Decentralized Event-Triggered Online Adaptive Control of Unknown Large-Scale Systems Over Wireless Communication Networks
In this article, a novel online decentralized event-triggered control scheme is proposed for a class of nonlinear interconnected large-scale systems subject to unknown internal system dynamics and interconnected terms. First, by designing a neural network-based identifier, the unknown internal dynam...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 11; pp. 4907 - 4919 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, a novel online decentralized event-triggered control scheme is proposed for a class of nonlinear interconnected large-scale systems subject to unknown internal system dynamics and interconnected terms. First, by designing a neural network-based identifier, the unknown internal dynamics of the interconnected systems is reconstructed. Then, the adaptive critic design method is used to learn the approximate optimal control policies in the context of event-triggered mechanism. Specifically, the event-based control processes of different subsystems are independent, asynchronous, and decentralized. That is, the decentralized event-triggering conditions and the controllers only rely on the local state information of the corresponding subsystems, which avoids the transmissions of the state information between the subsystems over the wireless communication networks. Then, with the help of Lyapunov's theorem, the states of the developed closed-loop control system and the critic weight estimation errors are proved to be uniformly ultimately bounded. Finally, the effectiveness and applicability of the event-based control method are verified by an illustrative numerical example and a practical example. |
---|---|
AbstractList | In this article, a novel online decentralized event-triggered control scheme is proposed for a class of nonlinear interconnected large-scale systems subject to unknown internal system dynamics and interconnected terms. First, by designing a neural network-based identifier, the unknown internal dynamics of the interconnected systems is reconstructed. Then, the adaptive critic design method is used to learn the approximate optimal control policies in the context of event-triggered mechanism. Specifically, the event-based control processes of different subsystems are independent, asynchronous, and decentralized. That is, the decentralized event-triggering conditions and the controllers only rely on the local state information of the corresponding subsystems, which avoids the transmissions of the state information between the subsystems over the wireless communication networks. Then, with the help of Lyapunov's theorem, the states of the developed closed-loop control system and the critic weight estimation errors are proved to be uniformly ultimately bounded. Finally, the effectiveness and applicability of the event-based control method are verified by an illustrative numerical example and a practical example. In this article, a novel online decentralized event-triggered control scheme is proposed for a class of nonlinear interconnected large-scale systems subject to unknown internal system dynamics and interconnected terms. First, by designing a neural network-based identifier, the unknown internal dynamics of the interconnected systems is reconstructed. Then, the adaptive critic design method is used to learn the approximate optimal control policies in the context of event-triggered mechanism. Specifically, the event-based control processes of different subsystems are independent, asynchronous, and decentralized. That is, the decentralized event-triggering conditions and the controllers only rely on the local state information of the corresponding subsystems, which avoids the transmissions of the state information between the subsystems over the wireless communication networks. Then, with the help of Lyapunov's theorem, the states of the developed closed-loop control system and the critic weight estimation errors are proved to be uniformly ultimately bounded. Finally, the effectiveness and applicability of the event-based control method are verified by an illustrative numerical example and a practical example.In this article, a novel online decentralized event-triggered control scheme is proposed for a class of nonlinear interconnected large-scale systems subject to unknown internal system dynamics and interconnected terms. First, by designing a neural network-based identifier, the unknown internal dynamics of the interconnected systems is reconstructed. Then, the adaptive critic design method is used to learn the approximate optimal control policies in the context of event-triggered mechanism. Specifically, the event-based control processes of different subsystems are independent, asynchronous, and decentralized. That is, the decentralized event-triggering conditions and the controllers only rely on the local state information of the corresponding subsystems, which avoids the transmissions of the state information between the subsystems over the wireless communication networks. Then, with the help of Lyapunov's theorem, the states of the developed closed-loop control system and the critic weight estimation errors are proved to be uniformly ultimately bounded. Finally, the effectiveness and applicability of the event-based control method are verified by an illustrative numerical example and a practical example. |
Author | Liu, Chong Liang, Xiaodong Zhang, Huaguang Su, Hanguang |
Author_xml | – sequence: 1 givenname: Hanguang orcidid: 0000-0003-1356-4158 surname: Su fullname: Su, Hanguang email: suhanguang@sina.com organization: School of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Huaguang orcidid: 0000-0002-2375-9824 surname: Zhang fullname: Zhang, Huaguang email: hgzhang@ieee.org organization: School of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 3 givenname: Xiaodong orcidid: 0000-0002-8089-5419 surname: Liang fullname: Liang, Xiaodong email: xliang@mun.ca organization: Department of Electrical and Computer Engineering, Memorial University of Newfoundland, St. John's, Canada – sequence: 4 givenname: Chong orcidid: 0000-0001-9842-6955 surname: Liu fullname: Liu, Chong email: liuchong_hebei@126.com organization: School of Information Science and Engineering, Northeastern University, Shenyang, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31940563$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu2zAQRYkiRfNofqAFCgLddCOXD0kUl4GTPgDDXthBuyMoamQwkUiXlBy4Xx86dr3IotxwBjiXHMy5RGfOO0DoAyUTSon8uprPZ8sJI1ROmCwkIcUbdMFoyTLGq-rsVIvf5-g6xgeSTkmKMpfv0DmnMk81v0C7WzDghqA7-xcafLdNTbYKdr2GkPqF66wDfNPozWC3gKc-sb7DvsX37tH5J4dnOqwhWxrdAV7u4gB9xIstBPzLBuggxhTq-9FZowfrHZ7D8OTDY3yP3ra6i3B9vK_Q_be71fRHNlt8_zm9mWWGF3TIckJZzptK562pWA2tbNqCgmBVTaUWjElSNqIta1oaIIbmTd22lOe6EozWjPIr9OXw7ib4PyPEQfU2Gug67cCPUTHOpZCk4Hv08yv0wY_BpekUy4tKFGkWkahPR2qse2jUJtheh536t9QEsANggo8xQHtCKFF7eepFntrLU0d5KVS9Chk7vGwsybHd_6MfD1ELAKe_KlkIJiV_BjPmp6U |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2987976 crossref_primary_10_1109_TSMC_2023_3257415 crossref_primary_10_1109_TAI_2023_3313105 crossref_primary_10_1002_oca_3174 crossref_primary_10_1002_rnc_7910 crossref_primary_10_1007_s11071_025_11000_x crossref_primary_10_3390_pr10122578 crossref_primary_10_1109_TCYB_2020_3005800 crossref_primary_10_1109_TNNLS_2021_3071548 crossref_primary_10_1109_TNNLS_2020_3030127 crossref_primary_10_1109_TNNLS_2022_3171518 crossref_primary_10_1109_TCSII_2024_3493244 crossref_primary_10_1109_TCSII_2024_3452964 crossref_primary_10_1109_TNNLS_2022_3178017 crossref_primary_10_1109_TSMC_2023_3247888 crossref_primary_10_1002_oca_2834 crossref_primary_10_1109_TPWRD_2024_3510460 crossref_primary_10_1049_rpg2_13187 crossref_primary_10_1007_s11071_022_07820_w crossref_primary_10_1109_TSMC_2023_3277737 crossref_primary_10_1109_TFUZZ_2020_3031694 crossref_primary_10_1016_j_ins_2024_120603 crossref_primary_10_1109_TII_2021_3076471 crossref_primary_10_1016_j_ifacol_2021_10_383 crossref_primary_10_1007_s00521_024_10644_x crossref_primary_10_1002_rnc_6318 crossref_primary_10_1002_rnc_6414 crossref_primary_10_1007_s00521_021_06673_5 crossref_primary_10_1109_JSYST_2021_3118333 crossref_primary_10_1109_TSMC_2023_3308918 crossref_primary_10_1109_TNNLS_2023_3245102 crossref_primary_10_1002_oca_2801 crossref_primary_10_1080_00051144_2023_2203552 crossref_primary_10_1002_oca_2905 crossref_primary_10_1109_TASE_2024_3467382 crossref_primary_10_1002_asjc_3107 crossref_primary_10_1002_rnc_6300 crossref_primary_10_1109_TCYB_2024_3418904 crossref_primary_10_1109_TCYB_2022_3188812 crossref_primary_10_1109_TNNLS_2022_3153360 |
Cites_doi | 10.1109/TPWRS.2017.2720262 10.1109/JAS.2014.7004686 10.1080/00207179.2016.1145741 10.1016/j.automatica.2010.02.018 10.1016/j.neucom.2016.10.058 10.1016/j.neucom.2018.09.011 10.1109/TNNLS.2016.2638863 10.1109/TCYB.2017.2681683 10.1109/TNNLS.2015.2453320 10.1109/TCYB.2015.2456028 10.1109/TSMC.2016.2592682 10.1109/TIE.2017.2674633 10.1002/oca.2391 10.1109/TNNLS.2016.2642128 10.1080/00207721.2017.1296982 10.1016/j.automatica.2016.10.019 10.1016/j.automatica.2017.03.010 10.1109/TNNLS.2015.2464080 10.1109/TFUZZ.2016.2634090 10.1109/WCICA.2014.7052733 10.1016/j.nahs.2016.07.002 10.1109/PESGM.2014.6939104 10.1109/TSMC.2017.2690665 10.1109/TNNLS.2017.2728622 10.1109/TSMC.2016.2531680 10.1007/s40815-016-0140-x 10.1016/j.automatica.2017.01.022 10.1109/TNNLS.2013.2280013 10.1109/TC.2015.2479608 10.1109/ACCESS.2017.2711488 10.1109/TSMC.2018.2837899 10.1109/JPROC.2015.2497161 10.1016/j.isatra.2018.01.007 10.1016/j.automatica.2010.10.033 10.1109/TAC.2011.2164036 10.1109/TAC.2016.2539326 10.1109/TCYB.2017.2692384 10.1016/j.fss.2017.07.001 10.1109/TCYB.2016.2523878 10.3390/s16081297 10.1016/j.automatica.2015.09.028 10.1109/TAC.2007.904277 10.1061/(ASCE)EY.1943-7897.0000519 10.1109/TIE.2014.2345343 10.1109/TNNLS.2015.2416259 10.1109/TCYB.2019.2920093 10.1109/TSMC.2017.2681702 10.1007/s13042-016-0518-y 10.1080/00207179.2013.787647 10.1002/rnc.3969 10.1016/j.isatra.2018.04.011 10.1016/j.automatica.2018.04.042 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2019.2959005 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 4919 |
ExternalDocumentID | 31940563 10_1109_TNNLS_2019_2959005 8957299 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Liaoning Revitalization Talents Program grantid: XLYC1801005 funderid: 10.13039/501100018617 – fundername: National Natural Science Foundation of China grantid: 61627809; 61433004; 61621004 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-401243d8a4fc82bef9df51e728b19a722906d7f6b16ce0c14dbff134a8721b213 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 22:47:41 EDT 2025 Mon Jun 30 06:52:46 EDT 2025 Thu Jan 02 23:00:30 EST 2025 Tue Jul 01 00:27:32 EDT 2025 Thu Apr 24 23:02:14 EDT 2025 Wed Aug 27 02:30:21 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-401243d8a4fc82bef9df51e728b19a722906d7f6b16ce0c14dbff134a8721b213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2375-9824 0000-0001-9842-6955 0000-0003-1356-4158 0000-0002-8089-5419 |
PMID | 31940563 |
PQID | 2458750127 |
PQPubID | 85436 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2458750127 crossref_primary_10_1109_TNNLS_2019_2959005 proquest_miscellaneous_2339790531 ieee_primary_8957299 crossref_citationtrail_10_1109_TNNLS_2019_2959005 pubmed_primary_31940563 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 zhang (ref26) 2018; 29 ref51 ref50 vamvoudakis (ref49) 2014; 1 ref46 ref45 ref48 ref47 ref42 ref41 ref43 su (ref52) 0 ref8 ref7 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 tan (ref4) 0 ref2 ref1 ref39 ref38 werbos (ref44) 1992 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref30 doi: 10.1109/TPWRS.2017.2720262 – volume: 1 start-page: 282 year: 2014 ident: ref49 article-title: Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2014.7004686 – ident: ref15 doi: 10.1080/00207179.2016.1145741 – ident: ref39 doi: 10.1016/j.automatica.2010.02.018 – ident: ref35 doi: 10.1016/j.neucom.2016.10.058 – ident: ref40 doi: 10.1016/j.neucom.2018.09.011 – ident: ref43 doi: 10.1109/TNNLS.2016.2638863 – ident: ref24 doi: 10.1109/TCYB.2017.2681683 – ident: ref53 doi: 10.1109/TNNLS.2015.2453320 – year: 0 ident: ref4 article-title: Distributed $H_\infty$ optimal tracking control for strict-feedback nonlinear large-scale systems with disturbances and saturating actuators publication-title: IEEE Trans Syst Man Cybern Syst – ident: ref22 doi: 10.1109/TCYB.2015.2456028 – ident: ref51 doi: 10.1109/TSMC.2016.2592682 – ident: ref42 doi: 10.1109/TIE.2017.2674633 – ident: ref38 doi: 10.1002/oca.2391 – ident: ref47 doi: 10.1109/TNNLS.2016.2642128 – ident: ref25 doi: 10.1080/00207721.2017.1296982 – ident: ref21 doi: 10.1016/j.automatica.2016.10.019 – ident: ref28 doi: 10.1016/j.automatica.2017.03.010 – year: 1992 ident: ref44 article-title: Approximate dynamic programming for realtime control and neural modelling publication-title: Handbook of Intelligent Control Neural Fuzzy and Adaptive Approaches – ident: ref55 doi: 10.1109/TNNLS.2015.2464080 – ident: ref7 doi: 10.1109/TFUZZ.2016.2634090 – ident: ref32 doi: 10.1109/WCICA.2014.7052733 – ident: ref23 doi: 10.1016/j.nahs.2016.07.002 – ident: ref31 doi: 10.1109/PESGM.2014.6939104 – ident: ref36 doi: 10.1109/TSMC.2017.2690665 – year: 0 ident: ref52 article-title: Decentralized event-triggered adaptive control of discrete-time non-zero-sum games over wireless sensor-actuator networks with input constraints publication-title: IEEE Trans Neural Netw Learn Syst – volume: 29 start-page: 3339 year: 2018 ident: ref26 article-title: Distributed optimal consensus control for nonlinear multiagent system with unknown dynamic publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2728622 – ident: ref50 doi: 10.1109/TSMC.2016.2531680 – ident: ref8 doi: 10.1007/s40815-016-0140-x – ident: ref1 doi: 10.1016/j.automatica.2017.01.022 – ident: ref37 doi: 10.1109/TNNLS.2013.2280013 – ident: ref11 doi: 10.1109/TC.2015.2479608 – ident: ref18 doi: 10.1109/ACCESS.2017.2711488 – ident: ref33 doi: 10.1109/TSMC.2018.2837899 – ident: ref14 doi: 10.1109/JPROC.2015.2497161 – ident: ref9 doi: 10.1016/j.isatra.2018.01.007 – ident: ref41 doi: 10.1016/j.automatica.2010.10.033 – ident: ref10 doi: 10.1109/TAC.2011.2164036 – ident: ref6 doi: 10.1109/TAC.2016.2539326 – ident: ref45 doi: 10.1109/TCYB.2017.2692384 – ident: ref27 doi: 10.1016/j.fss.2017.07.001 – ident: ref48 doi: 10.1109/TCYB.2016.2523878 – ident: ref13 doi: 10.3390/s16081297 – ident: ref16 doi: 10.1016/j.automatica.2015.09.028 – ident: ref20 doi: 10.1109/TAC.2007.904277 – ident: ref2 doi: 10.1061/(ASCE)EY.1943-7897.0000519 – ident: ref34 doi: 10.1109/TIE.2014.2345343 – ident: ref54 doi: 10.1109/TNNLS.2015.2416259 – ident: ref3 doi: 10.1109/TCYB.2019.2920093 – ident: ref17 doi: 10.1109/TSMC.2017.2681702 – ident: ref12 doi: 10.1007/s13042-016-0518-y – ident: ref5 doi: 10.1080/00207179.2013.787647 – ident: ref19 doi: 10.1002/rnc.3969 – ident: ref46 doi: 10.1016/j.isatra.2018.04.011 – ident: ref29 doi: 10.1016/j.automatica.2018.04.042 |
SSID | ssj0000605649 |
Score | 2.508381 |
Snippet | In this article, a novel online decentralized event-triggered control scheme is proposed for a class of nonlinear interconnected large-scale systems subject to... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4907 |
SubjectTerms | Adaptive control Adaptive critic design Communication networks Communications networks Control methods Control systems Decentralized control decentralized event-triggered control (DETC) Heuristic algorithms Interconnected systems large-scale system (LSS) Large-scale systems Neural networks Nonlinear dynamical systems Optimal control reinforcement learning Subsystems System dynamics Wireless communication Wireless communications Wireless networks wireless sensor-actuator network (WSAN) |
Title | Decentralized Event-Triggered Online Adaptive Control of Unknown Large-Scale Systems Over Wireless Communication Networks |
URI | https://ieeexplore.ieee.org/document/8957299 https://www.ncbi.nlm.nih.gov/pubmed/31940563 https://www.proquest.com/docview/2458750127 https://www.proquest.com/docview/2339790531 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGhQPkIFGQkbuBt4jhOfKxKqwqV5dBdaW-RHdsIUWUruntof31nHCdSESBukew4iWbGeeN5MwPwAZ01pbSTXDpvuRR14MbmFTfGitrmQeMgsS3m6nwpv6yq1Q58mnJhvPeRfOZndBlj-W7dbemo7KjRFWJBvQu76LgNuVrTeUqOuFxFtCsKJbgo69WYI5Pro8V8fnFJRC49E5oaZVYP_kOxscrfMWb815ztw9fxLQeKyc_ZdmNn3d1vBRz_9zOewOMEOtnxoCVPYcf3z2B_bOjAkn0fwO1nn8iaP-68Y6fEheQL9N-_U0dPNpQlZcfOXNMmyU4GmjtbB7bs6XCuZxdELOeXKHjPUjF09g2thRHL9gp3VfYgI4XNBxb6zXNYnp0uTs556s3Au7IqNuh2IjAoXWNk6BphfdAuVIWvRWMLbepYRd7VQdlCdT7vCulsCEUpTYMupxVF-QL2-nXvXwFTpTFV6OqGavkhILE1LtA46qMlbZPLDIpRUm2XCpdT_4yrNjowuW6jdFuSbpukm8HH6Z7roWzHP2cfkJSmmUlAGRyOCtEmy75phazQxaOAfQbvp2G0SQq0mN6vtzinpGgpbW8ZvBwUaVobtzzEyKp8_ednvoFHgjz6mO14CHubX1v_FmHPxr6L-n4Pzqn-mQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQol0IKRuEG2iWMn8bHqQwtsw6G70t4iO7ariipb0d0D_fXMOA-pCBC3SHZemhn7G883MwAf0FnLc2VFLKwzseCFj7VJZKy14YVJvMJBYltU-XQhvizlcgs-jbkwzrlAPnMTugyxfLtqNnRUdlgqiVhQPYCHuO9L3mVrjScqCSLzPOBdnuY85lmxHLJkEnU4r6rZBVG51IQrapUp7-1EobXK31Fm2G3OduB8-M6OZPJ9slmbSXP3WwnH__2Rp_Ckh53sqNOTZ7Dl2uewM7R0YL2F78LPE9fTNa_unGWnxIaM5-jBX1JPT9YVJmVHVt_QMsmOO6I7W3m2aOl4rmUzopbHFyh6x_py6Owb2gsjnu01rqvsXk4Kqzoe-u0LWJydzo-ncd-dIW4yma7R8URokNlSC9-U3DivrJepK3hpUqWLUEfeFj43ad64pEmFNd6nmdAlOp2Gp9lL2G5XrXsFLM-0lr4pSqrmh5DEFPiA0lInLWHKRESQDpKqm750OXXQuK6DC5OoOki3JunWvXQj-Djec9MV7vjn7F2S0jizF1AE-4NC1L1t39ZcSHTyKGQfwftxGK2SQi26dasNzskoXkoLXAR7nSKNz8ZFD1Fynr3-8zvfwaPp_HxWzz5XX9_AY07-fch93Ift9Y-NO0AQtDZvg-7_AjuqAfI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+Event-Triggered+Online+Adaptive+Control+of+Unknown+Large-Scale+Systems+Over+Wireless+Communication+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Su%2C+Hanguang&rft.au=Zhang%2C+Huaguang&rft.au=Liang%2C+Xiaodong&rft.au=Liu%2C+Chong&rft.date=2020-11-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=31&rft.issue=11&rft.spage=4907&rft_id=info:doi/10.1109%2FTNNLS.2019.2959005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |