Sleep Quality Estimation by Cardiopulmonary Coupling Analysis

The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative measurements. Despite the production of highly accurate results, polysomnography is a complex, uncomfortable, and expensive process, inaccessib...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 12; pp. 2233 - 2239
Main Authors Mendonca, Fabio, Mostafa, Sheikh Shanawaz, Morgado-Dias, Fernando, Ravelo-Garcia, Antonio G.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative measurements. Despite the production of highly accurate results, polysomnography is a complex, uncomfortable, and expensive process, inaccessible to a large group of the population. Home monitoring devices were developed to address these issues, fitting the growing perspective of health care and focusing on prevention and wellness. The objective of this paper was to develop an algorithm capable of estimating the quality of sleep, by analyzing the cyclic alternating pattern rate. The algorithm uses a single-lead electrocardiogram to produce a spectrographic measure of the cardiopulmonary coupling that in turn was fed to a classifier to estimate the non-rapid eye movement sleep and the presence of the cyclic alternating pattern. Two classifiers were tested, a feedforward neural network and a deeply stacked autoencoder, with the second achieving better results, correctly classifying 77% of the subjects sleep quality (either good or bad). The developed method can be implemented in a home monitoring device to estimate the sleep quality in a non-invasive way and improve the detection of pathologies.
AbstractList The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative measurements. Despite the production of highly accurate results, polysomnography is a complex, uncomfortable, and expensive process, inaccessible to a large group of the population. Home monitoring devices were developed to address these issues, fitting the growing perspective of health care and focusing on prevention and wellness. The objective of this paper was to develop an algorithm capable of estimating the quality of sleep, by analyzing the cyclic alternating pattern rate. The algorithm uses a single-lead electrocardiogram to produce a spectrographic measure of the cardiopulmonary coupling that in turn was fed to a classifier to estimate the non-rapid eye movement sleep and the presence of the cyclic alternating pattern. Two classifiers were tested, a feedforward neural network and a deeply stacked autoencoder, with the second achieving better results, correctly classifying 77% of the subjects sleep quality (either good or bad). The developed method can be implemented in a home monitoring device to estimate the sleep quality in a non-invasive way and improve the detection of pathologies.
The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative measurements. Despite the production of highly accurate results, polysomnography is a complex, uncomfortable, and expensive process, inaccessible to a large group of the population. Home monitoring devices were developed to address these issues, fitting the growing perspective of health care and focusing on prevention and wellness. The objective of this paper was to develop an algorithm capable of estimating the quality of sleep, by analyzing the cyclic alternating pattern rate. The algorithm uses a single-lead electrocardiogram to produce a spectrographic measure of the cardiopulmonary coupling that in turn was fed to a classifier to estimate the non-rapid eye movement sleep and the presence of the cyclic alternating pattern. Two classifiers were tested, a feedforward neural network and a deeply stacked autoencoder, with the second achieving better results, correctly classifying 77% of the subjects sleep quality (either good or bad). The developed method can be implemented in a home monitoring device to estimate the sleep quality in a non-invasive way and improve the detection of pathologies.The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative measurements. Despite the production of highly accurate results, polysomnography is a complex, uncomfortable, and expensive process, inaccessible to a large group of the population. Home monitoring devices were developed to address these issues, fitting the growing perspective of health care and focusing on prevention and wellness. The objective of this paper was to develop an algorithm capable of estimating the quality of sleep, by analyzing the cyclic alternating pattern rate. The algorithm uses a single-lead electrocardiogram to produce a spectrographic measure of the cardiopulmonary coupling that in turn was fed to a classifier to estimate the non-rapid eye movement sleep and the presence of the cyclic alternating pattern. Two classifiers were tested, a feedforward neural network and a deeply stacked autoencoder, with the second achieving better results, correctly classifying 77% of the subjects sleep quality (either good or bad). The developed method can be implemented in a home monitoring device to estimate the sleep quality in a non-invasive way and improve the detection of pathologies.
Author Mendonca, Fabio
Mostafa, Sheikh Shanawaz
Ravelo-Garcia, Antonio G.
Morgado-Dias, Fernando
Author_xml – sequence: 1
  givenname: Fabio
  orcidid: 0000-0002-5107-3248
  surname: Mendonca
  fullname: Mendonca, Fabio
  email: fabio.mendonca@tecnico.ulisboa.pt
  organization: Madeira Interactive Technologies Institute, Funchal, Portugal
– sequence: 2
  givenname: Sheikh Shanawaz
  orcidid: 0000-0002-7677-0971
  surname: Mostafa
  fullname: Mostafa, Sheikh Shanawaz
  email: sheikh.mostafa@tecnico.ulisboa.pt
  organization: Madeira Interactive Technologies Institute, Funchal, Portugal
– sequence: 3
  givenname: Fernando
  orcidid: 0000-0001-7334-3993
  surname: Morgado-Dias
  fullname: Morgado-Dias, Fernando
  email: morgado@uma.pt
  organization: Madeira Interactive Technologies Institute, Funchal, Portugal
– sequence: 4
  givenname: Antonio G.
  orcidid: 0000-0002-8512-965X
  surname: Ravelo-Garcia
  fullname: Ravelo-Garcia, Antonio G.
  email: antonio.ravelo@ulpgc.es
  organization: Institute for Technological Development and Innovation in Communications, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30442612$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYMovv-AghTcuOmYm0ebLlwMw_gAUXytQ5qmEsk0NWkX8-_NOKMLF0LgJvCde3PPOUDbne8MQieAJwC4unx9eHmeTwgGMSFCAC1gC-0D5yLHBPD26k5ZzijBe-ggxg-MoSx4uYv2KGaMFED20dWLM6bPnkbl7LDM5nGwCzVY32X1Mpup0Fjfj27hOxXS24-9s917Nu2UW0Ybj9BOq1w0x5t6iN6u56-z2_z-8eZuNr3PNeUw5NRUhOCmVFpwBloz4EULhLS4bHBVa24Ea5QQ6ZiqxVXBC9zWjNeagDJM00N0se7bB_85mjjIhY3aOKc648coCaQ5lFBaJvT8D_rhx5D-u6I4sCKZAok621BjvTCN7ENaOyzljzEJEGtABx9jMK3Udvg2ZgjKOglYrjKQ3xnIVQZyk0GSkj_Sn-7_ik7XImuM-RWIFCAtCf0CZ_2QZA
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_measurement_2023_113441
crossref_primary_10_1088_1741_2552_abd047
crossref_primary_10_3390_e21121203
crossref_primary_10_1016_j_cmpb_2020_105314
crossref_primary_10_1016_j_jmsy_2023_05_025
crossref_primary_10_1109_ACCESS_2019_2900345
crossref_primary_10_1145_3659595
crossref_primary_10_3390_biomedinformatics1030008
crossref_primary_10_1016_j_eswa_2022_119288
crossref_primary_10_1007_s13534_023_00303_w
crossref_primary_10_1016_j_artmed_2021_102019
crossref_primary_10_1016_j_bspc_2020_102063
crossref_primary_10_1016_j_ymeth_2022_03_013
crossref_primary_10_1088_1361_6579_ab4f08
crossref_primary_10_1109_JSEN_2021_3059304
crossref_primary_10_1212_WNL_0000000000209302
crossref_primary_10_1109_ACCESS_2020_3019734
crossref_primary_10_1038_s41467_025_57781_y
Cites_doi 10.1093/sleep/28.9.1151
10.1016/j.procs.2017.10.026
10.1016/S1389-9457(08)70011-X
10.1186/s41606-017-0012-9
10.1007/BF01819547
10.1007/s11325-017-1566-6
10.1016/S1389-9457(01)00149-6
10.1371/journal.pmed.1001953
10.1007/s11325-012-0747-6
10.1093/sleep/33.5.643
10.1016/j.eswa.2011.08.022
10.1016/S0893-6080(05)80056-5
10.1093/sleep/zsx196
10.1016/j.smrv.2011.02.003
10.1504/IJBET.2010.032695
10.5664/jcsm.5498
10.1109/TBME.1985.325532
10.1007/s10916-017-0824-2
10.1088/0967-3334/36/10/2027
10.1016/j.clinph.2007.07.001
10.1109/IEMBS.2009.5333113
10.1016/S0031-9384(97)00234-5
10.1007/s11325-013-0804-9
10.1016/j.bspc.2013.06.001
10.1016/j.compbiomed.2018.10.010
10.1109/ICASSP.2007.366847
10.1002/brb3.970
10.3390/e18090272
10.1590/S0004-282X2006000400008
10.1007/s11517-015-1249-z
10.5665/sleep.5152
10.1016/j.jelectrocard.2014.07.020
10.1016/j.cmpb.2013.06.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2018.2881361
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2239
ExternalDocumentID 30442612
10_1109_TNSRE_2018_2881361
8534372
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Portuguese Foundation for Science and Technology through Projeto Estratégico
  grantid: LA 9—UID/EEA/50009/2013
– fundername: Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação
  grantid: M1420-09-5369-FSE-000001
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-3e9220d7ac8541cc4156f122f07d09bc5e84da88a88e9f096560fb45bc21ae4c3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 18:30:29 EDT 2025
Fri Jul 25 03:13:43 EDT 2025
Thu Apr 03 07:07:38 EDT 2025
Tue Jul 01 00:43:18 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Wed Aug 27 02:51:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-3e9220d7ac8541cc4156f122f07d09bc5e84da88a88e9f096560fb45bc21ae4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7334-3993
0000-0002-5107-3248
0000-0002-8512-965X
0000-0002-7677-0971
PMID 30442612
PQID 2151461531
PQPubID 85423
PageCount 7
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2018_2881361
proquest_miscellaneous_2135132337
pubmed_primary_30442612
crossref_primary_10_1109_TNSRE_2018_2881361
ieee_primary_8534372
proquest_journals_2151461531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref32
ref10
ref2
ref39
ref17
ref38
ref16
ref19
ref18
nason (ref28) 2001; 63
goodfellow (ref20) 2016
bronzino (ref13) 2006
ref24
ref23
ref26
ref25
parrino (ref4) 2016; 33
ref41
ref22
ref27
berry (ref1) 2017
ref8
ref7
ref9
ref3
ref6
mendonça (ref11) 0
ref5
werteni (ref29) 2014; 11
ref40
kohavi (ref21) 1995
References_xml – ident: ref17
  doi: 10.1093/sleep/28.9.1151
– ident: ref31
  doi: 10.1016/j.procs.2017.10.026
– ident: ref7
  doi: 10.1016/S1389-9457(08)70011-X
– ident: ref36
  doi: 10.1186/s41606-017-0012-9
– ident: ref41
  doi: 10.1007/BF01819547
– ident: ref37
  doi: 10.1007/s11325-017-1566-6
– ident: ref2
  doi: 10.1016/S1389-9457(01)00149-6
– ident: ref38
  doi: 10.1371/journal.pmed.1001953
– volume: 11
  start-page: 84
  year: 2014
  ident: ref29
  article-title: An automatic sleep-wake classifier using ECG signals
  publication-title: Int J Comput Sci Issues
– ident: ref8
  doi: 10.1007/s11325-012-0747-6
– ident: ref12
  doi: 10.1093/sleep/33.5.643
– ident: ref30
  doi: 10.1016/j.eswa.2011.08.022
– ident: ref19
  doi: 10.1016/S0893-6080(05)80056-5
– ident: ref35
  doi: 10.1093/sleep/zsx196
– year: 2017
  ident: ref1
  article-title: The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications
– ident: ref10
  doi: 10.1016/j.smrv.2011.02.003
– ident: ref26
  doi: 10.1504/IJBET.2010.032695
– ident: ref6
  doi: 10.5664/jcsm.5498
– year: 0
  ident: ref11
  article-title: Automatic detection of cyclic alternating pattern
  publication-title: Neural Comput Appl
– ident: ref14
  doi: 10.1109/TBME.1985.325532
– ident: ref40
  doi: 10.1007/s10916-017-0824-2
– year: 2016
  ident: ref20
  publication-title: Deep Learning
– ident: ref33
  doi: 10.1088/0967-3334/36/10/2027
– ident: ref3
  doi: 10.1016/j.clinph.2007.07.001
– ident: ref16
  doi: 10.1109/IEMBS.2009.5333113
– ident: ref23
  doi: 10.1016/S0031-9384(97)00234-5
– ident: ref34
  doi: 10.1007/s11325-013-0804-9
– ident: ref24
  doi: 10.1016/j.bspc.2013.06.001
– ident: ref32
  doi: 10.1016/j.compbiomed.2018.10.010
– ident: ref18
  doi: 10.1109/ICASSP.2007.366847
– ident: ref9
  doi: 10.1002/brb3.970
– start-page: 1137
  year: 1995
  ident: ref21
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proc 14th Int Joint Conf Artif Intell
– ident: ref22
  doi: 10.3390/e18090272
– ident: ref39
  doi: 10.1590/S0004-282X2006000400008
– ident: ref27
  doi: 10.1007/s11517-015-1249-z
– volume: 63
  start-page: 199
  year: 2001
  ident: ref28
  article-title: Wavelet packet modelling of infant sleep state using heart rate data
  publication-title: Sankhya B
– ident: ref5
  doi: 10.5665/sleep.5152
– ident: ref15
  doi: 10.1016/j.jelectrocard.2014.07.020
– volume: 33
  start-page: 150
  year: 2016
  ident: ref4
  article-title: The cyclic alternating pattern and the brain-body-coupling during sleep
  publication-title: Epileptologie
– ident: ref25
  doi: 10.1016/j.cmpb.2013.06.007
– year: 2006
  ident: ref13
  publication-title: The Biomedical Engineering Handbook
SSID ssj0017657
Score 2.3670092
Snippet The gold standard for assessment of sleep quality is the polysomnography, where physiological signals are used to generate both quantitative and qualitative...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2233
SubjectTerms Algorithms
Artificial neural networks
CAP rate
Cardiopulmonary coupling
Classification algorithms
Classifiers
Coupling
Couplings
EKG
Electrocardiography
Electroencephalography
Eye movements
Health care
Monitoring
Neural networks
NREM sleep
Quality
Quality assessment
REM sleep
Sleep
Sleep deprivation
sleep quality
Time measurement
Wellness
Title Sleep Quality Estimation by Cardiopulmonary Coupling Analysis
URI https://ieeexplore.ieee.org/document/8534372
https://www.ncbi.nlm.nih.gov/pubmed/30442612
https://www.proquest.com/docview/2151461531
https://www.proquest.com/docview/2135132337
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLeAE5cNxj7eYCiT2C5bH0matulxQg-hSXBgD4lb1STODkPvPbHXA_z1xElbwbShST20atomsVPbsf0zwJGxTlTc-sx4jVlgCp5pdGXmapTK18argvKdzy_Ksyv1_bq43oCvYy4MIsbgM5zSafTlu6XtaKvsOIgWcjNtwmYw3FKu1ugxqMqI6hkWsMpULvmQIMPr4_nFj8sZRXHpqdRa5CWVhwlmPFkP8ok8igVW_q1rRplz-hLOh96mUJNf025tpvb-DyDH_x3ODrzolU_2LXHLLmzg4hV8egw0zOYJZYB9ZpdPMLz3gLZRccUS6MYdm4V_Q0p7ZOaOncSw1lV3E7i6vQ3Xy45SfX-yAfTkNVydzuYnZ1lffCGzeSHWWY61lNxVrdWFEtaSoeeFlJ5XjtfGFqiVa7UOB9aeMGRK7o0qjJWiRWXzN7C1WC7wHbBg66IQQQhGKBzrgsrITWErRG7QeT0BMZCgsf2oqEDGTRMtFF43kYINUbDpKTiBL-Mzq4TL8WzrPZr-sWU_8xM4GCjd9Ev3d0M6kCI1ODz1cbwdFh15UtoFLjtqE-Yol3leTeBt4pDx3QNjvf_7N_dhm3qWImIOYGt92-GHoNeszWFk6AeWC_GO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoBLCxToQgEjARfI1nacxDmiaqsFunsoW6m3KLbHHFrtrtrNofz6epyHKAKElEOiOIntGWdmPDPfALwz1omCW58YrzEJTMETjS5PXIlS-dJ4lVG-82yeT8_U1_PsfAs-DbkwiBiDz3BMp9GX71a2oa2ywyBayM10D-4HuZ_JNltr8BkUecT1DEtYJSqVvE-R4eXhYv79dEJxXHostRZpTgVigiFP9oO8I5FiiZW_a5tR6hzvwqzvbxtscjFuNmZsf_4G5fi_A3oEO536yT63_PIYtnD5BN7_CjXMFi3OAPvATu-geO8BbaTimrWwGzdsEv4ObeIjMzfsKAa2rpvLwNf1VbheNZTs-4P1sCdP4ex4sjiaJl35hcSmmdgkKZZSclfUVmdKWEumnhdSel44XhqboVau1jocWHpCkcm5NyozVooalU2fwfZytcR9YMHaRSGCGIxgONYFpZGbzBaI3KDzegSiJ0Flu1FRiYzLKtoovKwiBSuiYNVRcAQfh2fWLTLHP1vv0fQPLbuZH8FBT-mqW7zXFWlBihTh8NTb4XZYduRLqZe4aqhNmKNUpmkxgucthwzv7hnrxZ-_-QYeTBezk-rky_zbS3hIvWzjYw5ge3PV4Kug5WzM68jct1rP9Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+Quality+Estimation+by+Cardiopulmonary+Coupling+Analysis&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Mendonca%2C+Fabio&rft.au=Mostafa%2C+Sheikh+Shanawaz&rft.au=Morgado-Dias%2C+Fernando&rft.au=Ravelo-Garcia%2C+Antonio+G&rft.date=2018-12-01&rft.eissn=1558-0210&rft.volume=26&rft.issue=12&rft.spage=2233&rft_id=info:doi/10.1109%2FTNSRE.2018.2881361&rft_id=info%3Apmid%2F30442612&rft.externalDocID=30442612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon