oxide-water and kerosene oil nanofluid flow with Cattaneo-Christov heat flux publication-title: Scientific Reports doi: 10.1038/s41598-020-74865-5 – year: 1888 ident: CR15 publication-title: Theorie Analytique de la chaleur – volume: 5 start-page: 267 year: 2016 end-page: 278 ident: CR32 article-title: Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk publication-title: Propulsion of Power Research doi: 10.1016/j.jppr.2016.11.002 – volume: 96 start-page: 065003 year: 2021 ident: CR5 article-title: Heat and mass transfer in a steady flow of Sutterby nanofluid over the surface of a stretching wedge publication-title: Physica Scripta doi: 10.1088/1402-4896/abecf7 – volume: 126 start-page: 105262 year: 2021 ident: CR14 article-title: A study on magneto-hydrodynamic non-Newtonian thermally radiative fluid considering mixed convection impact towards convective stratified surface publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105262 – volume: 59 start-page: 3991 year: 2020 end-page: 4011 ident: CR27 article-title: Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: flow and sensitivity analysis publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2020.07.006 – volume: 143 start-page: 2215 year: 2021 end-page: 2225 ident: CR3 article-title: Entropy production minimization and non-Darcy resistance within wavy motion of Sutterby liquid subject to variable physical characteristics publication-title: Journal of Thermal Analysis and Calorimetry doi: 10.1007/s10973-020-10007-3 – volume: 9 start-page: 304 year: 2020 end-page: 315 ident: CR24 article-title: Finite element solution of nonlinear convective flow of Oldroyd-B fluid with Cattaneo-Christov heat flux model over nonlinear stretching sheet with heat generation or absorption publication-title: Propulsion and Power Research doi: 10.1016/j.jppr.2020.07.001 – volume: 61 start-page: 705 year: 1939 ident: 2770_CR7 publication-title: Transfer ASME – volume: 9 start-page: 5577 year: 2020 ident: 2770_CR9 publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2020.03.082 – volume: 187 start-page: 105247 year: 2020 ident: 2770_CR21 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2019.105247 – volume: 9 start-page: 304 year: 2020 ident: 2770_CR24 publication-title: Propulsion and Power Research doi: 10.1016/j.jppr.2020.07.001 – volume: 29 start-page: 2977 year: 2019 ident: 2770_CR31 publication-title: International Journal of Numerical Methods for Heat & Fluid Flow doi: 10.1108/HFF-12-2018-0762 – volume: 123 start-page: 105179 year: 2021 ident: 2770_CR20 publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105179 – volume: 5 start-page: 267 year: 2016 ident: 2770_CR32 publication-title: Propulsion of Power Research doi: 10.1016/j.jppr.2016.11.002 – volume: 85 start-page: 149 year: 2021 ident: 2770_CR13 publication-title: European Journal of Mechanics-B/Fluids doi: 10.1016/j.euromechflu.2020.09.010 – volume: 10 start-page: 19300 year: 2020 ident: 2770_CR22 publication-title: Scientific Reports doi: 10.1038/s41598-020-74865-5 – volume-title: Theorie Analytique de la chaleur year: 1888 ident: 2770_CR15 – volume: 50 start-page: 5439 year: 2021 ident: 2770_CR30 publication-title: Heat Transfer doi: 10.1002/htj.22132 – volume: 9 start-page: 7449 year: 2020 ident: 2770_CR4 publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2020.04.071 – volume: 35 start-page: 2150202 year: 2021 ident: 2770_CR10 publication-title: Modern Physics Letters B doi: 10.1142/S021798492150202X – volume: 135 start-page: 10 year: 2020 ident: 2770_CR28 publication-title: The European Physical Journal Plus doi: 10.1140/epjp/s13360-019-00024-z – volume: 12 start-page: 63 year: 1966 ident: 2770_CR1 publication-title: AIChE Journal doi: 10.1002/aic.690120114 – volume: 41 start-page: 1083 issue: 7 year: 2020 ident: 2770_CR11 publication-title: Applied Mathematics and Mechanics (English Edition doi: 10.1007/s10483-020-2629-9 – volume: 95 start-page: 116 year: 2016 ident: 2770_CR29 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.11.015 – volume: 122 start-page: 105009 year: 2021 ident: 2770_CR6 publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.105009 – volume: 3 start-page: 83 year: 1948 ident: 2770_CR16 publication-title: Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia – volume: 273 start-page: 292 year: 2019 ident: 2770_CR25 publication-title: Journal of Molecular Liquids doi: 10.1016/j.molliq.2018.10.038 – volume: 36 start-page: 481 year: 2009 ident: 2770_CR17 publication-title: Mechanics, Research Communications doi: 10.1016/j.mechrescom.2008.11.003 – volume: 377 start-page: 439 year: 2021 ident: 2770_CR23 publication-title: Powder Technology doi: 10.1016/j.powtec.2020.09.008 – volume: 24 start-page: 100861 year: 2021 ident: 2770_CR26 publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2021.100861 – volume: 126 start-page: 105262 year: 2021 ident: 2770_CR14 publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105262 – volume: 53 start-page: 95 year: 2010 ident: 2770_CR18 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.10.001 – volume: 59 start-page: 3991 year: 2020 ident: 2770_CR27 publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2020.07.006 – volume: 9 start-page: 6172 year: 2020 ident: 2770_CR19 publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2020.04.019 – volume: 41 start-page: 1195 issue: 8 year: 2020 ident: 2770_CR12 publication-title: Applied Mathematics and Mechanics doi: 10.1007/s10483-020-2632-8 – volume: 94 start-page: 085214 year: 2019 ident: 2770_CR8 publication-title: Physica Scripta doi: 10.1088/1402-4896/ab18ba – volume: 143 start-page: 2215 year: 2021 ident: 2770_CR3 publication-title: Journal of Thermal Analysis and Calorimetry doi: 10.1007/s10973-020-10007-3 – volume: 25 start-page: 3365 year: 2019 ident: 2770_CR2 publication-title: Microsystem Technologies doi: 10.1007/s00542-019-04522-z – volume: 96 start-page: 065003 year: 2021 ident: 2770_CR5 publication-title: Physica Scripta doi: 10.1088/1402-4896/abecf7 |
SSID | ssj0004744 |
Score | 2.3957632 |
Snippet | The magnetohydrodynamic Sutterby fluid flow instigated by a spinning stretchable disk is modeled in this study. The Stefan blowing and heat and mass flux... O361; The magnetohydrodynamic Sutterby fluid flow instigated by a spinning stretchable disk is modeled in this study.The Stefan blowing and heat and mass flux... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1247 |
SubjectTerms | Applications of Mathematics Blowing Boundary layer equations Classical Mechanics Fluid dynamics Fluid flow Fluid- and Aerodynamics Heat transmission Magnetohydrodynamics Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Partial Differential Equations Rotating disks Runge-Kutta method Species diffusion Stretching Thermal relaxation Velocity distribution |
Title | Dynamics of Sutterby fluid flow due to a spinning stretching disk with non-Fourier/Fick heat and mass flux models |
URI | https://link.springer.com/article/10.1007/s10483-021-2770-9 https://www.proquest.com/docview/2574777967 https://d.wanfangdata.com.cn/periodical/yysxhlx-e202109003 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoXNoDKrSoSykaqT0VWeRhx8lxKQTUil7KSvQU2bFTVrtkaZNV2X_fmTw2VEJIXJJDbCvyl8zD8_gY-2SLGK0AE3EbepYLG2hujJdzh7oRtYmRiaZ658vv0cVEfL2W110dd9Vnu_chyUZSPyh2EzHFHH0eKOXx5AXbkui6Ux7XJBgPxZCqYXBFXR5y6nHZhzIfW-J_ZTRYmOugaFPKUxa6_PVA66Sv2XZnLsK4xXeHbbhyl726XPdard6w36ctqXwFiwJ-NLzTZgXFfDm1eF38Bbt0UC9AQ3U3bQiKgApE6iaJEuy0mgEdxkK5KHnaMtgdp9N8BiSmQZcWbtHApgXvoeHNqd6ySXp29eWCd0QKPA-lX3PhbFBEFEBVAdoHvlRJ7Gs07AR6dx6O0SJUwhpPhwER_OncoduU5LEU1olchHtsE1_CvWOgNHpwJtGuMEpIPzZBHkdOIqwuwq2XI-b1O5rlXZdxIruYZ0N_ZAIhQxAyAiFLRuzzespd22LjqcEHPUxZ97dVGYodoZRKIjViRz10w-MnFvvYoTsMXq2q-5s5Co2AvGE6591_1prv2Uua2aahHbDN-s_SfUC7pTaHbGt8cnqS0v3857ezw-a7_Qdyv-Vd |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKDAScAFZJI4TJwcOFWW1pd1e6Eq9BTt2YNUlW0hW7f4e_ihjJ9kUCVXi0EsucUaWx_Z8k3l8AK9NmRIK0AkzUWCYMFwxrYOCWbKNZE10nClX7zw9SiYz8fkkPtmC330tjM9270OS_qa-VOwmUhdzDBmXMmBZl0l5YNfn5KfVH_b3SKlvOB9_Ov44YR2VACuiOGyYsIaXiQshSk4WMoxlloaKoI0g_yagMUpEUhgdqIg7ijtVWHIcsiKNhbGiEBHJvQE3CXuk7ujM-O5QfCk9Yyxhh4i5npp96PRfU_7b-A2IdhOE9aVDVamqb5es3Pge3O3gKe62--k-bNnqAdyZbnq71g_h515LYl_jssQvnudar7FcrOaGnstzNCuLzRIV1mdzT4iEriCl8UmbaOb1Kbqfv1gtKzZuGfPej-fFKTqzgKoy-IMAvRN4gZ6np34Es2tZ7cewTZOwTwClIo9RZ8qWWoo4TDUv0sTGtI1sQksfjyDoVzQvuq7mjlxjkQ_9mJ0SclJC7pSQZyN4u_nkrG3pcdXgnV5NeXe665yuOSGlzBI5gne96obXVwh71Wl3GLxe1xffF3RJced9u__KT_9L5ku4NTmeHuaH-0cHz-C2k9KmwO3AdvNrZZ8TZmr0C79nEb5e9yH5A_6zHDk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ5iS4GRgAvI2sRx4uTAoWKJWkorJFipt2DHDqy6zS4kq3Z_FX-RcR6bIqFKHHrJJc7I8tiemcx88wG8MkVMXoCOmAk8w4Thimnt5cySbSRrosNEObzz0XG0PxUfT8KTLfjdY2Gaavc-JdliGlyXprIeL00xvgR8E7HLP_qMS-mxpKuqPLTrc4rZqncHE1Lwa87TD1_f77OOVoDlQejXTFjDi8ilEyUna-mHMol9RW6OoFjHozFKBFIY7amAO7o7lVsKIpI8DoWxIhcByb0BN4UDH9MBmvK9AYgpG_ZY8iMC5vpr9mnUf035b0M4eLebhGwDIyoLVX6_ZPHSe3C3c1Vxr91b92HLlg_gztGmz2v1EH5OWkL7ChcFfmk4r_Uai_lqZui5OEezslgvUGG1nDXkSOjAKXVTwIlmVp2i-xGM5aJkacueN05n-Sk6E4GqNHhGzr0TeIENZ0_1CKbXstqPYZsmYZ8ASkXRo06ULbQUoR9rnseRDWlL2YiWPhyB169olncdzh3RxjwbejM7JWSkhMwpIUtG8GbzybJt73HV4N1eTVl30quMrjwhpUwiOYK3veqG11cIe9lpdxi8XlcXP-Z0YXEXibt_zDv_JfMF3Po8SbNPB8eHT-G2E9JWw-3Cdv1rZZ-R-1Tr582WRfh23WfkD9Q6IGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+Sutterby+fluid+flow+due+to+a+spinning+stretching+disk+with+non-Fourier%2FFick+heat+and+mass+flux+models&rft.jtitle=Applied+mathematics+and+mechanics&rft.au=Mabood%2C+F&rft.au=Mackolil%2C+J&rft.au=Mahanthesh%2C+B&rft.au=Rauf%2C+A&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=42&rft.issue=9&rft.spage=1247&rft.epage=1258&rft_id=info:doi/10.1007%2Fs10483-021-2770-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyysxhlx-e%2Fyysxhlx-e.jpg |