Spike Counts Based Low Complexity SNN Architecture With Binary Synapse
In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the un...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 13; no. 6; pp. 1664 - 1677 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-4545 1940-9990 1940-9990 |
DOI | 10.1109/TBCAS.2019.2945406 |
Cover
Loading…
Abstract | In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42 pJ/SOP and 2.63 μJ/learning in learning mode of operations. |
---|---|
AbstractList | In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42 pJ/SOP and 2.63 μJ/learning in learning mode of operations. In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42 pJ/SOP and 2.63 μJ/learning in learning mode of operations.In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42 pJ/SOP and 2.63 μJ/learning in learning mode of operations. In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42 pJ/SOP and 2.63 μJ/learning in learning mode of operations. |
Author | Tang, Hoyoung Park, Jongsun Kim, Hyeonseong Kim, Heetak |
Author_xml | – sequence: 1 givenname: Hoyoung orcidid: 0000-0002-0232-2527 surname: Tang fullname: Tang, Hoyoung email: ho-2604@korea.ac.kr organization: School of Electrical Engineering, Korea University, Seoul, South Korea – sequence: 2 givenname: Heetak surname: Kim fullname: Kim, Heetak email: htkim@keti.re.kr organization: School of Electrical Engineering, Korea University, Seoul, South Korea – sequence: 3 givenname: Hyeonseong surname: Kim fullname: Kim, Hyeonseong email: syzk951@korea.ac.kr organization: School of Electrical Engineering, Korea University, Seoul, South Korea – sequence: 4 givenname: Jongsun orcidid: 0000-0003-3251-0024 surname: Park fullname: Park, Jongsun email: jongsun@korea.ac.kr organization: School of Electrical Engineering, Korea University, Seoul, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31603797$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT9v2zAQxYkiRZ24_QINEAjIkkXuHf9I4mgbTRvAcAen6CjQ0gWhI0sKSSH1tw9dOxk8dOLh3u_xyHsX7KztWmLsK8IEEfS3-9l8uppwQD3hWioJ2Qd2jlpCqrWGs30teBoFNWIX3m8AVMY1_8RGAjMQuc7P2e2qt0-UzLuhDT6ZGU91suheYmPbN_TXhl2yWi6TqasebaAqDI6SPzY8JjPbGhfFXWt6T5_ZxwfTePpyPMfs9-33-_nPdPHrx918ukgroTCkUq7znAxINJKTUWCARFFrQJ4ZxWvICIzmGrHONQllqgxjGzUaKkjUYsxuDvf2rnseyIdya31FTWNa6gZfcgEKlEApI3p9gm66wbXxdZESQkmBOY_U1ZEa1luqy97ZbfxX-bahCPADULnOe0cP7whCuY-h_BdDuY-hPMYQTcWJqbLBBNu1wRnb_N96ebBaInqfVRRKc67FKy-Skg8 |
CODEN | ITBCCW |
CitedBy_id | crossref_primary_10_1109_TBCAS_2024_3412908 crossref_primary_10_1016_j_bspc_2023_105268 crossref_primary_10_1109_TCSII_2021_3117699 crossref_primary_10_1109_TCASAI_2024_3491673 crossref_primary_10_1007_s00521_024_09667_1 crossref_primary_10_1109_TCSI_2022_3172176 crossref_primary_10_1109_TVLSI_2023_3282239 crossref_primary_10_3390_s21093276 crossref_primary_10_1109_TCASAI_2025_3532406 crossref_primary_10_1109_TBCAS_2022_3181808 crossref_primary_10_1109_TBCAS_2022_3189240 crossref_primary_10_1109_TBCAS_2020_3018777 crossref_primary_10_1109_JSSC_2024_3426319 crossref_primary_10_1002_aisy_202400557 crossref_primary_10_1109_TCSI_2022_3204645 crossref_primary_10_1109_TCSI_2023_3300095 crossref_primary_10_1109_TC_2021_3119180 crossref_primary_10_1109_TCAD_2023_3264167 crossref_primary_10_1016_j_compeleceng_2024_109806 crossref_primary_10_3390_s23239612 crossref_primary_10_1007_s11571_022_09803_4 crossref_primary_10_1109_TBCAS_2023_3246593 crossref_primary_10_1109_TCSII_2023_3282653 crossref_primary_10_1109_TCSII_2023_3239039 crossref_primary_10_1109_ACCESS_2023_3287994 crossref_primary_10_7498_aps_71_20220397 |
Cites_doi | 10.1109/ISLPED.2017.8009176 10.1109/TBCAS.2017.2762002 10.1038/srep29545 10.1016/j.neucom.2016.09.071 10.1523/JNEUROSCI.18-24-10464.1998 10.1109/TNNLS.2018.2826721 10.1016/j.neunet.2017.12.005 10.1109/PROC.1976.10411 10.1109/CICC.2011.6055294 10.1162/neco.2007.19.6.1437 10.1109/JETCAS.2018.2816339 10.1109/IJCNN.2018.8489486 10.23919/DATE.2017.7926981 10.3389/fncom.2018.00024 10.1109/TED.2012.2227969 10.3389/fncom.2015.00099 10.1109/5.726791 10.1109/JSSC.2018.2884901 10.1109/CVPR.2003.1211497 10.3389/fnins.2017.00682 10.1109/IJCNN.2015.7280696 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
DOI | 10.1109/TBCAS.2019.2945406 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1940-9990 |
EndPage | 1677 |
ExternalDocumentID | 31603797 10_1109_TBCAS_2019_2945406 8859229 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Information Technology Research Center grantid: IITP-2019-2018-0-01433 – fundername: Design technology development of ultra-low voltage operating circuit and IP for smart sensor SoC – fundername: Ministry of Trade, Industry and Energy funderid: 10.13039/501100003052 – fundername: Ministry of Science, ICT and Future Planning funderid: 10.13039/501100003621 – fundername: IT R&D program of KEIT grantid: 10052716 – fundername: Development of SoC Technology based on Spiking Neural Cell for smart mobile and IoT devices – fundername: Institute for Information and communications Technology Promotion funderid: 10.13039/501100010418 – fundername: Industrial Strategic Technology Development Program grantid: 10077445 |
GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c351t-44b77ea041a42ea50a0e38d90126a52d06e0a92911d79e35ac6152d191ae8e3d3 |
IEDL.DBID | RIE |
ISSN | 1932-4545 1940-9990 |
IngestDate | Fri Sep 05 02:57:35 EDT 2025 Mon Jun 30 08:38:28 EDT 2025 Thu Jan 02 22:58:38 EST 2025 Tue Jul 01 03:26:34 EDT 2025 Thu Apr 24 22:55:49 EDT 2025 Wed Aug 27 06:27:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-44b77ea041a42ea50a0e38d90126a52d06e0a92911d79e35ac6152d191ae8e3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0232-2527 0000-0003-3251-0024 |
PMID | 31603797 |
PQID | 2333543172 |
PQPubID | 85510 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2333543172 ieee_primary_8859229 pubmed_primary_31603797 proquest_miscellaneous_2305053144 crossref_citationtrail_10_1109_TBCAS_2019_2945406 crossref_primary_10_1109_TBCAS_2019_2945406 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical circuits and systems |
PublicationTitleAbbrev | TBCAS |
PublicationTitleAlternate | IEEE Trans Biomed Circuits Syst |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 seo (ref6) 2011 ref14 ref11 ref10 rabaey (ref20) 2002; 2 ref2 ref1 ref17 ref16 ref19 ref18 frenkel (ref8) 2019; 13 ref24 ref23 ref25 ref22 ref7 ref9 ref4 ref3 ref5 (ref21) 0 |
References_xml | – ident: ref15 doi: 10.1109/ISLPED.2017.8009176 – ident: ref3 doi: 10.1109/TBCAS.2017.2762002 – volume: 2 start-page: 122 year: 2002 ident: ref20 article-title: Perspective-technology scaling publication-title: Digital Integrated Circuits – ident: ref7 doi: 10.1038/srep29545 – ident: ref4 doi: 10.1016/j.neucom.2016.09.071 – ident: ref2 doi: 10.1523/JNEUROSCI.18-24-10464.1998 – ident: ref22 doi: 10.1109/TNNLS.2018.2826721 – ident: ref24 doi: 10.1016/j.neunet.2017.12.005 – ident: ref17 doi: 10.1109/PROC.1976.10411 – ident: ref19 doi: 10.1109/CICC.2011.6055294 – ident: ref12 doi: 10.1162/neco.2007.19.6.1437 – ident: ref1 doi: 10.1109/JETCAS.2018.2816339 – ident: ref13 doi: 10.1109/IJCNN.2018.8489486 – ident: ref9 doi: 10.23919/DATE.2017.7926981 – ident: ref23 doi: 10.3389/fncom.2018.00024 – ident: ref5 doi: 10.1109/TED.2012.2227969 – ident: ref11 doi: 10.3389/fncom.2015.00099 – ident: ref10 doi: 10.1109/5.726791 – volume: 13 start-page: 145 year: 2019 ident: ref8 article-title: A 0.086-mm2 12.7-pJ/SOP 64 k-Synapse 256-neuron online-learning digital spiking neuromorphic processor in 28 nm CMOS publication-title: IEEE Trans Biomed Circuits Syst – ident: ref18 doi: 10.1109/JSSC.2018.2884901 – ident: ref25 doi: 10.1109/CVPR.2003.1211497 – year: 0 ident: ref21 publication-title: Analyzing appearance and contour based methods for object categorization – ident: ref16 doi: 10.3389/fnins.2017.00682 – ident: ref14 doi: 10.1109/IJCNN.2015.7280696 – start-page: 1 year: 2011 ident: ref6 article-title: A 45 nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons publication-title: Proc IEEE Custom Integr Circuits Conf |
SSID | ssj0056292 |
Score | 2.3858562 |
Snippet | In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1664 |
SubjectTerms | 1-bit synapse weights Animals Axons CMOS Complexity Complexity theory Computer architecture Design Energy efficiency Firing pattern Hardware Humans Learning Membrane potentials Microprocessors Models, Neurological Neural networks Neural Networks, Computer On-chip learning Spikes spiking neural network processor Synapses Synapses - physiology Synaptic strength Unsupervised learning Unsupervised Machine Learning |
Title | Spike Counts Based Low Complexity SNN Architecture With Binary Synapse |
URI | https://ieeexplore.ieee.org/document/8859229 https://www.ncbi.nlm.nih.gov/pubmed/31603797 https://www.proquest.com/docview/2333543172 https://www.proquest.com/docview/2305053144 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzgsz10CBRlpb0uLY-d5bBEVQtBLQXCLHHvQIlBa0VQIfj0e56GC2BWHSJEySRyPnfnGnvkG4HckLWRTyiI3SUs3gTTdXOi4K_L8XqA9hKZ1yKtRdH4TXNyFd0tw3ObCIKILPsMenbq9fDPRc1oqO0mSMBUiXYZl67hVuVrNX9eacVcAmfAI8XiHTYIMT0-uB6f9MUVxpT2REuNc9MEIuaoq_waYztAM1-GqaWIVX_LYm5d5T799Ym_87jdswI8acbJ-NUQ2YQmLLVhb4CHchuF4-vCIjPLTyxkbWMNm2OXkhdHPgggzy1c2Ho1Yf2HTgd0-lH_ZwGXzsvFroaYz3IGb4dn16Xm3LrDQ1TL0S6uaPI5R8cBXgUAVcsVRJsZCBBGpUBgeIVcWP_m-iVOUodIW_whjXTyFCUojf8JKMSlwF5jUAXKdxNLwJAhQJX6gLPRR9yQvcvTAb3o80zX7OBXBeMqcF8LTzGkpIy1ltZY8-NPeM624N_4rvU293UrWHe1Bp1FsVk_PWSaklEQCEAsPjtrLdmLRbokqcDInGSryJ63D6cGvakC0z5ZUnDtO472v37kPq9SyKuqlAyvl8xwPLHYp80M3aN8BgaLnPA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcoAeeJXHQgEjcYOkXtv78DGpiAIkuSQVva289lRURZuo2QiVX4_H-1BBgDistNLO7toe2_PZnvkG4G0qPWQzxiM3SVs3SrpBKWw2EGV5LtBfwtI-5HyRTk_Vp7PkbA_e97EwiBicz3BIt-Es363tjrbKjvM80ULoW3Db232lm2itbt71hjykQCZEQkzeSRciw_XxanwyWpIflx4KTZxz6S9mKORV-TvEDKZmch_mXSEbD5PL4a4uh_bHb_yN_1uLB3CvxZxs1HSSh7CH1SM4uMFEeAiT5ebiEhlFqNdbNvamzbHZ-juj6YIoM-trtlws2OjGsQP7clF_ZeMQz8uW15XZbPExnE4-rE6mgzbFwsDKJK69csosQ8NVbJRAk3DDUebOgwSRmkQ4niI3HkHFscs0ysRYj4CE84s8gzlKJ5_AfrWu8BkwaRVym2fS8VwpNHmsjAc_5pzkRYkRxF2LF7blH6c0GN-KsA7hughaKkhLRaulCN7172wa9o1_Sh9Sa_eSbUNHcNQptmgH6LYQUkqiAchEBG_6x35o0XmJqXC9IxlK8yf9kjOCp02H6L8tKT13prPnf_7na7gzXc1nxezj4vMLuEulbHxgjmC_vtrhS49k6vJV6MA_Ac8G6ow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spike+Counts+Based+Low+Complexity+SNN+Architecture+With+Binary+Synapse&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Tang%2C+Hoyoung&rft.au=Kim%2C+Heetak&rft.au=Kim%2C+Hyeonseong&rft.au=Park%2C+Jongsun&rft.date=2019-12-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=13&rft.issue=6&rft.spage=1664&rft.epage=1677&rft_id=info:doi/10.1109%2FTBCAS.2019.2945406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2019_2945406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |