Identifying patent infringement using SAO based semantic technological similarities

Companies should investigate possible patent infringement and cope with potential risks because patent litigation may have a tremendous financial impact. An important factor to identify the possibility of patent infringement is the technological similarity among patents, so this paper considered tec...

Full description

Saved in:
Bibliographic Details
Published inScientometrics Vol. 90; no. 2; pp. 515 - 529
Main Authors Park, Hyunseok, Yoon, Janghyeok, Kim, Kwangsoo
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2012
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Companies should investigate possible patent infringement and cope with potential risks because patent litigation may have a tremendous financial impact. An important factor to identify the possibility of patent infringement is the technological similarity among patents, so this paper considered technological similarity as a criterion for judging the possibility of infringement. Technological similarities can be measured by transforming patent documents into abstracted forms which contain specific technological key-findings and structural relationships among technological components in the invention. Although keyword-based technological similarity has been widely adopted for patent analysis related research, it is inadequate for identifying patent infringement because a keyword vector cannot reflect specific technological key-findings and structural relationships among technological components. As a remedy, this paper exploited a subject–action–object (SAO) based semantic technological similarity. An SAO structure explicitly describes the structural relationships among technological components in the patent, and the set of SAO structures is considered to be a detailed picture of the inventor’s expertise, which is the specific key-findings in the patent. Therefore, an SAO based semantic technological similarity can identify patent infringement. Semantic similarity between SAO structures is automatically measured using SAO based semantic similarity measurement method using WordNet, and the technological relationships among patents were mapped onto a 2-dimensional space using multidimensional scaling (MDS). Furthermore, a clustering algorithm is used to automatically suggest possible patent infringement cases, allowing large sets of patents to be handled with minimal effort by human experts. The proposed method will be verified by detecting real patent infringement in prostate cancer treatment technology, and we expect this method to relieve human experts’ work in identifying patent infringement.
AbstractList Companies should investigate possible patent infringement and cope with potential risks because patent litigation may have a tremendous financial impact. An important factor to identify the possibility of patent infringement is the technological similarity among patents, so this paper considered technological similarity as a criterion for judging the possibility of infringement. Technological similarities can be measured by transforming patent documents into abstracted forms which contain specific technological key-findings and structural relationships among technological components in the invention. Although keyword-based technological similarity has been widely adopted for patent analysis related research, it is inadequate for identifying patent infringement because a keyword vector cannot reflect specific technological key-findings and structural relationships among technological components. As a remedy, this paper exploited a subject-action-object (SAO) based semantic technological similarity. An SAO structure explicitly describes the structural relationships among technological components in the patent, and the set of SAO structures is considered to be a detailed picture of the inventor's expertise, which is the specific key-findings in the patent. Therefore, an SAO based semantic technological similarity can identify patent infringement. Semantic similarity between SAO structures is automatically measured using SAO based semantic similarity measurement method using WordNet, and the technological relationships among patents were mapped onto a 2-dimensional space using multidimensional scaling (MDS). Furthermore, a clustering algorithm is used to automatically suggest possible patent infringement cases, allowing large sets of patents to be handled with minimal effort by human experts. The proposed method will be verified by detecting real patent infringement in prostate cancer treatment technology, and we expect this method to relieve human experts' work in identifying patent infringement. Adapted from the source document.
Companies should investigate possible patent infringement and cope with potential risks because patent litigation may have a tremendous financial impact. An important factor to identify the possibility of patent infringement is the technological similarity among patents, so this paper considered technological similarity as a criterion for judging the possibility of infringement. Technological similarities can be measured by transforming patent documents into abstracted forms which contain specific technological key-findings and structural relationships among technological components in the invention. Although keyword-based technological similarity has been widely adopted for patent analysis related research, it is inadequate for identifying patent infringement because a keyword vector cannot reflect specific technological key-findings and structural relationships among technological components. As a remedy, this paper exploited a subject–action–object (SAO) based semantic technological similarity. An SAO structure explicitly describes the structural relationships among technological components in the patent, and the set of SAO structures is considered to be a detailed picture of the inventor’s expertise, which is the specific key-findings in the patent. Therefore, an SAO based semantic technological similarity can identify patent infringement. Semantic similarity between SAO structures is automatically measured using SAO based semantic similarity measurement method using WordNet, and the technological relationships among patents were mapped onto a 2-dimensional space using multidimensional scaling (MDS). Furthermore, a clustering algorithm is used to automatically suggest possible patent infringement cases, allowing large sets of patents to be handled with minimal effort by human experts. The proposed method will be verified by detecting real patent infringement in prostate cancer treatment technology, and we expect this method to relieve human experts’ work in identifying patent infringement.
Author Park, Hyunseok
Yoon, Janghyeok
Kim, Kwangsoo
Author_xml – sequence: 1
  givenname: Hyunseok
  surname: Park
  fullname: Park, Hyunseok
  organization: Department of Technology and Innovation Management, Pohang University of Science and Technology
– sequence: 2
  givenname: Janghyeok
  surname: Yoon
  fullname: Yoon, Janghyeok
  organization: Department of Industrial and Management Engineering, Pohang University of Science and Technology
– sequence: 3
  givenname: Kwangsoo
  surname: Kim
  fullname: Kim, Kwangsoo
  email: kskim@postech.ac.kr
  organization: Department of Industrial and Management Engineering, Pohang University of Science and Technology
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25603579$$DView record in Pascal Francis
BookMark eNp9kDtPBCEUhYnRxPXxA-ymMbEZ5cIyzJTG-EpMLNSa3GFAMTPMymUL_72sq42FFTnhfCfwHbDdOEfH2Anwc-BcXxAAdKLmADVXQtR6hy1AtW0t2gZ22YKDbOsOJN9nB0TvvDCStwv2dD-4mIP_DPG1WmEuoQrRpxLdtAlr2tw8XT5WPZIbKnITFsBW2dm3OI_za7A4VhSmMGIKOTg6YnseR3LHP-che7m5fr66qx8eb--vLh9qKxXkeglDp71eCtsLENioHtWyl4AdDt56cH3nm_ItJUH2Gjh623k_uH7A3nto5CE72-6u0vyxdpTNFMi6ccTo5jUZ4EJyIRqtSvX0p4pUnusTRhvIrFKYMH0aoRoule5KT297Ns1EyXljQ8Yc5pgThrFMmo1us9Vtim6z0W10IeEP-Tv-HyO2DK2-hSfzPq9TLM7-gb4Ad2iVYw
CODEN SCNTDX
CitedBy_id crossref_primary_10_1007_s11192_012_0830_6
crossref_primary_10_1016_j_joi_2018_01_006
crossref_primary_10_1016_j_technovation_2020_102199
crossref_primary_10_3390_su10103729
crossref_primary_10_1080_09537325_2020_1740193
crossref_primary_10_1016_j_aei_2023_102277
crossref_primary_10_1016_j_joi_2021_101135
crossref_primary_10_1016_j_technovation_2023_102872
crossref_primary_10_1016_j_joi_2018_01_001
crossref_primary_10_1111_1467_8462_12545
crossref_primary_10_3390_systems11060294
crossref_primary_10_2139_ssrn_4644778
crossref_primary_10_1016_j_compind_2018_04_006
crossref_primary_10_1080_15583724_2015_1125918
crossref_primary_10_48084_etasr_3598
crossref_primary_10_1080_09537325_2018_1502875
crossref_primary_10_3390_su13010391
crossref_primary_10_1007_s11192_017_2444_5
crossref_primary_10_26102_2310_6018_2019_25_2_018
crossref_primary_10_7232_iems_2015_14_1_073
crossref_primary_10_1007_s11192_023_04819_x
crossref_primary_10_1016_j_ipm_2016_07_002
crossref_primary_10_1016_j_techfore_2016_10_017
crossref_primary_10_1016_j_techfore_2018_12_006
crossref_primary_10_1016_j_compind_2020_103379
crossref_primary_10_1007_s11192_012_0635_7
crossref_primary_10_1007_s11192_013_1010_z
crossref_primary_10_1016_j_wpi_2014_07_002
crossref_primary_10_1080_21642583_2024_2365328
crossref_primary_10_1016_j_joi_2016_04_018
crossref_primary_10_2339_politeknik_1294789
crossref_primary_10_1016_j_wpi_2018_07_006
crossref_primary_10_1016_j_eswa_2013_03_033
crossref_primary_10_1007_s11192_015_1685_4
crossref_primary_10_3390_su9112117
crossref_primary_10_1080_09537325_2014_909926
crossref_primary_10_1088_1755_1315_194_2_022014
crossref_primary_10_1108_FS_10_2012_0075
crossref_primary_10_1016_j_techfore_2015_04_012
crossref_primary_10_1007_s11192_017_2339_5
crossref_primary_10_1016_j_eswa_2012_08_008
crossref_primary_10_1109_ACCESS_2020_2984024
crossref_primary_10_1007_s10961_014_9367_6
crossref_primary_10_1016_j_joi_2022_101312
crossref_primary_10_1016_j_techfore_2019_03_014
crossref_primary_10_3390_ph15111357
crossref_primary_10_1016_j_wpi_2016_05_008
crossref_primary_10_1016_j_cie_2016_04_009
crossref_primary_10_1371_journal_pone_0227930
crossref_primary_10_1007_s11192_020_03634_y
crossref_primary_10_1007_s11192_019_03191_z
crossref_primary_10_1109_TEM_2021_3109134
crossref_primary_10_1016_j_eswa_2012_10_073
crossref_primary_10_1088_1742_6596_1015_3_032065
crossref_primary_10_1016_j_wpi_2013_12_006
crossref_primary_10_1016_j_wpi_2017_08_007
crossref_primary_10_1016_j_compind_2024_104167
crossref_primary_10_1371_journal_pone_0240050
crossref_primary_10_2139_ssrn_2744519
crossref_primary_10_1016_j_aei_2022_101811
crossref_primary_10_1016_j_joi_2020_101103
crossref_primary_10_4018_JOEUC_332008
crossref_primary_10_1007_s11192_018_2962_9
crossref_primary_10_1016_j_aei_2013_04_004
crossref_primary_10_1017_dsj_2017_19
crossref_primary_10_2339_politeknik_842663
crossref_primary_10_1007_s11192_019_03126_8
crossref_primary_10_1016_j_cie_2022_108395
crossref_primary_10_1109_TEM_2020_3047370
crossref_primary_10_1016_j_techfore_2014_02_008
Cites_doi 10.1016/j.eswa.2009.04.049
10.2307/2696401
10.1007/BF02289565
10.1016/j.eswa.2009.01.027
10.2307/2696400
10.1016/j.eswa.2006.01.014
10.1016/S0165-1765(99)00228-1
10.1016/j.eswa.2005.09.060
10.1198/106186008X318440
10.1111/j.1467-9310.2008.00533.x
10.1007/s11192-010-0303-8
10.1016/S0048-7333(00)00100-1
10.1016/S0923-4748(98)00018-6
10.1016/j.eswa.2007.01.033
10.1016/j.hitech.2003.09.003
10.1007/BF02289588
10.1111/j.1467-9310.2005.00408.x
10.2307/270980
10.2307/3151858
10.1016/j.eswa.2007.06.022
10.1007/11564126_11
10.1145/219717.219748
10.2307/2348634
10.5040/9798216194569
10.2307/3087433
10.1016/S1048-4736(04)01506-1
10.1007/978-0-387-09697-1_3
10.1007/s11192-010-0243-3
10.3115/981732.981751
10.1007/s11192-011-0383-0
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2011
2015 INIST-CNRS
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2011
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
E3H
F2A
DOI 10.1007/s11192-011-0522-7
DatabaseName CrossRef
Pascal-Francis
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList Library and Information Science Abstracts (LISA)

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
EISSN 1588-2861
EndPage 529
ExternalDocumentID 25603579
10_1007_s11192_011_0522_7
GroupedDBID --K
-4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1B1
1N0
1SB
2.D
203
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
77K
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACYUM
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9O
PF0
PT4
PT5
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RIG
RKA
RNI
ROL
RPX
RPZ
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WHG
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IQODW
ABRTQ
E3H
F2A
ID FETCH-LOGICAL-c351t-41d97f742cb212a65ba54b31a9adfcf1eb9f61115313b710afc9ffdebdabff163
IEDL.DBID U2A
ISSN 0138-9130
IngestDate Tue Aug 05 09:13:39 EDT 2025
Wed Apr 02 07:21:07 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Tue Jul 01 05:20:41 EDT 2025
Fri Feb 21 02:36:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords SAO
C63
NLP
Patent litigation
Patent mining
Natural language processing
Patent risk
C82
Subject–action–object
Multidimensional scaling
Patent analysis
Patents
Similarity
Correlation analysis
Multidimensional space
Scientific research
Cluster
Measurement method
Algorithm
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-41d97f742cb212a65ba54b31a9adfcf1eb9f61115313b710afc9ffdebdabff163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1023022675
PQPubID 23477
PageCount 15
ParticipantIDs proquest_miscellaneous_1023022675
pascalfrancis_primary_25603579
crossref_citationtrail_10_1007_s11192_011_0522_7
crossref_primary_10_1007_s11192_011_0522_7
springer_journals_10_1007_s11192_011_0522_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal for all Quantitative Aspects of the Science of Science, Communication in Science and Science Policy
PublicationTitle Scientometrics
PublicationTitleAbbrev Scientometrics
PublicationYear 2012
Publisher Springer Netherlands
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer
References Chen (CR11) 2009; 36
Carroll, Green (CR8) 1997; 34
Cascini, Zini (CR9) 2008; 277
Yoon, Park (CR42) 2004; 15
Mead (CR29) 1992; 41
CR18
Cascini, Fantechi, Spinicci (CR10) 2004; VI
CR38
CR13
Moehrle, Walter, Geritz, Muller (CR31) 2005; 35
CR35
Lanjouw, Schankerman (CR25) 2001; 32
CR34
Franzosi (CR17) 1994; 24
CR32
Arundel (CR1) 2001; 30
Bergmann, Butzke, Walter, Fuerste, Moehrle, Erdmann (CR3) 2008; 38
Carree, Klomp, Thurik (CR7) 2000; 66
Buja, Swayne, Littman, Dean, Hofmann, Chen (CR6) 2008; 17
Huang, Ong, Tzeng (CR20) 2006; 31
Miller (CR30) 1995; 38
Lai, Che (CR24) 2009; 36
Manning, Schutze (CR28) 1999
Soo, Lin, Yang, Lin, Cheng (CR33) 2006; 31
Johnson (CR21) 1967; 32
CR2
Yoon, Choi, Kim (CR43) 2011; 86
CR5
Davidson, Ravi (CR14) 2005; 2005
Boslaugh, Watters (CR4) 2008
CR27
CR26
Moehrle (CR45) 2010; 85
Crampes, Langinier (CR12) 2002; 33
Ernst (CR16) 1998; 15
Durham (CR15) 2004
CR41
Hall, Ziedonis (CR19) 2001; 32
Kim, Suh, Park (CR22) 2008; 34
Wickelmaier (CR37) 2003
Yoon, Kim (CR40) 2011; 10
Wallerstein, Mogee, Schoen (CR36) 1993
Yoon (CR39) 2008; 35
Kruskal (CR23) 1964; 29
MB Wallerstein (522_CR36) 1993
B Yoon (522_CR39) 2008; 35
YH Lai (522_CR24) 2009; 36
522_CR9
S Boslaugh (522_CR4) 2008
MA Carree (522_CR7) 2000; 66
R Franzosi (522_CR17) 1994; 24
A Arundel (522_CR1) 2001; 30
SC Johnson (522_CR21) 1967; 32
522_CR12
MG Moehrle (522_CR31) 2005; 35
522_CR34
522_CR13
522_CR35
JD Carroll (522_CR8) 1997; 34
522_CR32
CD Manning (522_CR28) 1999
522_CR38
R Chen (522_CR11) 2009; 36
H Ernst (522_CR16) 1998; 15
JO Lanjouw (522_CR25) 2001; 32
J Yoon (522_CR40) 2011; 10
I Bergmann (522_CR3) 2008; 38
JB Kruskal (522_CR23) 1964; 29
522_CR18
VW Soo (522_CR33) 2006; 31
F Wickelmaier (522_CR37) 2003
JJ Huang (522_CR20) 2006; 31
B Yoon (522_CR42) 2004; 15
AL Durham (522_CR15) 2004
BH Hall (522_CR19) 2001; 32
J Yoon (522_CR43) 2011; 86
522_CR2
GA Miller (522_CR30) 1995; 38
522_CR41
522_CR5
A Buja (522_CR6) 2008; 17
Y Kim (522_CR22) 2008; 34
522_CR45
I Davidson (522_CR14) 2005; 2005
522_CR27
G Cascini (522_CR10) 2004; VI
A Mead (522_CR29) 1992; 41
522_CR26
References_xml – volume: 36
  start-page: 12362
  issue: 10
  year: 2009
  end-page: 12374
  ident: CR11
  article-title: Design patent map visualization display
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.04.049
– ident: CR18
– volume: 32
  start-page: 129
  issue: 1
  year: 2001
  end-page: 151
  ident: CR25
  article-title: Characteristics of patent litigation: A window on competition
  publication-title: The RAND Journal of Economics
  doi: 10.2307/2696401
– ident: CR2
– volume: 10
  start-page: 19
  issue: 1
  year: 2011
  end-page: 27
  ident: CR40
  article-title: Generation of patent maps using SAO-based semantic patent similarity
  publication-title: Entrue Journal of Information Technology
– volume: 29
  start-page: 1
  issue: 1
  year: 1964
  end-page: 27
  ident: CR23
  article-title: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
  publication-title: Psychometrika
  doi: 10.1007/BF02289565
– volume: 36
  start-page: 10520
  issue: 7
  year: 2009
  end-page: 10528
  ident: CR24
  article-title: Modeling patent legal value by Extension Neural Network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.01.027
– ident: CR35
– volume: 32
  start-page: 101
  issue: 1
  year: 2001
  end-page: 128
  ident: CR19
  article-title: The patent paradox revisited: An empirical study of patenting in the US semiconductor industry, 1979–1995
  publication-title: The RAND Journal of Economics
  doi: 10.2307/2696400
– volume: 33
  start-page: 258
  issue: 2
  year: 2002
  end-page: 274
  ident: CR12
  article-title: Litigation and settlement in patent infringement cases
  publication-title: The RAND Journal of Economics
– volume: 31
  start-page: 766
  issue: 4
  year: 2006
  end-page: 775
  ident: CR33
  article-title: A cooperative multi-agent platform for invention based on patent document analysis and ontology
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.01.014
– ident: CR27
– volume: 66
  start-page: 337
  issue: 3
  year: 2000
  end-page: 345
  ident: CR7
  article-title: Productivity convergence in OECD manufacturing industries
  publication-title: Economics Letters
  doi: 10.1016/S0165-1765(99)00228-1
– volume: 31
  start-page: 525
  issue: 3
  year: 2006
  end-page: 530
  ident: CR20
  article-title: Interval multidimensional scaling for group decision using rough set concept
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.060
– volume: 17
  start-page: 444
  issue: 2
  year: 2008
  end-page: 472
  ident: CR6
  article-title: Data visualization with multidimensional scaling
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186008X318440
– volume: 38
  start-page: 550
  issue: 5
  year: 2008
  end-page: 562
  ident: CR3
  article-title: Evaluating the risk of patent infringement by means of semantic patent analysis: The case of DNA chips
  publication-title: R&D Management
  doi: 10.1111/j.1467-9310.2008.00533.x
– volume: 277
  start-page: 31
  year: 2008
  end-page: 42
  ident: CR9
  article-title: Measuring patent similarity by comparing inventions functional trees
  publication-title: Computer-Aided Innovation
– volume: 86
  start-page: 687
  issue: 3
  year: 2011
  end-page: 703
  ident: CR43
  article-title: Invention property-function network analysis of patents: A case of silicon-based thin film solar cells
  publication-title: Scientometrics
  doi: 10.1007/s11192-010-0303-8
– volume: 30
  start-page: 611
  issue: 4
  year: 2001
  end-page: 624
  ident: CR1
  article-title: The relative effectiveness of patents and secrecy for appropriation
  publication-title: Research Policy
  doi: 10.1016/S0048-7333(00)00100-1
– volume: 15
  start-page: 279
  issue: 4
  year: 1998
  end-page: 308
  ident: CR16
  article-title: Patent portfolios for strategic R&D planning
  publication-title: Journal of Engineering and Technology Management
  doi: 10.1016/S0923-4748(98)00018-6
– volume: 34
  start-page: 1804
  issue: 3
  year: 2008
  end-page: 1812
  ident: CR22
  article-title: Visualization of patent analysis for emerging technology
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.01.033
– volume: 15
  start-page: 37
  issue: 1
  year: 2004
  end-page: 50
  ident: CR42
  article-title: A text-mining-based patent network: Analytical tool for high-technology trend
  publication-title: The Journal of High Technology Management Research
  doi: 10.1016/j.hitech.2003.09.003
– volume: 32
  start-page: 241
  issue: 3
  year: 1967
  end-page: 254
  ident: CR21
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
  doi: 10.1007/BF02289588
– volume: VI
  start-page: 89
  year: 2004
  end-page: 92
  ident: CR10
  article-title: Natural language processing of patents and technical documentation
  publication-title: Document Analysis Systems
– ident: CR38
– volume: 85
  start-page: 95
  issue: 1
  year: 2010
  end-page: 109
  ident: CR45
  article-title: Measures for textual patent similarities: a guided way to select appropriate approaches
  publication-title: Scientometrics
– ident: CR13
– volume: 35
  start-page: 513
  issue: 5
  year: 2005
  end-page: 524
  ident: CR31
  article-title: Patent-based inventor profiles as a basis for human resource decisions in research and development
  publication-title: R&D Management
  doi: 10.1111/j.1467-9310.2005.00408.x
– year: 1993
  ident: CR36
  publication-title: Global dimensions of intellectual property rights in science and technology
– volume: 24
  start-page: 105
  year: 1994
  end-page: 136
  ident: CR17
  article-title: From words to numbers: A set theory framework for the collection, organization and analysis of narrative data
  publication-title: Sociological methodology
  doi: 10.2307/270980
– ident: CR32
– volume: 34
  start-page: 193
  issue: 2
  year: 1997
  end-page: 204
  ident: CR8
  article-title: Psychometric methods in marketing research: Part II, multidimensional scaling
  publication-title: Journal of Marketing Research
  doi: 10.2307/3151858
– year: 1999
  ident: CR28
  publication-title: Foundations of statistical natural language processing
– ident: CR34
– year: 2003
  ident: CR37
  publication-title: An introduction to MDS
– volume: 35
  start-page: 124
  issue: 1–2
  year: 2008
  end-page: 135
  ident: CR39
  article-title: On the development of a technology intelligence tool for identifying technology opportunity
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.06.022
– ident: CR5
– volume: 2005
  start-page: 59
  year: 2005
  end-page: 70
  ident: CR14
  article-title: Agglomerative hierarchical clustering with constraints: Theoretical and empirical results
  publication-title: Knowledge Discovery in Databases: PKDD
  doi: 10.1007/11564126_11
– year: 2008
  ident: CR4
  publication-title: Statistics in a nutshell
– year: 2004
  ident: CR15
  publication-title: Patent law essentials: A concise guide
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  end-page: 41
  ident: CR30
  article-title: WordNet: A lexical database for English
  publication-title: Communications of the ACM
  doi: 10.1145/219717.219748
– ident: CR41
– ident: CR26
– volume: 41
  start-page: 27
  issue: 1
  year: 1992
  end-page: 39
  ident: CR29
  article-title: Review of the development of multidimensional scaling methods
  publication-title: The Statistician
  doi: 10.2307/2348634
– volume-title: Patent law essentials: A concise guide
  year: 2004
  ident: 522_CR15
  doi: 10.5040/9798216194569
– volume-title: Global dimensions of intellectual property rights in science and technology
  year: 1993
  ident: 522_CR36
– volume: 15
  start-page: 37
  issue: 1
  year: 2004
  ident: 522_CR42
  publication-title: The Journal of High Technology Management Research
  doi: 10.1016/j.hitech.2003.09.003
– volume: 41
  start-page: 27
  issue: 1
  year: 1992
  ident: 522_CR29
  publication-title: The Statistician
  doi: 10.2307/2348634
– ident: 522_CR5
– ident: 522_CR35
– volume: 32
  start-page: 101
  issue: 1
  year: 2001
  ident: 522_CR19
  publication-title: The RAND Journal of Economics
  doi: 10.2307/2696400
– ident: 522_CR12
  doi: 10.2307/3087433
– ident: 522_CR13
– volume: 86
  start-page: 687
  issue: 3
  year: 2011
  ident: 522_CR43
  publication-title: Scientometrics
  doi: 10.1007/s11192-010-0303-8
– volume: 31
  start-page: 766
  issue: 4
  year: 2006
  ident: 522_CR33
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.01.014
– volume-title: An introduction to MDS
  year: 2003
  ident: 522_CR37
– volume: 66
  start-page: 337
  issue: 3
  year: 2000
  ident: 522_CR7
  publication-title: Economics Letters
  doi: 10.1016/S0165-1765(99)00228-1
– volume: 36
  start-page: 10520
  issue: 7
  year: 2009
  ident: 522_CR24
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.01.027
– ident: 522_CR27
  doi: 10.1016/S1048-4736(04)01506-1
– volume: 30
  start-page: 611
  issue: 4
  year: 2001
  ident: 522_CR1
  publication-title: Research Policy
  doi: 10.1016/S0048-7333(00)00100-1
– volume: 34
  start-page: 193
  issue: 2
  year: 1997
  ident: 522_CR8
  publication-title: Journal of Marketing Research
  doi: 10.2307/3151858
– volume: 29
  start-page: 1
  issue: 1
  year: 1964
  ident: 522_CR23
  publication-title: Psychometrika
  doi: 10.1007/BF02289565
– ident: 522_CR26
– volume: 31
  start-page: 525
  issue: 3
  year: 2006
  ident: 522_CR20
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.060
– ident: 522_CR9
  doi: 10.1007/978-0-387-09697-1_3
– volume: 32
  start-page: 241
  issue: 3
  year: 1967
  ident: 522_CR21
  publication-title: Psychometrika
  doi: 10.1007/BF02289588
– volume: 35
  start-page: 124
  issue: 1–2
  year: 2008
  ident: 522_CR39
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.06.022
– volume-title: Statistics in a nutshell
  year: 2008
  ident: 522_CR4
– volume: VI
  start-page: 89
  year: 2004
  ident: 522_CR10
  publication-title: Document Analysis Systems
– volume: 32
  start-page: 129
  issue: 1
  year: 2001
  ident: 522_CR25
  publication-title: The RAND Journal of Economics
  doi: 10.2307/2696401
– ident: 522_CR32
– volume: 10
  start-page: 19
  issue: 1
  year: 2011
  ident: 522_CR40
  publication-title: Entrue Journal of Information Technology
– volume: 38
  start-page: 550
  issue: 5
  year: 2008
  ident: 522_CR3
  publication-title: R&D Management
  doi: 10.1111/j.1467-9310.2008.00533.x
– ident: 522_CR18
– ident: 522_CR45
  doi: 10.1007/s11192-010-0243-3
– ident: 522_CR2
– ident: 522_CR34
– volume: 34
  start-page: 1804
  issue: 3
  year: 2008
  ident: 522_CR22
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.01.033
– ident: 522_CR38
  doi: 10.3115/981732.981751
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: 522_CR30
  publication-title: Communications of the ACM
  doi: 10.1145/219717.219748
– volume: 24
  start-page: 105
  year: 1994
  ident: 522_CR17
  publication-title: Sociological methodology
  doi: 10.2307/270980
– volume-title: Foundations of statistical natural language processing
  year: 1999
  ident: 522_CR28
– volume: 2005
  start-page: 59
  year: 2005
  ident: 522_CR14
  publication-title: Knowledge Discovery in Databases: PKDD
  doi: 10.1007/11564126_11
– volume: 15
  start-page: 279
  issue: 4
  year: 1998
  ident: 522_CR16
  publication-title: Journal of Engineering and Technology Management
  doi: 10.1016/S0923-4748(98)00018-6
– volume: 36
  start-page: 12362
  issue: 10
  year: 2009
  ident: 522_CR11
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.04.049
– volume: 17
  start-page: 444
  issue: 2
  year: 2008
  ident: 522_CR6
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186008X318440
– volume: 35
  start-page: 513
  issue: 5
  year: 2005
  ident: 522_CR31
  publication-title: R&D Management
  doi: 10.1111/j.1467-9310.2005.00408.x
– ident: 522_CR41
  doi: 10.1007/s11192-011-0383-0
SSID ssj0007308
Score 2.3134203
Snippet Companies should investigate possible patent infringement and cope with potential risks because patent litigation may have a tremendous financial impact. An...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 515
SubjectTerms Bibliometrics. Scientometrics
Bibliometrics. Scientometrics. Evaluation
Computer Science
Data mining
Detection
Exact sciences and technology
Information and communication sciences
Information science. Documentation
Information Storage and Retrieval
Infringements
Library and information science. General aspects
Library Science
Natural language processing
Sciences and techniques of general use
Semantic relations
Title Identifying patent infringement using SAO based semantic technological similarities
URI https://link.springer.com/article/10.1007/s11192-011-0522-7
https://www.proquest.com/docview/1023022675
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuJgYFdSIH6QmHvzIEspWxo5EQaKiByTB09J2rSGRQdz4_33tNghGTTxth3VN3ufvte8D4EIrJtpoGh0tWOB4XEoHbSB3lB95QbONHs8W0g6eW_2R9zBm47yOOymy3YsrSWupV8VulJpMSXOkh6DB8TehzEzojkI8anaW5hdF1ppfajXZXV5l_vSLNWe0PecJ0kVnAy3WEOe3S1Lre3p7sJODRtLJuFyBDRVXYbcYyEBy_axCJX9LyGXeTvpqH4ZZLa6tZyJzhJZxSlCs7E7maJCY1Pd3Muy8EOPSIpKoKZJ7IklaHLsbRpJkMp1gGGw7sB7AqNd9ve07-SgFR7qMpo5Ho8DXGAZLgb6Kt5jgzBMu5QGPtNRUiUC3kDqoka5A0MG1DLSOlIi40Box2yGU4lmsjoC4VHq6Hcmg5WkMPoVgVAvbRs9jnLNGDRoFTUOZ9xk34y4-wlWHZMOGENkQGjaEfg2ul0vmWZONvz6urzFqucKAN5f5QQ3OC86FqCvmAoTHarZIQtOmAjELxkg1uClYGuZKm_y-5fG_vj6BLURVzSy1-xRK6edCnSFySUUdyp27wdPQPO_fHrt1K7lfDIjoLg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB48HhRErQeuZwQfPFhouptu97GIpR7Vh7bgW0iyiRR0Le76_51kj1JRwbd9SDYwk5n5JnMBnBnNZAdVo28ki_1QKOWjDhS-jpIwbnXQ4rlC2sFjuz8O757Zc1nHnVXZ7lVI0mnqWbEbpTZT0j7pIWjwo0VYRizQsXlc41a3Vr94ZZ36pU6SgzqU-dMv5ozR2lRkSBdTDLSYQ5zfgqTO9vQ2Yb0EjaRbcLkBCzrdgo1qIAMp5XMLGuVXRs7LdtIX2zAsanFdPROZIrRMc4LXyp1knwaJTX1_IcPuE7EmLSGZfkNyTxTJq2d3y0iSTd4m6Aa7Dqw7MO7djK77fjlKwVcBo7kf0iSODLrBSqKtEm0mBQtlQEUsEqMM1TI2baQOSmQgEXQIo2JjEi0TIY1BzLYLS-l7qveABFSFppOouB0adD6lZNRI10YvZEKwpgfNiqZclX3G7biLVz7rkGzZwJEN3LKBRx5c1lumRZONvxYfzzGq3mHBW8Ci2IPTinMcZcUGQESq3z8zbttUIGZBH8mDq4qlvBTa7Pcj9_-1-gRW-qPBA3-4fbw_gFVEWK0izfsQlvKPT32EKCaXx-7WfgGXeef5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBBFE3VSc1wg-eKFo1mZdH4c65l3QgW8hSRMZaC22-_-epO3GRAXf-pA2NOf2nZwbwIHRTHZQNXpGssgLhFIe6kDh6TAOolYHLZ4rpL27b_cHwfULeynnnGZVtnsVkixqGmyXpiQ_TWNzOil8o9RmTdrrPQQQXjgLc6iNqWXrQas7VsXIvk4VUyfV_jis-dMnpgzTYioyPCNTDLeYQp_fAqbODvVWYKkEkKRbULwOMzppwHI1nIGUstqAevmUkcOytfTRKjwVdbmutomkwv4xQRZzO9lrQmLT4F_JU_eBWPMWk0y_49EPFcmrK3hLVJIN34foErturGsw6F0-n_e9cqyCp3xGcy-gcRQadImVRLsl2kwKFkifikjERhmqZWTaeDoonb5EACKMioyJtYyFNAbx2zrUko9EbwDxqQpMJ1ZROzDoiErJqJGupV7AhGBnTTirzpSrsue4HX3xxifdki0ZOJKBWzLwsAnH41fSouHGX4t3pwg1fsMCOZ-FURP2K8pxlBsbDBGJ_hhl3LasQPyC_lITTiqS8lKAs9-33PzX6j2Yf7zo8dur-5stWECw1Soyvrehln-O9A4CmlzuOqb9Avor7DU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+patent+infringement+using+SAO+based+semantic+technological+similarities&rft.jtitle=Scientometrics&rft.au=Park%2C+Hyunseok&rft.au=Yoon%2C+Janghyeok&rft.au=Kim%2C+Kwangsoo&rft.date=2012-02-01&rft.issn=0138-9130&rft.eissn=1588-2861&rft.volume=90&rft.issue=2&rft.spage=515&rft.epage=529&rft_id=info:doi/10.1007%2Fs11192-011-0522-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11192_011_0522_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0138-9130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0138-9130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0138-9130&client=summon