Spike Counts Based Low Complexity SNN Architecture With Binary Synapse

In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the un...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 13; no. 6; pp. 1664 - 1677
Main Authors Tang, Hoyoung, Kim, Heetak, Kim, Hyeonseong, Park, Jongsun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2019.2945406

Cover

Loading…
Abstract In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42 pJ/SOP and 2.63 μJ/learning in learning mode of operations.
AbstractList In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42 pJ/SOP and 2.63 μJ/learning in learning mode of operations.
In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42 pJ/SOP and 2.63 μJ/learning in learning mode of operations.In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42 pJ/SOP and 2.63 μJ/learning in learning mode of operations.
In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN design, we propose hardware-friendly complexity reduction techniques for both of learning and inferencing modes of operations. First, for the unsupervised learning process, we propose a spike counts based learning method. The novel learning approach utilizes pre- and post-synaptic spike counts to reduce the bit-width of synaptic weights as well as the number of weight updates. For the energy efficient inferencing operations, we propose an accumulation based computing scheme, where the number of input spikes for each input axon is accumulated without instant membrane updates until the pre-defined number of spikes are reached. In addition, the computation skip schemes identify meaningless computations and skip them to improve energy efficiency. Based on the proposed low complexity design techniques, we design and implement the SNN processor using 65 nm CMOS process. According to the implementation results, the SNN processor achieves 87.4% of recognition accuracy in MNIST dataset using only 1-bit 230 k synaptic weights with 400 excitatory neurons. The energy consumptions are 0.26 pJ/SOP and 0.31 μJ/inference in inferencing mode, and 1.42 pJ/SOP and 2.63 μJ/learning in learning mode of operations.
Author Tang, Hoyoung
Park, Jongsun
Kim, Hyeonseong
Kim, Heetak
Author_xml – sequence: 1
  givenname: Hoyoung
  orcidid: 0000-0002-0232-2527
  surname: Tang
  fullname: Tang, Hoyoung
  email: ho-2604@korea.ac.kr
  organization: School of Electrical Engineering, Korea University, Seoul, South Korea
– sequence: 2
  givenname: Heetak
  surname: Kim
  fullname: Kim, Heetak
  email: htkim@keti.re.kr
  organization: School of Electrical Engineering, Korea University, Seoul, South Korea
– sequence: 3
  givenname: Hyeonseong
  surname: Kim
  fullname: Kim, Hyeonseong
  email: syzk951@korea.ac.kr
  organization: School of Electrical Engineering, Korea University, Seoul, South Korea
– sequence: 4
  givenname: Jongsun
  orcidid: 0000-0003-3251-0024
  surname: Park
  fullname: Park, Jongsun
  email: jongsun@korea.ac.kr
  organization: School of Electrical Engineering, Korea University, Seoul, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31603797$$D View this record in MEDLINE/PubMed
BookMark eNp9kT9v2zAQxYkiRZ24_QINEAjIkkXuHf9I4mgbTRvAcAen6CjQ0gWhI0sKSSH1tw9dOxk8dOLh3u_xyHsX7KztWmLsK8IEEfS3-9l8uppwQD3hWioJ2Qd2jlpCqrWGs30teBoFNWIX3m8AVMY1_8RGAjMQuc7P2e2qt0-UzLuhDT6ZGU91suheYmPbN_TXhl2yWi6TqasebaAqDI6SPzY8JjPbGhfFXWt6T5_ZxwfTePpyPMfs9-33-_nPdPHrx918ukgroTCkUq7znAxINJKTUWCARFFrQJ4ZxWvICIzmGrHONQllqgxjGzUaKkjUYsxuDvf2rnseyIdya31FTWNa6gZfcgEKlEApI3p9gm66wbXxdZESQkmBOY_U1ZEa1luqy97ZbfxX-bahCPADULnOe0cP7whCuY-h_BdDuY-hPMYQTcWJqbLBBNu1wRnb_N96ebBaInqfVRRKc67FKy-Skg8
CODEN ITBCCW
CitedBy_id crossref_primary_10_1109_TBCAS_2024_3412908
crossref_primary_10_1016_j_bspc_2023_105268
crossref_primary_10_1109_TCSII_2021_3117699
crossref_primary_10_1109_TCASAI_2024_3491673
crossref_primary_10_1007_s00521_024_09667_1
crossref_primary_10_1109_TCSI_2022_3172176
crossref_primary_10_1109_TVLSI_2023_3282239
crossref_primary_10_3390_s21093276
crossref_primary_10_1109_TCASAI_2025_3532406
crossref_primary_10_1109_TBCAS_2022_3181808
crossref_primary_10_1109_TBCAS_2022_3189240
crossref_primary_10_1109_TBCAS_2020_3018777
crossref_primary_10_1109_JSSC_2024_3426319
crossref_primary_10_1002_aisy_202400557
crossref_primary_10_1109_TCSI_2022_3204645
crossref_primary_10_1109_TCSI_2023_3300095
crossref_primary_10_1109_TC_2021_3119180
crossref_primary_10_1109_TCAD_2023_3264167
crossref_primary_10_1016_j_compeleceng_2024_109806
crossref_primary_10_3390_s23239612
crossref_primary_10_1007_s11571_022_09803_4
crossref_primary_10_1109_TBCAS_2023_3246593
crossref_primary_10_1109_TCSII_2023_3282653
crossref_primary_10_1109_TCSII_2023_3239039
crossref_primary_10_1109_ACCESS_2023_3287994
crossref_primary_10_7498_aps_71_20220397
Cites_doi 10.1109/ISLPED.2017.8009176
10.1109/TBCAS.2017.2762002
10.1038/srep29545
10.1016/j.neucom.2016.09.071
10.1523/JNEUROSCI.18-24-10464.1998
10.1109/TNNLS.2018.2826721
10.1016/j.neunet.2017.12.005
10.1109/PROC.1976.10411
10.1109/CICC.2011.6055294
10.1162/neco.2007.19.6.1437
10.1109/JETCAS.2018.2816339
10.1109/IJCNN.2018.8489486
10.23919/DATE.2017.7926981
10.3389/fncom.2018.00024
10.1109/TED.2012.2227969
10.3389/fncom.2015.00099
10.1109/5.726791
10.1109/JSSC.2018.2884901
10.1109/CVPR.2003.1211497
10.3389/fnins.2017.00682
10.1109/IJCNN.2015.7280696
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2019.2945406
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 1677
ExternalDocumentID 31603797
10_1109_TBCAS_2019_2945406
8859229
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Information Technology Research Center
  grantid: IITP-2019-2018-0-01433
– fundername: Design technology development of ultra-low voltage operating circuit and IP for smart sensor SoC
– fundername: Ministry of Trade, Industry and Energy
  funderid: 10.13039/501100003052
– fundername: Ministry of Science, ICT and Future Planning
  funderid: 10.13039/501100003621
– fundername: IT R&D program of KEIT
  grantid: 10052716
– fundername: Development of SoC Technology based on Spiking Neural Cell for smart mobile and IoT devices
– fundername: Institute for Information and communications Technology Promotion
  funderid: 10.13039/501100010418
– fundername: Industrial Strategic Technology Development Program
  grantid: 10077445
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c351t-44b77ea041a42ea50a0e38d90126a52d06e0a92911d79e35ac6152d191ae8e3d3
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Fri Sep 05 02:57:35 EDT 2025
Mon Jun 30 08:38:28 EDT 2025
Thu Jan 02 22:58:38 EST 2025
Tue Jul 01 03:26:34 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Wed Aug 27 06:27:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-44b77ea041a42ea50a0e38d90126a52d06e0a92911d79e35ac6152d191ae8e3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0232-2527
0000-0003-3251-0024
PMID 31603797
PQID 2333543172
PQPubID 85510
PageCount 14
ParticipantIDs proquest_journals_2333543172
ieee_primary_8859229
pubmed_primary_31603797
proquest_miscellaneous_2305053144
crossref_citationtrail_10_1109_TBCAS_2019_2945406
crossref_primary_10_1109_TBCAS_2019_2945406
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
seo (ref6) 2011
ref14
ref11
ref10
rabaey (ref20) 2002; 2
ref2
ref1
ref17
ref16
ref19
ref18
frenkel (ref8) 2019; 13
ref24
ref23
ref25
ref22
ref7
ref9
ref4
ref3
ref5
(ref21) 0
References_xml – ident: ref15
  doi: 10.1109/ISLPED.2017.8009176
– ident: ref3
  doi: 10.1109/TBCAS.2017.2762002
– volume: 2
  start-page: 122
  year: 2002
  ident: ref20
  article-title: Perspective-technology scaling
  publication-title: Digital Integrated Circuits
– ident: ref7
  doi: 10.1038/srep29545
– ident: ref4
  doi: 10.1016/j.neucom.2016.09.071
– ident: ref2
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– ident: ref22
  doi: 10.1109/TNNLS.2018.2826721
– ident: ref24
  doi: 10.1016/j.neunet.2017.12.005
– ident: ref17
  doi: 10.1109/PROC.1976.10411
– ident: ref19
  doi: 10.1109/CICC.2011.6055294
– ident: ref12
  doi: 10.1162/neco.2007.19.6.1437
– ident: ref1
  doi: 10.1109/JETCAS.2018.2816339
– ident: ref13
  doi: 10.1109/IJCNN.2018.8489486
– ident: ref9
  doi: 10.23919/DATE.2017.7926981
– ident: ref23
  doi: 10.3389/fncom.2018.00024
– ident: ref5
  doi: 10.1109/TED.2012.2227969
– ident: ref11
  doi: 10.3389/fncom.2015.00099
– ident: ref10
  doi: 10.1109/5.726791
– volume: 13
  start-page: 145
  year: 2019
  ident: ref8
  article-title: A 0.086-mm2 12.7-pJ/SOP 64 k-Synapse 256-neuron online-learning digital spiking neuromorphic processor in 28 nm CMOS
  publication-title: IEEE Trans Biomed Circuits Syst
– ident: ref18
  doi: 10.1109/JSSC.2018.2884901
– ident: ref25
  doi: 10.1109/CVPR.2003.1211497
– year: 0
  ident: ref21
  publication-title: Analyzing appearance and contour based methods for object categorization
– ident: ref16
  doi: 10.3389/fnins.2017.00682
– ident: ref14
  doi: 10.1109/IJCNN.2015.7280696
– start-page: 1
  year: 2011
  ident: ref6
  article-title: A 45 nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons
  publication-title: Proc IEEE Custom Integr Circuits Conf
SSID ssj0056292
Score 2.3858562
Snippet In this paper, we present an energy and area efficient spike neural network (SNN) processor based on novel spike counts based methods. For the low cost SNN...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1664
SubjectTerms 1-bit synapse weights
Animals
Axons
CMOS
Complexity
Complexity theory
Computer architecture
Design
Energy efficiency
Firing pattern
Hardware
Humans
Learning
Membrane potentials
Microprocessors
Models, Neurological
Neural networks
Neural Networks, Computer
On-chip learning
Spikes
spiking neural network processor
Synapses
Synapses - physiology
Synaptic strength
Unsupervised learning
Unsupervised Machine Learning
Title Spike Counts Based Low Complexity SNN Architecture With Binary Synapse
URI https://ieeexplore.ieee.org/document/8859229
https://www.ncbi.nlm.nih.gov/pubmed/31603797
https://www.proquest.com/docview/2333543172
https://www.proquest.com/docview/2305053144
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJzgsz10CBRlpb0uLY-d5bBEVQtBLQXCLHHvQIlBa0VQIfj0e56GC2BWHSJEySRyPnfnGnvkG4HckLWRTyiI3SUs3gTTdXOi4K_L8XqA9hKZ1yKtRdH4TXNyFd0tw3ObCIKILPsMenbq9fDPRc1oqO0mSMBUiXYZl67hVuVrNX9eacVcAmfAI8XiHTYIMT0-uB6f9MUVxpT2REuNc9MEIuaoq_waYztAM1-GqaWIVX_LYm5d5T799Ym_87jdswI8acbJ-NUQ2YQmLLVhb4CHchuF4-vCIjPLTyxkbWMNm2OXkhdHPgggzy1c2Ho1Yf2HTgd0-lH_ZwGXzsvFroaYz3IGb4dn16Xm3LrDQ1TL0S6uaPI5R8cBXgUAVcsVRJsZCBBGpUBgeIVcWP_m-iVOUodIW_whjXTyFCUojf8JKMSlwF5jUAXKdxNLwJAhQJX6gLPRR9yQvcvTAb3o80zX7OBXBeMqcF8LTzGkpIy1ltZY8-NPeM624N_4rvU293UrWHe1Bp1FsVk_PWSaklEQCEAsPjtrLdmLRbokqcDInGSryJ63D6cGvakC0z5ZUnDtO472v37kPq9SyKuqlAyvl8xwPLHYp80M3aN8BgaLnPA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcoAeeJXHQgEjcYOkXtv78DGpiAIkuSQVva289lRURZuo2QiVX4_H-1BBgDistNLO7toe2_PZnvkG4G0qPWQzxiM3SVs3SrpBKWw2EGV5LtBfwtI-5HyRTk_Vp7PkbA_e97EwiBicz3BIt-Es363tjrbKjvM80ULoW3Db232lm2itbt71hjykQCZEQkzeSRciw_XxanwyWpIflx4KTZxz6S9mKORV-TvEDKZmch_mXSEbD5PL4a4uh_bHb_yN_1uLB3CvxZxs1HSSh7CH1SM4uMFEeAiT5ebiEhlFqNdbNvamzbHZ-juj6YIoM-trtlws2OjGsQP7clF_ZeMQz8uW15XZbPExnE4-rE6mgzbFwsDKJK69csosQ8NVbJRAk3DDUebOgwSRmkQ4niI3HkHFscs0ysRYj4CE84s8gzlKJ5_AfrWu8BkwaRVym2fS8VwpNHmsjAc_5pzkRYkRxF2LF7blH6c0GN-KsA7hughaKkhLRaulCN7172wa9o1_Sh9Sa_eSbUNHcNQptmgH6LYQUkqiAchEBG_6x35o0XmJqXC9IxlK8yf9kjOCp02H6L8tKT13prPnf_7na7gzXc1nxezj4vMLuEulbHxgjmC_vtrhS49k6vJV6MA_Ac8G6ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spike+Counts+Based+Low+Complexity+SNN+Architecture+With+Binary+Synapse&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Tang%2C+Hoyoung&rft.au=Kim%2C+Heetak&rft.au=Kim%2C+Hyeonseong&rft.au=Park%2C+Jongsun&rft.date=2019-12-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=13&rft.issue=6&rft.spage=1664&rft.epage=1677&rft_id=info:doi/10.1109%2FTBCAS.2019.2945406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2019_2945406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon