Hierarchical Bayesian LSTM for Head Trajectory Prediction on Omnidirectional Images

When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 11; pp. 7563 - 7580
Main Authors Yang, Li, Xu, Mai, Guo, Yichen, Deng, Xin, Gao, Fangyuan, Guan, Zhenyu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs. By mining our dataset, we find two important factors influencing head trajectories, i.e., temporal dependency and subject-specific variance. Accordingly, we propose a novel approach integrating hierarchical Bayesian inference into long short-term memory (LSTM) network for head trajectory prediction on ODIs, which is called HiBayes-LSTM. In HiBayes-LSTM, we develop a mechanism of Future Intention Estimation (FIE), which captures the temporal correlations from previous, current and estimated future information, for predicting viewport transition. Additionally, a training scheme called Hierarchical Bayesian inference (HBI) is developed for modeling inter-subject uncertainty in HiBayes-LSTM. For HBI, we introduce a joint Gaussian distribution in a hierarchy, to approximate the posterior distribution over network weights. By sampling subject-specific weights from the approximated posterior distribution, our HiBayes-LSTM approach can yield diverse viewport transition among different subjects and obtain multiple head trajectories. Extensive experiments validate that our HiBayes-LSTM approach significantly outperforms 9 state-of-the-art approaches for trajectory prediction on ODIs, and then it is successfully applied to predict saliency on ODIs.
AbstractList When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs. By mining our dataset, we find two important factors influencing head trajectories, i.e., temporal dependency and subject-specific variance. Accordingly, we propose a novel approach integrating hierarchical Bayesian inference into long short-term memory (LSTM) network for head trajectory prediction on ODIs, which is called HiBayes-LSTM. In HiBayes-LSTM, we develop a mechanism of Future Intention Estimation (FIE), which captures the temporal correlations from previous, current and estimated future information, for predicting viewport transition. Additionally, a training scheme called Hierarchical Bayesian inference (HBI) is developed for modeling inter-subject uncertainty in HiBayes-LSTM. For HBI, we introduce a joint Gaussian distribution in a hierarchy, to approximate the posterior distribution over network weights. By sampling subject-specific weights from the approximated posterior distribution, our HiBayes-LSTM approach can yield diverse viewport transition among different subjects and obtain multiple head trajectories. Extensive experiments validate that our HiBayes-LSTM approach significantly outperforms 9 state-of-the-art approaches for trajectory prediction on ODIs, and then it is successfully applied to predict saliency on ODIs.
When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs. By mining our dataset, we find two important factors influencing head trajectories, i.e., temporal dependency and subject-specific variance. Accordingly, we propose a novel approach integrating hierarchical Bayesian inference into long short-term memory (LSTM) network for head trajectory prediction on ODIs, which is called HiBayes-LSTM. In HiBayes-LSTM, we develop a mechanism of Future Intention Estimation (FIE), which captures the temporal correlations from previous, current and estimated future information, for predicting viewport transition. Additionally, a training scheme called Hierarchical Bayesian inference (HBI) is developed for modeling inter-subject uncertainty in HiBayes-LSTM. For HBI, we introduce a joint Gaussian distribution in a hierarchy, to approximate the posterior distribution over network weights. By sampling subject-specific weights from the approximated posterior distribution, our HiBayes-LSTM approach can yield diverse viewport transition among different subjects and obtain multiple head trajectories. Extensive experiments validate that our HiBayes-LSTM approach significantly outperforms 9 state-of-the-art approaches for trajectory prediction on ODIs, and then it is successfully applied to predict saliency on ODIs.When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs. By mining our dataset, we find two important factors influencing head trajectories, i.e., temporal dependency and subject-specific variance. Accordingly, we propose a novel approach integrating hierarchical Bayesian inference into long short-term memory (LSTM) network for head trajectory prediction on ODIs, which is called HiBayes-LSTM. In HiBayes-LSTM, we develop a mechanism of Future Intention Estimation (FIE), which captures the temporal correlations from previous, current and estimated future information, for predicting viewport transition. Additionally, a training scheme called Hierarchical Bayesian inference (HBI) is developed for modeling inter-subject uncertainty in HiBayes-LSTM. For HBI, we introduce a joint Gaussian distribution in a hierarchy, to approximate the posterior distribution over network weights. By sampling subject-specific weights from the approximated posterior distribution, our HiBayes-LSTM approach can yield diverse viewport transition among different subjects and obtain multiple head trajectories. Extensive experiments validate that our HiBayes-LSTM approach significantly outperforms 9 state-of-the-art approaches for trajectory prediction on ODIs, and then it is successfully applied to predict saliency on ODIs.
Author Yang, Li
Guo, Yichen
Xu, Mai
Gao, Fangyuan
Guan, Zhenyu
Deng, Xin
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0002-1889-3113
  surname: Yang
  fullname: Yang, Li
  email: LiYang2018@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Mai
  orcidid: 0000-0002-0277-3301
  surname: Xu
  fullname: Xu, Mai
  email: MaiXu@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Yichen
  orcidid: 0000-0003-3164-9139
  surname: Guo
  fullname: Guo, Yichen
  email: 16711024@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Xin
  orcidid: 0000-0002-4708-6572
  surname: Deng
  fullname: Deng, Xin
  email: cindydeng@buaa.edu.cn
  organization: School of Cyber Science and Technology, Beihang University, Beijing, China
– sequence: 5
  givenname: Fangyuan
  orcidid: 0000-0002-1225-2067
  surname: Gao
  fullname: Gao, Fangyuan
  email: fygao0808@buaa.edu.cn
  organization: School of Cyber Science and Technology, Beihang University, Beijing, China
– sequence: 6
  givenname: Zhenyu
  orcidid: 0000-0002-3959-338X
  surname: Guan
  fullname: Guan, Zhenyu
  email: guanzhenyu@buaa.edu.cn
  organization: School of Cyber Science and Technology, Beihang University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34596534$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaJyPP9BCWegll3U00korHZPQ1gaHBLL3ZaydbWX2I5XWB__7yrGTQw4FwYB4nplh3nN2MowDMfYF-ByA25vq6fZhORdcwFwClBzsJzYToHluhRUnbMZBi9wYYc7YeYwbzqFQXH5mZ7JQVitZzNjzwlPA4P54h112hzuKHods9Vw9ZO0YsgVhk1UBN-SmMeyyp0CNd5Mfhyy9x37wjQ_0-pH8ZY-_KV6y0xa7SFfHesGqnz-q-0W-evy1vL9d5U4qmPJCS2ccglLG8QaV4a0DXAtLJTbGGtMqIXnppJXawtqtMa1PqXCSDUh5wa4PbV_C-HdLcap7Hx11HQ40bmMtVGnKUouySOj3D-hm3Ia0caJKAYWwWu-pb0dqu-6pqV-C7zHs6rdrJUAcABfGGAO17wjweh9J_RpJvY-kPkaSJPNBcn7C_cGmgL77v_r1oHoiep9lldIahPwH0X2XmQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_JSTSP_2023_3293650
crossref_primary_10_3390_electronics12173593
crossref_primary_10_1109_ACCESS_2022_3176900
crossref_primary_10_1002_adhm_202401275
crossref_primary_10_1109_TCSVT_2024_3419910
crossref_primary_10_3390_nano12172957
crossref_primary_10_1016_j_cag_2024_103983
crossref_primary_10_1109_TWC_2022_3229134
crossref_primary_10_1007_s11390_023_3210_1
crossref_primary_10_1109_TIP_2022_3226417
crossref_primary_10_1016_j_ymssp_2024_111397
Cites_doi 10.1109/TPAMI.2020.3028509
10.1016/j.image.2018.03.008
10.1016/j.image.2018.03.006
10.1007/s10339-016-0781-6
10.5555/2986459.2986721
10.1109/ICMEW.2017.8026231
10.1145/355017.355028
10.1016/j.image.2018.05.010
10.1109/CVPR46437.2021.01212
10.3758/BRM.42.3.692
10.1109/ICIP.2017.8296920
10.1109/ICME.2017.8019456
10.1109/34.730558
10.1023/A:1013689704352
10.1109/TPAMI.2006.86
10.1007/978-3-030-58604-1_20
10.1109/CISS.2017.7926138
10.1109/TIP.2018.2865089
10.1016/j.visres.2016.01.005
10.1109/TVCG.2018.2793599
10.1016/j.visres.2014.12.026
10.5555/3045390.3045502
10.1145/3083187.3083218
10.1109/CVPR.2011.5995423
10.1016/j.image.2018.06.006
10.1016/j.physa.2003.09.011
10.1109/TIP.2017.2722238
10.3758/s13428-012-0212-2
10.1016/j.image.2018.03.013
10.1167/15.1.14
10.18653/v1/P17-1030
10.1109/TPAMI.2018.2858783
10.1109/CVPR.2018.00336
10.1016/0022-2836(70)90057-4
10.1007/s11042-016-4097-4
10.1145/235815.235821
10.1007/s12559-010-9089-5
10.1038/7286
10.5120/9910-4506
10.1109/ICCV.2013.401
10.1109/TPAMI.2019.2956930
10.1167/12.8.8
10.1109/TIP.2021.3050861
10.1109/TIP.2019.2897966
10.1007/978-3-540-74048-3_4
10.1016/j.image.2018.07.009
10.1007/978-3-030-58452-8_13
10.1109/TNNLS.2015.2496306
10.1109/QoMEX.2017.7965634
10.1109/TIP.2014.2337758
10.1109/CVPR.2017.56
10.1145/3240508.3240581
10.16910/jemr.9.5.2
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2021.3117019
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 7580
ExternalDocumentID 34596534
10_1109_TPAMI_2021_3117019
9556612
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  grantid: JQ20020
  funderid: 10.13039/501100004826
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 61922009; 61876013; 62050175; 62001016
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-463c8ca1558c0da580fc1ab29e7ad8988f52307c393691bcba145ecba0e3d133
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Jul 10 18:29:11 EDT 2025
Mon Jun 30 06:20:10 EDT 2025
Wed Feb 19 02:27:58 EST 2025
Thu Apr 24 23:07:33 EDT 2025
Tue Jul 01 01:43:02 EDT 2025
Wed Aug 27 02:15:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-463c8ca1558c0da580fc1ab29e7ad8988f52307c393691bcba145ecba0e3d133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1889-3113
0000-0002-3959-338X
0000-0002-1225-2067
0000-0003-3164-9139
0000-0002-4708-6572
0000-0002-0277-3301
PMID 34596534
PQID 2721429664
PQPubID 85458
PageCount 18
ParticipantIDs crossref_primary_10_1109_TPAMI_2021_3117019
ieee_primary_9556612
crossref_citationtrail_10_1109_TPAMI_2021_3117019
proquest_miscellaneous_2578776274
pubmed_primary_34596534
proquest_journals_2721429664
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Boccignone (ref5) 2016; abs/1607.01232
ref13
ref57
ref12
ref56
ref15
ref14
ref58
Simonyan (ref64) 2015
ref53
ref52
ref55
ref10
ref54
ref16
Laumann (ref47) 2018; abs/1806.05978
ref50
ref46
ref48
ref41
ref44
Tieleman (ref65) 2012; 4
Fortunato (ref42) 2017; abs/1704.02798
ref8
ref7
ref9
ref4
ref3
ref6
ref40
Weisstein (ref63)
Blundell (ref45) 2015
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
Lee (ref11)
Gal (ref43)
ref71
ref70
Dosovitskiy (ref19) 2021
ref24
ref68
ref23
ref67
ref26
ref25
ref69
Auer (ref17) 2002; 47
ref20
Kingma (ref66) 2015
ref22
ref21
ref28
ref27
ref29
Vaswani (ref18) 2017
Redmon (ref59) 2018; abs/1804.02767
ref60
ref62
Ng (ref2)
ref61
References_xml – ident: ref70
  doi: 10.1109/TPAMI.2020.3028509
– ident: ref31
  doi: 10.1016/j.image.2018.03.008
– ident: ref30
  doi: 10.1016/j.image.2018.03.006
– ident: ref32
  doi: 10.1007/s10339-016-0781-6
– ident: ref60
  doi: 10.5555/2986459.2986721
– ident: ref25
  doi: 10.1109/ICMEW.2017.8026231
– ident: ref52
  doi: 10.1145/355017.355028
– ident: ref16
  doi: 10.1016/j.image.2018.05.010
– ident: ref20
  doi: 10.1109/CVPR46437.2021.01212
– ident: ref68
  doi: 10.3758/BRM.42.3.692
– ident: ref12
  doi: 10.1109/ICIP.2017.8296920
– ident: ref34
  doi: 10.1109/ICME.2017.8019456
– ident: ref6
  doi: 10.1109/34.730558
– volume: 47
  start-page: 235
  year: 2002
  ident: ref17
  article-title: Finite-time analysis of the multiarmed bandit problem
  publication-title: Mach. Learn.
  doi: 10.1023/A:1013689704352
– ident: ref57
  doi: 10.1109/TPAMI.2006.86
– ident: ref22
  doi: 10.1007/978-3-030-58604-1_20
– ident: ref26
  doi: 10.1109/CISS.2017.7926138
– volume: abs/1806.05978
  year: 2018
  ident: ref47
  article-title: Bayesian convolutional neural networks
  publication-title: CoRR
– ident: ref50
  doi: 10.1109/TIP.2018.2865089
– ident: ref35
  doi: 10.1016/j.visres.2016.01.005
– start-page: 1613
  year: 2015
  ident: ref45
  article-title: Weight uncertainty in neural networks
  publication-title: Int. Conf. Mach. Learn.
– volume: abs/1607.01232
  year: 2016
  ident: ref5
  article-title: A probabilistic tour of visual attention and gaze shift computational models
  publication-title: CoRR
– year: 2021
  ident: ref19
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: Proc. Int. Conf. Learn. Representations
– ident: ref24
  doi: 10.1109/TVCG.2018.2793599
– ident: ref7
  doi: 10.1016/j.visres.2014.12.026
– ident: ref46
  doi: 10.5555/3045390.3045502
– ident: ref23
  doi: 10.1145/3083187.3083218
– ident: ref4
  doi: 10.1109/CVPR.2011.5995423
– ident: ref15
  doi: 10.1016/j.image.2018.06.006
– ident: ref41
  doi: 10.1016/j.physa.2003.09.011
– ident: ref36
  doi: 10.1109/TIP.2017.2722238
– ident: ref56
  doi: 10.3758/s13428-012-0212-2
– start-page: 1027
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref43
  article-title: A theoretically grounded application of dropout in recurrent neural networks
– start-page: 5998
  year: 2017
  ident: ref18
  article-title: Attention is all you need
  publication-title: Adv. Neural Info. Process. Syst.
– ident: ref29
  doi: 10.1016/j.image.2018.03.013
– year: 2015
  ident: ref66
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc. 3rd Int. Conf. Learn. Representations
– ident: ref33
  doi: 10.1167/15.1.14
– start-page: 82
  volume-title: Proc. Int. Conf. Image Process.
  ident: ref2
  article-title: On the data compression and transmission aspects of panoramic video
– ident: ref44
  doi: 10.18653/v1/P17-1030
– volume: 4
  start-page: 26
  year: 2012
  ident: ref65
  article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA Neural Netw. Mach. Learn.
– ident: ref61
  doi: 10.1109/TPAMI.2018.2858783
– ident: ref10
  doi: 10.1109/CVPR.2018.00336
– ident: ref69
  doi: 10.1016/0022-2836(70)90057-4
– ident: ref1
  doi: 10.1007/s11042-016-4097-4
– start-page: 834
  volume-title: Proc. 12th Adv. Neural Inf. Process. Syst.
  ident: ref11
  article-title: An information-theoretic framework for understanding saccadic eye movements
– ident: ref55
  doi: 10.1109/TPAMI.2018.2858783
– ident: ref53
  doi: 10.1145/235815.235821
– ident: ref58
  doi: 10.1007/s12559-010-9089-5
– ident: ref37
  doi: 10.1038/7286
– ident: ref62
  doi: 10.5120/9910-4506
– ident: ref63
  article-title: Moore neighborhood
– volume: abs/1804.02767
  year: 2018
  ident: ref59
  article-title: YOLOv3: An incremental improvement
  publication-title: CoRR
– ident: ref40
  doi: 10.1109/ICCV.2013.401
– ident: ref13
  doi: 10.1109/TPAMI.2019.2956930
– ident: ref38
  doi: 10.1167/12.8.8
– ident: ref54
  doi: 10.1109/TIP.2021.3050861
– ident: ref28
  doi: 10.1109/TIP.2021.3050861
– ident: ref14
  doi: 10.1109/TIP.2019.2897966
– ident: ref67
  doi: 10.1007/978-3-540-74048-3_4
– ident: ref71
  doi: 10.1016/j.image.2018.07.009
– volume: abs/1704.02798
  year: 2017
  ident: ref42
  article-title: Bayesian recurrent neural networks
  publication-title: CoRR
– ident: ref21
  doi: 10.1007/978-3-030-58452-8_13
– year: 2015
  ident: ref64
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc. 3rd Int. Conf. Learn. Representations
– ident: ref8
  doi: 10.1109/TNNLS.2015.2496306
– ident: ref27
  doi: 10.1109/QoMEX.2017.7965634
– ident: ref39
  doi: 10.1109/TIP.2014.2337758
– ident: ref48
  doi: 10.1109/CVPR.2017.56
– ident: ref3
  doi: 10.1145/3240508.3240581
– ident: ref9
  doi: 10.16910/jemr.9.5.2
SSID ssj0014503
Score 2.479742
Snippet When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7563
SubjectTerms Bayes methods
Bayesian analysis
Computational modeling
Datasets
Head
Head movement
head trajectory
Hidden Markov models
hierarchical Bayesian inference
Magnetic heads
Modelling
Normal distribution
Omnidirectional images
Predictive models
Statistical inference
Trajectory
Title Hierarchical Bayesian LSTM for Head Trajectory Prediction on Omnidirectional Images
URI https://ieeexplore.ieee.org/document/9556612
https://www.ncbi.nlm.nih.gov/pubmed/34596534
https://www.proquest.com/docview/2721429664
https://www.proquest.com/docview/2578776274
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9swFL0qPCB4gPG58CVP2htLSWK7iR_ZNNQiulVqJ_EW2Y4rwSBF0D7Ar-de50Mb2hBSpVSq2zQ61_E5vrn3AHyWCkm9TThqE25DwbUIlTFxODVJkarMJtrXVg1_9Pq_xMWVvOrAl7YWxjnnHz5zXXrrc_nFzC5oq-xUSSQfZCm8hMKtqtVqMwZCehdkZDA4w1FGNAUykTqdjM6GA5SCSYwK1fcfX4UVLqTqSS7-Wo-8wcr_uaZfc843YNj82-pRk9_dxdx07fOrRo7vvZwPsF6TT3ZWRcsmdFy5BRuNsQOr5_kWrP3RpXAbxv1rqlL2pim37Kt-clR4yS7HkyFDysv6GCYM17wbnwB4YqMHSv4Q4AxfP-_K62rd9JuObHCHd7DHHZicf59864e1F0NouYznoehxm1mN7COzUaFlFk1trE2iXKqLTGXZlLaXU8vJIDA21mhExOEhcrxAHbwLy-WsdB-B9TJZoBQ2nE-1iHSitIoM6kykgiZSxgUQN4Dktu5TTnYZt7nXK5HKPZ454ZnXeAZw0n7nvurS8ebobQKjHVnjEMBhg3teT-THPEmpJx1qQhHAp_ZjnIKUV9Glmy1wDN31UjIxCmCvipf2t5sw2__3OQ9gNaF6Cl_ceAjL84eFO0KWMzfHPrxfAPuu8_o
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9KBa0P1n5ptNoVfLO5JtndS_axiiXXXmqhEfoWdjd7UG1z0t49tH99ZzYfqKgIBznI5ovfbOY3O5n5AbyXCkm9TTjGJtyGgmsRKmPicGaSOlWZTbSvrSpOx_lXcXwhL1Zgf6iFcc75j8_ciP76XH49t0taKjtQEskHSQo_Qr8v47Zaa8gZCOl1kJHD4BzHQKIvkYnUQXl2WEwwGExijFF9B_I1eMyFVGPJxS8eyUus_J1teq9ztA5Ff7_txybfR8uFGdn731o5_u8DPYdnHf1kh629bMCKazZhvZd2YN1M34SnP_Up3ILz_JLqlL1syhX7qO8clV6y6XlZMCS9LEdDYej1vvkUwB07u6H0D0HO8PflurlsPadfdmSTa3yH3W5DefS5_JSHnRpDaLmMF6EYc5tZjfwjs1GtZRbNbKxNolyq60xl2YwWmFPLSSIwNtZoRMThJnK8xkh4B1abeeNeAhtnssZg2HA-0yLSidIqMhhpIhk0kTIugLgHpLJdp3ISzLiqfMQSqcrjWRGeVYdnAB-GY360fTr-OXqLwBhGdjgEsNvjXnVT-bZKUupKh1GhCODdsBsnIWVWdOPmSxxD772UZIwCeNHay3Du3sxe_fmae_AkL4tpNZ2cnryGtYSqK3yp4y6sLm6W7g1ynoV56039Ad2890M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Bayesian+LSTM+for+Head+Trajectory+Prediction+on+Omnidirectional+Images&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Yang%2C+Li&rft.au=Xu%2C+Mai&rft.au=Guo%2C+Yichen&rft.au=Deng%2C+Xin&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=44&rft.issue=11&rft.spage=7563&rft.epage=7580&rft_id=info:doi/10.1109%2FTPAMI.2021.3117019&rft_id=info%3Apmid%2F34596534&rft.externalDocID=9556612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon