Sleep Quality Estimation by Cardiopulmonary Coupling Analysis
The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative measurements. Despite the production of highly accurate results, polysomnography is a complex, uncomfortable, and expensive process, inaccessib...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 12; pp. 2233 - 2239 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative measurements. Despite the production of highly accurate results, polysomnography is a complex, uncomfortable, and expensive process, inaccessible to a large group of the population. Home monitoring devices were developed to address these issues, fitting the growing perspective of health care and focusing on prevention and wellness. The objective of this paper was to develop an algorithm capable of estimating the quality of sleep, by analyzing the cyclic alternating pattern rate. The algorithm uses a single-lead electrocardiogram to produce a spectrographic measure of the cardiopulmonary coupling that in turn was fed to a classifier to estimate the non-rapid eye movement sleep and the presence of the cyclic alternating pattern. Two classifiers were tested, a feedforward neural network and a deeply stacked autoencoder, with the second achieving better results, correctly classifying 77% of the subjects sleep quality (either good or bad). The developed method can be implemented in a home monitoring device to estimate the sleep quality in a non-invasive way and improve the detection of pathologies. |
---|---|
AbstractList | The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative measurements. Despite the production of highly accurate results, polysomnography is a complex, uncomfortable, and expensive process, inaccessible to a large group of the population. Home monitoring devices were developed to address these issues, fitting the growing perspective of health care and focusing on prevention and wellness. The objective of this paper was to develop an algorithm capable of estimating the quality of sleep, by analyzing the cyclic alternating pattern rate. The algorithm uses a single-lead electrocardiogram to produce a spectrographic measure of the cardiopulmonary coupling that in turn was fed to a classifier to estimate the non-rapid eye movement sleep and the presence of the cyclic alternating pattern. Two classifiers were tested, a feedforward neural network and a deeply stacked autoencoder, with the second achieving better results, correctly classifying 77% of the subjects sleep quality (either good or bad). The developed method can be implemented in a home monitoring device to estimate the sleep quality in a non-invasive way and improve the detection of pathologies. The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative measurements. Despite the production of highly accurate results, polysomnography is a complex, uncomfortable, and expensive process, inaccessible to a large group of the population. Home monitoring devices were developed to address these issues, fitting the growing perspective of health care and focusing on prevention and wellness. The objective of this paper was to develop an algorithm capable of estimating the quality of sleep, by analyzing the cyclic alternating pattern rate. The algorithm uses a single-lead electrocardiogram to produce a spectrographic measure of the cardiopulmonary coupling that in turn was fed to a classifier to estimate the non-rapid eye movement sleep and the presence of the cyclic alternating pattern. Two classifiers were tested, a feedforward neural network and a deeply stacked autoencoder, with the second achieving better results, correctly classifying 77% of the subjects sleep quality (either good or bad). The developed method can be implemented in a home monitoring device to estimate the sleep quality in a non-invasive way and improve the detection of pathologies.The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative measurements. Despite the production of highly accurate results, polysomnography is a complex, uncomfortable, and expensive process, inaccessible to a large group of the population. Home monitoring devices were developed to address these issues, fitting the growing perspective of health care and focusing on prevention and wellness. The objective of this paper was to develop an algorithm capable of estimating the quality of sleep, by analyzing the cyclic alternating pattern rate. The algorithm uses a single-lead electrocardiogram to produce a spectrographic measure of the cardiopulmonary coupling that in turn was fed to a classifier to estimate the non-rapid eye movement sleep and the presence of the cyclic alternating pattern. Two classifiers were tested, a feedforward neural network and a deeply stacked autoencoder, with the second achieving better results, correctly classifying 77% of the subjects sleep quality (either good or bad). The developed method can be implemented in a home monitoring device to estimate the sleep quality in a non-invasive way and improve the detection of pathologies. |
Author | Mendonca, Fabio Mostafa, Sheikh Shanawaz Ravelo-Garcia, Antonio G. Morgado-Dias, Fernando |
Author_xml | – sequence: 1 givenname: Fabio orcidid: 0000-0002-5107-3248 surname: Mendonca fullname: Mendonca, Fabio email: fabio.mendonca@tecnico.ulisboa.pt organization: Madeira Interactive Technologies Institute, Funchal, Portugal – sequence: 2 givenname: Sheikh Shanawaz orcidid: 0000-0002-7677-0971 surname: Mostafa fullname: Mostafa, Sheikh Shanawaz email: sheikh.mostafa@tecnico.ulisboa.pt organization: Madeira Interactive Technologies Institute, Funchal, Portugal – sequence: 3 givenname: Fernando orcidid: 0000-0001-7334-3993 surname: Morgado-Dias fullname: Morgado-Dias, Fernando email: morgado@uma.pt organization: Madeira Interactive Technologies Institute, Funchal, Portugal – sequence: 4 givenname: Antonio G. orcidid: 0000-0002-8512-965X surname: Ravelo-Garcia fullname: Ravelo-Garcia, Antonio G. email: antonio.ravelo@ulpgc.es organization: Institute for Technological Development and Innovation in Communications, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30442612$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAUhYMovv-AghTcuOmYm0ebLlwMw_gAUXytQ5qmEsk0NWkX8-_NOKMLF0LgJvCde3PPOUDbne8MQieAJwC4unx9eHmeTwgGMSFCAC1gC-0D5yLHBPD26k5ZzijBe-ggxg-MoSx4uYv2KGaMFED20dWLM6bPnkbl7LDM5nGwCzVY32X1Mpup0Fjfj27hOxXS24-9s917Nu2UW0Ybj9BOq1w0x5t6iN6u56-z2_z-8eZuNr3PNeUw5NRUhOCmVFpwBloz4EULhLS4bHBVa24Ea5QQ6ZiqxVXBC9zWjNeagDJM00N0se7bB_85mjjIhY3aOKc648coCaQ5lFBaJvT8D_rhx5D-u6I4sCKZAok621BjvTCN7ENaOyzljzEJEGtABx9jMK3Udvg2ZgjKOglYrjKQ3xnIVQZyk0GSkj_Sn-7_ik7XImuM-RWIFCAtCf0CZ_2QZA |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_measurement_2023_113441 crossref_primary_10_1088_1741_2552_abd047 crossref_primary_10_3390_e21121203 crossref_primary_10_1016_j_cmpb_2020_105314 crossref_primary_10_1016_j_jmsy_2023_05_025 crossref_primary_10_1109_ACCESS_2019_2900345 crossref_primary_10_1145_3659595 crossref_primary_10_3390_biomedinformatics1030008 crossref_primary_10_1016_j_eswa_2022_119288 crossref_primary_10_1007_s13534_023_00303_w crossref_primary_10_1016_j_artmed_2021_102019 crossref_primary_10_1016_j_bspc_2020_102063 crossref_primary_10_1016_j_ymeth_2022_03_013 crossref_primary_10_1088_1361_6579_ab4f08 crossref_primary_10_1109_JSEN_2021_3059304 crossref_primary_10_1212_WNL_0000000000209302 crossref_primary_10_1109_ACCESS_2020_3019734 crossref_primary_10_1038_s41467_025_57781_y |
Cites_doi | 10.1093/sleep/28.9.1151 10.1016/j.procs.2017.10.026 10.1016/S1389-9457(08)70011-X 10.1186/s41606-017-0012-9 10.1007/BF01819547 10.1007/s11325-017-1566-6 10.1016/S1389-9457(01)00149-6 10.1371/journal.pmed.1001953 10.1007/s11325-012-0747-6 10.1093/sleep/33.5.643 10.1016/j.eswa.2011.08.022 10.1016/S0893-6080(05)80056-5 10.1093/sleep/zsx196 10.1016/j.smrv.2011.02.003 10.1504/IJBET.2010.032695 10.5664/jcsm.5498 10.1109/TBME.1985.325532 10.1007/s10916-017-0824-2 10.1088/0967-3334/36/10/2027 10.1016/j.clinph.2007.07.001 10.1109/IEMBS.2009.5333113 10.1016/S0031-9384(97)00234-5 10.1007/s11325-013-0804-9 10.1016/j.bspc.2013.06.001 10.1016/j.compbiomed.2018.10.010 10.1109/ICASSP.2007.366847 10.1002/brb3.970 10.3390/e18090272 10.1590/S0004-282X2006000400008 10.1007/s11517-015-1249-z 10.5665/sleep.5152 10.1016/j.jelectrocard.2014.07.020 10.1016/j.cmpb.2013.06.007 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2018.2881361 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 2239 |
ExternalDocumentID | 30442612 10_1109_TNSRE_2018_2881361 8534372 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Portuguese Foundation for Science and Technology through Projeto Estratégico grantid: LA 9—UID/EEA/50009/2013 – fundername: Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação grantid: M1420-09-5369-FSE-000001 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c351t-3e9220d7ac8541cc4156f122f07d09bc5e84da88a88e9f096560fb45bc21ae4c3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Jul 10 18:30:29 EDT 2025 Fri Jul 25 03:13:43 EDT 2025 Thu Apr 03 07:07:38 EDT 2025 Tue Jul 01 00:43:18 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Wed Aug 27 02:51:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-3e9220d7ac8541cc4156f122f07d09bc5e84da88a88e9f096560fb45bc21ae4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7334-3993 0000-0002-5107-3248 0000-0002-8512-965X 0000-0002-7677-0971 |
PMID | 30442612 |
PQID | 2151461531 |
PQPubID | 85423 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2018_2881361 proquest_miscellaneous_2135132337 pubmed_primary_30442612 crossref_primary_10_1109_TNSRE_2018_2881361 ieee_primary_8534372 proquest_journals_2151461531 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref32 ref10 ref2 ref39 ref17 ref38 ref16 ref19 ref18 nason (ref28) 2001; 63 goodfellow (ref20) 2016 bronzino (ref13) 2006 ref24 ref23 ref26 ref25 parrino (ref4) 2016; 33 ref41 ref22 ref27 berry (ref1) 2017 ref8 ref7 ref9 ref3 ref6 mendonça (ref11) 0 ref5 werteni (ref29) 2014; 11 ref40 kohavi (ref21) 1995 |
References_xml | – ident: ref17 doi: 10.1093/sleep/28.9.1151 – ident: ref31 doi: 10.1016/j.procs.2017.10.026 – ident: ref7 doi: 10.1016/S1389-9457(08)70011-X – ident: ref36 doi: 10.1186/s41606-017-0012-9 – ident: ref41 doi: 10.1007/BF01819547 – ident: ref37 doi: 10.1007/s11325-017-1566-6 – ident: ref2 doi: 10.1016/S1389-9457(01)00149-6 – ident: ref38 doi: 10.1371/journal.pmed.1001953 – volume: 11 start-page: 84 year: 2014 ident: ref29 article-title: An automatic sleep-wake classifier using ECG signals publication-title: Int J Comput Sci Issues – ident: ref8 doi: 10.1007/s11325-012-0747-6 – ident: ref12 doi: 10.1093/sleep/33.5.643 – ident: ref30 doi: 10.1016/j.eswa.2011.08.022 – ident: ref19 doi: 10.1016/S0893-6080(05)80056-5 – ident: ref35 doi: 10.1093/sleep/zsx196 – year: 2017 ident: ref1 article-title: The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications – ident: ref10 doi: 10.1016/j.smrv.2011.02.003 – ident: ref26 doi: 10.1504/IJBET.2010.032695 – ident: ref6 doi: 10.5664/jcsm.5498 – year: 0 ident: ref11 article-title: Automatic detection of cyclic alternating pattern publication-title: Neural Comput Appl – ident: ref14 doi: 10.1109/TBME.1985.325532 – ident: ref40 doi: 10.1007/s10916-017-0824-2 – year: 2016 ident: ref20 publication-title: Deep Learning – ident: ref33 doi: 10.1088/0967-3334/36/10/2027 – ident: ref3 doi: 10.1016/j.clinph.2007.07.001 – ident: ref16 doi: 10.1109/IEMBS.2009.5333113 – ident: ref23 doi: 10.1016/S0031-9384(97)00234-5 – ident: ref34 doi: 10.1007/s11325-013-0804-9 – ident: ref24 doi: 10.1016/j.bspc.2013.06.001 – ident: ref32 doi: 10.1016/j.compbiomed.2018.10.010 – ident: ref18 doi: 10.1109/ICASSP.2007.366847 – ident: ref9 doi: 10.1002/brb3.970 – start-page: 1137 year: 1995 ident: ref21 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Proc 14th Int Joint Conf Artif Intell – ident: ref22 doi: 10.3390/e18090272 – ident: ref39 doi: 10.1590/S0004-282X2006000400008 – ident: ref27 doi: 10.1007/s11517-015-1249-z – volume: 63 start-page: 199 year: 2001 ident: ref28 article-title: Wavelet packet modelling of infant sleep state using heart rate data publication-title: Sankhya B – ident: ref5 doi: 10.5665/sleep.5152 – ident: ref15 doi: 10.1016/j.jelectrocard.2014.07.020 – volume: 33 start-page: 150 year: 2016 ident: ref4 article-title: The cyclic alternating pattern and the brain-body-coupling during sleep publication-title: Epileptologie – ident: ref25 doi: 10.1016/j.cmpb.2013.06.007 – year: 2006 ident: ref13 publication-title: The Biomedical Engineering Handbook |
SSID | ssj0017657 |
Score | 2.3670092 |
Snippet | The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2233 |
SubjectTerms | Algorithms Artificial neural networks CAP rate Cardiopulmonary coupling Classification algorithms Classifiers Coupling Couplings EKG Electrocardiography Electroencephalography Eye movements Health care Monitoring Neural networks NREM sleep Quality Quality assessment REM sleep Sleep Sleep deprivation sleep quality Time measurement Wellness |
Title | Sleep Quality Estimation by Cardiopulmonary Coupling Analysis |
URI | https://ieeexplore.ieee.org/document/8534372 https://www.ncbi.nlm.nih.gov/pubmed/30442612 https://www.proquest.com/docview/2151461531 https://www.proquest.com/docview/2135132337 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLeAE5cNxj7eYCiT2C5bH0matulxQg-hSXBgD4lb1STODkPvPbHXA_z1xElbwbShST20atomsVPbsf0zwJGxTlTc-sx4jVlgCp5pdGXmapTK18argvKdzy_Ksyv1_bq43oCvYy4MIsbgM5zSafTlu6XtaKvsOIgWcjNtwmYw3FKu1ugxqMqI6hkWsMpULvmQIMPr4_nFj8sZRXHpqdRa5CWVhwlmPFkP8ok8igVW_q1rRplz-hLOh96mUJNf025tpvb-DyDH_x3ODrzolU_2LXHLLmzg4hV8egw0zOYJZYB9ZpdPMLz3gLZRccUS6MYdm4V_Q0p7ZOaOncSw1lV3E7i6vQ3Xy45SfX-yAfTkNVydzuYnZ1lffCGzeSHWWY61lNxVrdWFEtaSoeeFlJ5XjtfGFqiVa7UOB9aeMGRK7o0qjJWiRWXzN7C1WC7wHbBg66IQQQhGKBzrgsrITWErRG7QeT0BMZCgsf2oqEDGTRMtFF43kYINUbDpKTiBL-Mzq4TL8WzrPZr-sWU_8xM4GCjd9Ev3d0M6kCI1ODz1cbwdFh15UtoFLjtqE-Yol3leTeBt4pDx3QNjvf_7N_dhm3qWImIOYGt92-GHoNeszWFk6AeWC_GO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoBLCxToQgEjARfI1nacxDmiaqsFunsoW6m3KLbHHFrtrtrNofz6epyHKAKElEOiOIntGWdmPDPfALwz1omCW58YrzEJTMETjS5PXIlS-dJ4lVG-82yeT8_U1_PsfAs-DbkwiBiDz3BMp9GX71a2oa2ywyBayM10D-4HuZ_JNltr8BkUecT1DEtYJSqVvE-R4eXhYv79dEJxXHostRZpTgVigiFP9oO8I5FiiZW_a5tR6hzvwqzvbxtscjFuNmZsf_4G5fi_A3oEO536yT63_PIYtnD5BN7_CjXMFi3OAPvATu-geO8BbaTimrWwGzdsEv4ObeIjMzfsKAa2rpvLwNf1VbheNZTs-4P1sCdP4ex4sjiaJl35hcSmmdgkKZZSclfUVmdKWEumnhdSel44XhqboVau1jocWHpCkcm5NyozVooalU2fwfZytcR9YMHaRSGCGIxgONYFpZGbzBaI3KDzegSiJ0Flu1FRiYzLKtoovKwiBSuiYNVRcAQfh2fWLTLHP1vv0fQPLbuZH8FBT-mqW7zXFWlBihTh8NTb4XZYduRLqZe4aqhNmKNUpmkxgucthwzv7hnrxZ-_-QYeTBezk-rky_zbS3hIvWzjYw5ge3PV4Kug5WzM68jct1rP9Ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+Quality+Estimation+by+Cardiopulmonary+Coupling+Analysis&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Mendonca%2C+Fabio&rft.au=Mostafa%2C+Sheikh+Shanawaz&rft.au=Morgado-Dias%2C+Fernando&rft.au=Ravelo-Garcia%2C+Antonio+G&rft.date=2018-12-01&rft.eissn=1558-0210&rft.volume=26&rft.issue=12&rft.spage=2233&rft_id=info:doi/10.1109%2FTNSRE.2018.2881361&rft_id=info%3Apmid%2F30442612&rft.externalDocID=30442612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |