Hierarchical Bayesian LSTM for Head Trajectory Prediction on Omnidirectional Images
When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dat...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 11; pp. 7563 - 7580 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs. By mining our dataset, we find two important factors influencing head trajectories, i.e., temporal dependency and subject-specific variance. Accordingly, we propose a novel approach integrating hierarchical Bayesian inference into long short-term memory (LSTM) network for head trajectory prediction on ODIs, which is called HiBayes-LSTM. In HiBayes-LSTM, we develop a mechanism of Future Intention Estimation (FIE), which captures the temporal correlations from previous, current and estimated future information, for predicting viewport transition. Additionally, a training scheme called Hierarchical Bayesian inference (HBI) is developed for modeling inter-subject uncertainty in HiBayes-LSTM. For HBI, we introduce a joint Gaussian distribution in a hierarchy, to approximate the posterior distribution over network weights. By sampling subject-specific weights from the approximated posterior distribution, our HiBayes-LSTM approach can yield diverse viewport transition among different subjects and obtain multiple head trajectories. Extensive experiments validate that our HiBayes-LSTM approach significantly outperforms 9 state-of-the-art approaches for trajectory prediction on ODIs, and then it is successfully applied to predict saliency on ODIs. |
---|---|
AbstractList | When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs. By mining our dataset, we find two important factors influencing head trajectories, i.e., temporal dependency and subject-specific variance. Accordingly, we propose a novel approach integrating hierarchical Bayesian inference into long short-term memory (LSTM) network for head trajectory prediction on ODIs, which is called HiBayes-LSTM. In HiBayes-LSTM, we develop a mechanism of Future Intention Estimation (FIE), which captures the temporal correlations from previous, current and estimated future information, for predicting viewport transition. Additionally, a training scheme called Hierarchical Bayesian inference (HBI) is developed for modeling inter-subject uncertainty in HiBayes-LSTM. For HBI, we introduce a joint Gaussian distribution in a hierarchy, to approximate the posterior distribution over network weights. By sampling subject-specific weights from the approximated posterior distribution, our HiBayes-LSTM approach can yield diverse viewport transition among different subjects and obtain multiple head trajectories. Extensive experiments validate that our HiBayes-LSTM approach significantly outperforms 9 state-of-the-art approaches for trajectory prediction on ODIs, and then it is successfully applied to predict saliency on ODIs. When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs. By mining our dataset, we find two important factors influencing head trajectories, i.e., temporal dependency and subject-specific variance. Accordingly, we propose a novel approach integrating hierarchical Bayesian inference into long short-term memory (LSTM) network for head trajectory prediction on ODIs, which is called HiBayes-LSTM. In HiBayes-LSTM, we develop a mechanism of Future Intention Estimation (FIE), which captures the temporal correlations from previous, current and estimated future information, for predicting viewport transition. Additionally, a training scheme called Hierarchical Bayesian inference (HBI) is developed for modeling inter-subject uncertainty in HiBayes-LSTM. For HBI, we introduce a joint Gaussian distribution in a hierarchy, to approximate the posterior distribution over network weights. By sampling subject-specific weights from the approximated posterior distribution, our HiBayes-LSTM approach can yield diverse viewport transition among different subjects and obtain multiple head trajectories. Extensive experiments validate that our HiBayes-LSTM approach significantly outperforms 9 state-of-the-art approaches for trajectory prediction on ODIs, and then it is successfully applied to predict saliency on ODIs.When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs. By mining our dataset, we find two important factors influencing head trajectories, i.e., temporal dependency and subject-specific variance. Accordingly, we propose a novel approach integrating hierarchical Bayesian inference into long short-term memory (LSTM) network for head trajectory prediction on ODIs, which is called HiBayes-LSTM. In HiBayes-LSTM, we develop a mechanism of Future Intention Estimation (FIE), which captures the temporal correlations from previous, current and estimated future information, for predicting viewport transition. Additionally, a training scheme called Hierarchical Bayesian inference (HBI) is developed for modeling inter-subject uncertainty in HiBayes-LSTM. For HBI, we introduce a joint Gaussian distribution in a hierarchy, to approximate the posterior distribution over network weights. By sampling subject-specific weights from the approximated posterior distribution, our HiBayes-LSTM approach can yield diverse viewport transition among different subjects and obtain multiple head trajectories. Extensive experiments validate that our HiBayes-LSTM approach significantly outperforms 9 state-of-the-art approaches for trajectory prediction on ODIs, and then it is successfully applied to predict saliency on ODIs. |
Author | Yang, Li Guo, Yichen Xu, Mai Gao, Fangyuan Guan, Zhenyu Deng, Xin |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0002-1889-3113 surname: Yang fullname: Yang, Li email: LiYang2018@buaa.edu.cn organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Mai orcidid: 0000-0002-0277-3301 surname: Xu fullname: Xu, Mai email: MaiXu@buaa.edu.cn organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Yichen orcidid: 0000-0003-3164-9139 surname: Guo fullname: Guo, Yichen email: 16711024@buaa.edu.cn organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Xin orcidid: 0000-0002-4708-6572 surname: Deng fullname: Deng, Xin email: cindydeng@buaa.edu.cn organization: School of Cyber Science and Technology, Beihang University, Beijing, China – sequence: 5 givenname: Fangyuan orcidid: 0000-0002-1225-2067 surname: Gao fullname: Gao, Fangyuan email: fygao0808@buaa.edu.cn organization: School of Cyber Science and Technology, Beihang University, Beijing, China – sequence: 6 givenname: Zhenyu orcidid: 0000-0002-3959-338X surname: Guan fullname: Guan, Zhenyu email: guanzhenyu@buaa.edu.cn organization: School of Cyber Science and Technology, Beihang University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34596534$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rGzEQhkVJaJyPP9BCWegll3U00korHZPQ1gaHBLL3ZaydbWX2I5XWB__7yrGTQw4FwYB4nplh3nN2MowDMfYF-ByA25vq6fZhORdcwFwClBzsJzYToHluhRUnbMZBi9wYYc7YeYwbzqFQXH5mZ7JQVitZzNjzwlPA4P54h112hzuKHods9Vw9ZO0YsgVhk1UBN-SmMeyyp0CNd5Mfhyy9x37wjQ_0-pH8ZY-_KV6y0xa7SFfHesGqnz-q-0W-evy1vL9d5U4qmPJCS2ccglLG8QaV4a0DXAtLJTbGGtMqIXnppJXawtqtMa1PqXCSDUh5wa4PbV_C-HdLcap7Hx11HQ40bmMtVGnKUouySOj3D-hm3Ia0caJKAYWwWu-pb0dqu-6pqV-C7zHs6rdrJUAcABfGGAO17wjweh9J_RpJvY-kPkaSJPNBcn7C_cGmgL77v_r1oHoiep9lldIahPwH0X2XmQ |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_JSTSP_2023_3293650 crossref_primary_10_3390_electronics12173593 crossref_primary_10_1109_ACCESS_2022_3176900 crossref_primary_10_1002_adhm_202401275 crossref_primary_10_1109_TCSVT_2024_3419910 crossref_primary_10_3390_nano12172957 crossref_primary_10_1016_j_cag_2024_103983 crossref_primary_10_1109_TWC_2022_3229134 crossref_primary_10_1007_s11390_023_3210_1 crossref_primary_10_1109_TIP_2022_3226417 crossref_primary_10_1016_j_ymssp_2024_111397 |
Cites_doi | 10.1109/TPAMI.2020.3028509 10.1016/j.image.2018.03.008 10.1016/j.image.2018.03.006 10.1007/s10339-016-0781-6 10.5555/2986459.2986721 10.1109/ICMEW.2017.8026231 10.1145/355017.355028 10.1016/j.image.2018.05.010 10.1109/CVPR46437.2021.01212 10.3758/BRM.42.3.692 10.1109/ICIP.2017.8296920 10.1109/ICME.2017.8019456 10.1109/34.730558 10.1023/A:1013689704352 10.1109/TPAMI.2006.86 10.1007/978-3-030-58604-1_20 10.1109/CISS.2017.7926138 10.1109/TIP.2018.2865089 10.1016/j.visres.2016.01.005 10.1109/TVCG.2018.2793599 10.1016/j.visres.2014.12.026 10.5555/3045390.3045502 10.1145/3083187.3083218 10.1109/CVPR.2011.5995423 10.1016/j.image.2018.06.006 10.1016/j.physa.2003.09.011 10.1109/TIP.2017.2722238 10.3758/s13428-012-0212-2 10.1016/j.image.2018.03.013 10.1167/15.1.14 10.18653/v1/P17-1030 10.1109/TPAMI.2018.2858783 10.1109/CVPR.2018.00336 10.1016/0022-2836(70)90057-4 10.1007/s11042-016-4097-4 10.1145/235815.235821 10.1007/s12559-010-9089-5 10.1038/7286 10.5120/9910-4506 10.1109/ICCV.2013.401 10.1109/TPAMI.2019.2956930 10.1167/12.8.8 10.1109/TIP.2021.3050861 10.1109/TIP.2019.2897966 10.1007/978-3-540-74048-3_4 10.1016/j.image.2018.07.009 10.1007/978-3-030-58452-8_13 10.1109/TNNLS.2015.2496306 10.1109/QoMEX.2017.7965634 10.1109/TIP.2014.2337758 10.1109/CVPR.2017.56 10.1145/3240508.3240581 10.16910/jemr.9.5.2 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2021.3117019 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 7580 |
ExternalDocumentID | 34596534 10_1109_TPAMI_2021_3117019 9556612 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation grantid: JQ20020 funderid: 10.13039/501100004826 – fundername: National Natural Science Foundation of China; NSFC grantid: 61922009; 61876013; 62050175; 62001016 funderid: 10.13039/501100001809 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION NPM RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c351t-463c8ca1558c0da580fc1ab29e7ad8988f52307c393691bcba145ecba0e3d133 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Thu Jul 10 18:29:11 EDT 2025 Mon Jun 30 06:20:10 EDT 2025 Wed Feb 19 02:27:58 EST 2025 Thu Apr 24 23:07:33 EDT 2025 Tue Jul 01 01:43:02 EDT 2025 Wed Aug 27 02:15:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-463c8ca1558c0da580fc1ab29e7ad8988f52307c393691bcba145ecba0e3d133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1889-3113 0000-0002-3959-338X 0000-0002-1225-2067 0000-0003-3164-9139 0000-0002-4708-6572 0000-0002-0277-3301 |
PMID | 34596534 |
PQID | 2721429664 |
PQPubID | 85458 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1109_TPAMI_2021_3117019 ieee_primary_9556612 crossref_citationtrail_10_1109_TPAMI_2021_3117019 proquest_miscellaneous_2578776274 pubmed_primary_34596534 proquest_journals_2721429664 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Boccignone (ref5) 2016; abs/1607.01232 ref13 ref57 ref12 ref56 ref15 ref14 ref58 Simonyan (ref64) 2015 ref53 ref52 ref55 ref10 ref54 ref16 Laumann (ref47) 2018; abs/1806.05978 ref50 ref46 ref48 ref41 ref44 Tieleman (ref65) 2012; 4 Fortunato (ref42) 2017; abs/1704.02798 ref8 ref7 ref9 ref4 ref3 ref6 ref40 Weisstein (ref63) Blundell (ref45) 2015 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 Lee (ref11) Gal (ref43) ref71 ref70 Dosovitskiy (ref19) 2021 ref24 ref68 ref23 ref67 ref26 ref25 ref69 Auer (ref17) 2002; 47 ref20 Kingma (ref66) 2015 ref22 ref21 ref28 ref27 ref29 Vaswani (ref18) 2017 Redmon (ref59) 2018; abs/1804.02767 ref60 ref62 Ng (ref2) ref61 |
References_xml | – ident: ref70 doi: 10.1109/TPAMI.2020.3028509 – ident: ref31 doi: 10.1016/j.image.2018.03.008 – ident: ref30 doi: 10.1016/j.image.2018.03.006 – ident: ref32 doi: 10.1007/s10339-016-0781-6 – ident: ref60 doi: 10.5555/2986459.2986721 – ident: ref25 doi: 10.1109/ICMEW.2017.8026231 – ident: ref52 doi: 10.1145/355017.355028 – ident: ref16 doi: 10.1016/j.image.2018.05.010 – ident: ref20 doi: 10.1109/CVPR46437.2021.01212 – ident: ref68 doi: 10.3758/BRM.42.3.692 – ident: ref12 doi: 10.1109/ICIP.2017.8296920 – ident: ref34 doi: 10.1109/ICME.2017.8019456 – ident: ref6 doi: 10.1109/34.730558 – volume: 47 start-page: 235 year: 2002 ident: ref17 article-title: Finite-time analysis of the multiarmed bandit problem publication-title: Mach. Learn. doi: 10.1023/A:1013689704352 – ident: ref57 doi: 10.1109/TPAMI.2006.86 – ident: ref22 doi: 10.1007/978-3-030-58604-1_20 – ident: ref26 doi: 10.1109/CISS.2017.7926138 – volume: abs/1806.05978 year: 2018 ident: ref47 article-title: Bayesian convolutional neural networks publication-title: CoRR – ident: ref50 doi: 10.1109/TIP.2018.2865089 – ident: ref35 doi: 10.1016/j.visres.2016.01.005 – start-page: 1613 year: 2015 ident: ref45 article-title: Weight uncertainty in neural networks publication-title: Int. Conf. Mach. Learn. – volume: abs/1607.01232 year: 2016 ident: ref5 article-title: A probabilistic tour of visual attention and gaze shift computational models publication-title: CoRR – year: 2021 ident: ref19 article-title: An image is worth 16x16 words: Transformers for image recognition at scale publication-title: Proc. Int. Conf. Learn. Representations – ident: ref24 doi: 10.1109/TVCG.2018.2793599 – ident: ref7 doi: 10.1016/j.visres.2014.12.026 – ident: ref46 doi: 10.5555/3045390.3045502 – ident: ref23 doi: 10.1145/3083187.3083218 – ident: ref4 doi: 10.1109/CVPR.2011.5995423 – ident: ref15 doi: 10.1016/j.image.2018.06.006 – ident: ref41 doi: 10.1016/j.physa.2003.09.011 – ident: ref36 doi: 10.1109/TIP.2017.2722238 – ident: ref56 doi: 10.3758/s13428-012-0212-2 – start-page: 1027 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref43 article-title: A theoretically grounded application of dropout in recurrent neural networks – start-page: 5998 year: 2017 ident: ref18 article-title: Attention is all you need publication-title: Adv. Neural Info. Process. Syst. – ident: ref29 doi: 10.1016/j.image.2018.03.013 – year: 2015 ident: ref66 article-title: Adam: A method for stochastic optimization publication-title: Proc. 3rd Int. Conf. Learn. Representations – ident: ref33 doi: 10.1167/15.1.14 – start-page: 82 volume-title: Proc. Int. Conf. Image Process. ident: ref2 article-title: On the data compression and transmission aspects of panoramic video – ident: ref44 doi: 10.18653/v1/P17-1030 – volume: 4 start-page: 26 year: 2012 ident: ref65 article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude publication-title: COURSERA Neural Netw. Mach. Learn. – ident: ref61 doi: 10.1109/TPAMI.2018.2858783 – ident: ref10 doi: 10.1109/CVPR.2018.00336 – ident: ref69 doi: 10.1016/0022-2836(70)90057-4 – ident: ref1 doi: 10.1007/s11042-016-4097-4 – start-page: 834 volume-title: Proc. 12th Adv. Neural Inf. Process. Syst. ident: ref11 article-title: An information-theoretic framework for understanding saccadic eye movements – ident: ref55 doi: 10.1109/TPAMI.2018.2858783 – ident: ref53 doi: 10.1145/235815.235821 – ident: ref58 doi: 10.1007/s12559-010-9089-5 – ident: ref37 doi: 10.1038/7286 – ident: ref62 doi: 10.5120/9910-4506 – ident: ref63 article-title: Moore neighborhood – volume: abs/1804.02767 year: 2018 ident: ref59 article-title: YOLOv3: An incremental improvement publication-title: CoRR – ident: ref40 doi: 10.1109/ICCV.2013.401 – ident: ref13 doi: 10.1109/TPAMI.2019.2956930 – ident: ref38 doi: 10.1167/12.8.8 – ident: ref54 doi: 10.1109/TIP.2021.3050861 – ident: ref28 doi: 10.1109/TIP.2021.3050861 – ident: ref14 doi: 10.1109/TIP.2019.2897966 – ident: ref67 doi: 10.1007/978-3-540-74048-3_4 – ident: ref71 doi: 10.1016/j.image.2018.07.009 – volume: abs/1704.02798 year: 2017 ident: ref42 article-title: Bayesian recurrent neural networks publication-title: CoRR – ident: ref21 doi: 10.1007/978-3-030-58452-8_13 – year: 2015 ident: ref64 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc. 3rd Int. Conf. Learn. Representations – ident: ref8 doi: 10.1109/TNNLS.2015.2496306 – ident: ref27 doi: 10.1109/QoMEX.2017.7965634 – ident: ref39 doi: 10.1109/TIP.2014.2337758 – ident: ref48 doi: 10.1109/CVPR.2017.56 – ident: ref3 doi: 10.1145/3240508.3240581 – ident: ref9 doi: 10.16910/jemr.9.5.2 |
SSID | ssj0014503 |
Score | 2.479742 |
Snippet | When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7563 |
SubjectTerms | Bayes methods Bayesian analysis Computational modeling Datasets Head Head movement head trajectory Hidden Markov models hierarchical Bayesian inference Magnetic heads Modelling Normal distribution Omnidirectional images Predictive models Statistical inference Trajectory |
Title | Hierarchical Bayesian LSTM for Head Trajectory Prediction on Omnidirectional Images |
URI | https://ieeexplore.ieee.org/document/9556612 https://www.ncbi.nlm.nih.gov/pubmed/34596534 https://www.proquest.com/docview/2721429664 https://www.proquest.com/docview/2578776274 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9swFL0qPCB4gPG58CVP2htLSWK7iR_ZNNQiulVqJ_EW2Y4rwSBF0D7Ar-de50Mb2hBSpVSq2zQ61_E5vrn3AHyWCkm9TThqE25DwbUIlTFxODVJkarMJtrXVg1_9Pq_xMWVvOrAl7YWxjnnHz5zXXrrc_nFzC5oq-xUSSQfZCm8hMKtqtVqMwZCehdkZDA4w1FGNAUykTqdjM6GA5SCSYwK1fcfX4UVLqTqSS7-Wo-8wcr_uaZfc843YNj82-pRk9_dxdx07fOrRo7vvZwPsF6TT3ZWRcsmdFy5BRuNsQOr5_kWrP3RpXAbxv1rqlL2pim37Kt-clR4yS7HkyFDysv6GCYM17wbnwB4YqMHSv4Q4AxfP-_K62rd9JuObHCHd7DHHZicf59864e1F0NouYznoehxm1mN7COzUaFlFk1trE2iXKqLTGXZlLaXU8vJIDA21mhExOEhcrxAHbwLy-WsdB-B9TJZoBQ2nE-1iHSitIoM6kykgiZSxgUQN4Dktu5TTnYZt7nXK5HKPZ454ZnXeAZw0n7nvurS8ebobQKjHVnjEMBhg3teT-THPEmpJx1qQhHAp_ZjnIKUV9Glmy1wDN31UjIxCmCvipf2t5sw2__3OQ9gNaF6Cl_ceAjL84eFO0KWMzfHPrxfAPuu8_o |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9KBa0P1n5ptNoVfLO5JtndS_axiiXXXmqhEfoWdjd7UG1z0t49tH99ZzYfqKgIBznI5ovfbOY3O5n5AbyXCkm9TTjGJtyGgmsRKmPicGaSOlWZTbSvrSpOx_lXcXwhL1Zgf6iFcc75j8_ciP76XH49t0taKjtQEskHSQo_Qr8v47Zaa8gZCOl1kJHD4BzHQKIvkYnUQXl2WEwwGExijFF9B_I1eMyFVGPJxS8eyUus_J1teq9ztA5Ff7_txybfR8uFGdn731o5_u8DPYdnHf1kh629bMCKazZhvZd2YN1M34SnP_Up3ILz_JLqlL1syhX7qO8clV6y6XlZMCS9LEdDYej1vvkUwB07u6H0D0HO8PflurlsPadfdmSTa3yH3W5DefS5_JSHnRpDaLmMF6EYc5tZjfwjs1GtZRbNbKxNolyq60xl2YwWmFPLSSIwNtZoRMThJnK8xkh4B1abeeNeAhtnssZg2HA-0yLSidIqMhhpIhk0kTIugLgHpLJdp3ISzLiqfMQSqcrjWRGeVYdnAB-GY360fTr-OXqLwBhGdjgEsNvjXnVT-bZKUupKh1GhCODdsBsnIWVWdOPmSxxD772UZIwCeNHay3Du3sxe_fmae_AkL4tpNZ2cnryGtYSqK3yp4y6sLm6W7g1ynoV56039Ad2890M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Bayesian+LSTM+for+Head+Trajectory+Prediction+on+Omnidirectional+Images&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Yang%2C+Li&rft.au=Xu%2C+Mai&rft.au=Guo%2C+Yichen&rft.au=Deng%2C+Xin&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=44&rft.issue=11&rft.spage=7563&rft.epage=7580&rft_id=info:doi/10.1109%2FTPAMI.2021.3117019&rft_id=info%3Apmid%2F34596534&rft.externalDocID=9556612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |