Clustering Spatially Correlated Functional Data With Multiple Scalar Covariates

We propose a probabilistic model for clustering spatially correlated functional data with multiple scalar covariates. The motivating application is to partition the 29 provinces of the Chinese mainland into a few groups characterized by the epidemic severity of COVID-19, while the spatial dependence...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 10; pp. 7074 - 7088
Main Authors Wu, Hui, Li, Yan-Fu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2021.3137795

Cover

Loading…
Abstract We propose a probabilistic model for clustering spatially correlated functional data with multiple scalar covariates. The motivating application is to partition the 29 provinces of the Chinese mainland into a few groups characterized by the epidemic severity of COVID-19, while the spatial dependence and effects of risk factors are considered. It can be regarded as an extension of mixture models, which allows different subsets of covariates to influence the component weights and the component densities by modeling the parameters of the mixture as functions of the covariates. In this way, provinces with similar spatial factors are a priori more likely to be clustered together. Posterior predictive inference in this model formalizes the desired prediction. Further, the identifiability of the proposed model is analyzed, and sufficient conditions to guarantee "generic" identifiability are provided. An <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-penalized estimator is developed to assist variable selection and robust estimation when the number of explanatory covariates is large. An efficient expectation-minimization algorithm is presented for parameter estimation. Simulation studies and real-data examples are presented to investigate the empirical performance of the proposed method. Finally, it is worth noting that the proposed model has a wide range of practical applications, e.g., health management, environmental science, ecological studies, and so on.
AbstractList We propose a probabilistic model for clustering spatially correlated functional data with multiple scalar covariates. The motivating application is to partition the 29 provinces of the Chinese mainland into a few groups characterized by the epidemic severity of COVID-19, while the spatial dependence and effects of risk factors are considered. It can be regarded as an extension of mixture models, which allows different subsets of covariates to influence the component weights and the component densities by modeling the parameters of the mixture as functions of the covariates. In this way, provinces with similar spatial factors are a priori more likely to be clustered together. Posterior predictive inference in this model formalizes the desired prediction. Further, the identifiability of the proposed model is analyzed, and sufficient conditions to guarantee "generic" identifiability are provided. An <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-penalized estimator is developed to assist variable selection and robust estimation when the number of explanatory covariates is large. An efficient expectation-minimization algorithm is presented for parameter estimation. Simulation studies and real-data examples are presented to investigate the empirical performance of the proposed method. Finally, it is worth noting that the proposed model has a wide range of practical applications, e.g., health management, environmental science, ecological studies, and so on.
We propose a probabilistic model for clustering spatially correlated functional data with multiple scalar covariates. The motivating application is to partition the 29 provinces of the Chinese mainland into a few groups characterized by the epidemic severity of COVID-19, while the spatial dependence and effects of risk factors are considered. It can be regarded as an extension of mixture models, which allows different subsets of covariates to influence the component weights and the component densities by modeling the parameters of the mixture as functions of the covariates. In this way, provinces with similar spatial factors are a priori more likely to be clustered together. Posterior predictive inference in this model formalizes the desired prediction. Further, the identifiability of the proposed model is analyzed, and sufficient conditions to guarantee "generic" identifiability are provided. An L1 -penalized estimator is developed to assist variable selection and robust estimation when the number of explanatory covariates is large. An efficient expectation-minimization algorithm is presented for parameter estimation. Simulation studies and real-data examples are presented to investigate the empirical performance of the proposed method. Finally, it is worth noting that the proposed model has a wide range of practical applications, e.g., health management, environmental science, ecological studies, and so on.We propose a probabilistic model for clustering spatially correlated functional data with multiple scalar covariates. The motivating application is to partition the 29 provinces of the Chinese mainland into a few groups characterized by the epidemic severity of COVID-19, while the spatial dependence and effects of risk factors are considered. It can be regarded as an extension of mixture models, which allows different subsets of covariates to influence the component weights and the component densities by modeling the parameters of the mixture as functions of the covariates. In this way, provinces with similar spatial factors are a priori more likely to be clustered together. Posterior predictive inference in this model formalizes the desired prediction. Further, the identifiability of the proposed model is analyzed, and sufficient conditions to guarantee "generic" identifiability are provided. An L1 -penalized estimator is developed to assist variable selection and robust estimation when the number of explanatory covariates is large. An efficient expectation-minimization algorithm is presented for parameter estimation. Simulation studies and real-data examples are presented to investigate the empirical performance of the proposed method. Finally, it is worth noting that the proposed model has a wide range of practical applications, e.g., health management, environmental science, ecological studies, and so on.
We propose a probabilistic model for clustering spatially correlated functional data with multiple scalar covariates. The motivating application is to partition the 29 provinces of the Chinese mainland into a few groups characterized by the epidemic severity of COVID-19, while the spatial dependence and effects of risk factors are considered. It can be regarded as an extension of mixture models, which allows different subsets of covariates to influence the component weights and the component densities by modeling the parameters of the mixture as functions of the covariates. In this way, provinces with similar spatial factors are a priori more likely to be clustered together. Posterior predictive inference in this model formalizes the desired prediction. Further, the identifiability of the proposed model is analyzed, and sufficient conditions to guarantee ``generic'' identifiability are provided. An L₁-penalized estimator is developed to assist variable selection and robust estimation when the number of explanatory covariates is large. An efficient expectation-minimization algorithm is presented for parameter estimation. Simulation studies and real-data examples are presented to investigate the empirical performance of the proposed method. Finally, it is worth noting that the proposed model has a wide range of practical applications, e.g., health management, environmental science, ecological studies, and so on.
We propose a probabilistic model for clustering spatially correlated functional data with multiple scalar covariates. The motivating application is to partition the 29 provinces of the Chinese mainland into a few groups characterized by the epidemic severity of COVID-19, while the spatial dependence and effects of risk factors are considered. It can be regarded as an extension of mixture models, which allows different subsets of covariates to influence the component weights and the component densities by modeling the parameters of the mixture as functions of the covariates. In this way, provinces with similar spatial factors are a priori more likely to be clustered together. Posterior predictive inference in this model formalizes the desired prediction. Further, the identifiability of the proposed model is analyzed, and sufficient conditions to guarantee “generic” identifiability are provided. An [Formula Omitted]-penalized estimator is developed to assist variable selection and robust estimation when the number of explanatory covariates is large. An efficient expectation-minimization algorithm is presented for parameter estimation. Simulation studies and real-data examples are presented to investigate the empirical performance of the proposed method. Finally, it is worth noting that the proposed model has a wide range of practical applications, e.g., health management, environmental science, ecological studies, and so on.
Author Li, Yan-Fu
Wu, Hui
Author_xml – sequence: 1
  givenname: Hui
  orcidid: 0000-0002-8881-3203
  surname: Wu
  fullname: Wu, Hui
  email: wuh18@mails.tsinghua.edu.cn
  organization: Department of Industry Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Yan-Fu
  orcidid: 0000-0001-5755-7115
  surname: Li
  fullname: Li, Yan-Fu
  email: liyanfu@tsinghua.edu.cn
  organization: Department of Industry Engineering, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35020597$$D View this record in MEDLINE/PubMed
BookMark eNp9kblOAzEQhi0EIhx5AZDQSjQ0CT7iq0ThlAIpEgSdNdl4wcjZDbYXibfHIYGCgmk8xfeNxvPvo-26qS1CRwT3CcH6fPrwMJr0KaakzwiTUvMttEeJoD3KlNr-7eVzB3VjfMO5BOZioHdRh3FMMddyD42Hvo3JBle_FJMlJAfefxbDJgTrIdl5cd3WZXJNDb64hATFk0uvxX3rk1t6W0xK8BAy_wHBZT4eop0KfLTdzXuAHq-vpsPb3mh8cze8GPVKxknqsbKijEgNlaggd1hzmLG54jQvyYSeVULZShE8yAhXksNczTCUgCsuFDB2gM7Wc5eheW9tTGbhYmm9h9o2bTRUEM0HnHKc0dM_6FvThvyhTCnJuNKY8EydbKh2trBzswxuAeHT_JwqA2oNlKGJMdjKlC7B6jQpgPOGYLMKxnwHY1bBmE0wWaV_1J_p_0rHa8lZa38FLaQeSMG-AAc2l7A
CODEN ITNNAL
CitedBy_id crossref_primary_10_1145_3581789
crossref_primary_10_1007_s11222_023_10288_2
crossref_primary_10_1002_env_2865
Cites_doi 10.1002/nav.20017
10.1007/s11749-010-0203-5
10.1007/s00180-020-00958-4
10.1016/j.csda.2009.12.008
10.1109/TNNLS.2018.2885799
10.1016/j.ejor.2013.11.002
10.1111/j.1467-9574.2012.00522.x
10.1080/00401706.2012.657106
10.1109/TNNLS.2017.2782711
10.1007/978-3-319-48308-5_57
10.1007/s00477-017-1441-9
10.1109/TKDE.2006.163
10.1080/00401706.2019.1635532
10.4304/jcp.6.2.271-279
10.1016/j.csda.2012.12.004
10.1007/s00180-018-0808-9
10.1214/15-AOAS861
10.2307/2284239
10.1111/j.1541-0420.2011.01714.x
10.1007/s11222-016-9645-2
10.1007/s11634-019-00373-8
10.1109/TNN.2009.2013708
10.1111/j.1467-9868.2006.00545.x
10.1080/01621459.2020.1764363
10.1002/(SICI)1521-4036(199804)40:1<56::AID-BIMJ56>3.0.CO;2-#
10.1111/biom.12292
10.1007/s00180-018-0791-1
10.1002/sim.8768
10.1080/03610910903168603
10.1109/TKDE.2005.97
10.1109/TNNLS.2018.2791644
10.1038/s41598-020-68230-9
10.1109/TPAMI.2013.57
10.1080/10618600.2019.1607744
10.1109/TFUZZ.2020.2969399
10.1002/env.2437
10.1007/BF01720593
10.1007/s11222-008-9055-1
10.1111/j.1541-0420.2009.01341.x
10.1109/TCBB.2017.2762302
10.1007/s11222-015-9561-x
10.1109/TPAMI.2004.71
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.patcog.2008.05.030
10.1109/TKDE.2014.2373355
10.1214/09-SS053
10.1080/01621459.2014.983521
10.1109/TNNLS.2015.2435155
10.1162/153244303321897735
10.1016/0893-6080(95)00014-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3137795
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 7088
ExternalDocumentID 35020597
10_1109_TNNLS_2021_3137795
9679476
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China through the Key Project
  grantid: 71731008
  funderid: 10.13039/501100001809
– fundername: Beijing Municipal Natural Science Foundation
  grantid: L191022
  funderid: 10.13039/501100005089
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB1306100
  funderid: 10.13039/501100012166
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-3cf23179af6fa231095ab3d852060369bf68ef81049af5875ad8b0aca0f568a33
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 03:20:56 EDT 2025
Mon Jun 30 05:11:26 EDT 2025
Thu Jan 02 22:56:45 EST 2025
Tue Jul 01 00:27:44 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Wed Aug 27 02:50:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-3cf23179af6fa231095ab3d852060369bf68ef81049af5875ad8b0aca0f568a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8881-3203
0000-0001-5755-7115
PMID 35020597
PQID 2873589015
PQPubID 85436
PageCount 15
ParticipantIDs proquest_journals_2873589015
pubmed_primary_35020597
ieee_primary_9679476
crossref_citationtrail_10_1109_TNNLS_2021_3137795
crossref_primary_10_1109_TNNLS_2021_3137795
proquest_miscellaneous_2619545250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref11
ref55
ref54
ref17
ref16
ref19
ref18
tang (ref51) 2016; 17
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref9
ref4
ref3
ref6
ref5
roy (ref8) 2017; 18
ref40
jia (ref52) 2010; 20
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
carlsson (ref7) 2010; 11
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
zhong (ref10) 2004; 4
References_xml – ident: ref54
  doi: 10.1002/nav.20017
– ident: ref38
  doi: 10.1007/s11749-010-0203-5
– ident: ref44
  doi: 10.1007/s00180-020-00958-4
– ident: ref45
  doi: 10.1016/j.csda.2009.12.008
– ident: ref2
  doi: 10.1109/TNNLS.2018.2885799
– ident: ref53
  doi: 10.1016/j.ejor.2013.11.002
– ident: ref24
  doi: 10.1111/j.1467-9574.2012.00522.x
– ident: ref26
  doi: 10.1080/00401706.2012.657106
– ident: ref22
  doi: 10.1109/TNNLS.2017.2782711
– ident: ref6
  doi: 10.1007/978-3-319-48308-5_57
– ident: ref17
  doi: 10.1007/s00477-017-1441-9
– ident: ref35
  doi: 10.1109/TKDE.2006.163
– ident: ref29
  doi: 10.1080/00401706.2019.1635532
– ident: ref9
  doi: 10.4304/jcp.6.2.271-279
– ident: ref20
  doi: 10.1016/j.csda.2012.12.004
– ident: ref16
  doi: 10.1007/s00180-018-0808-9
– ident: ref49
  doi: 10.1214/15-AOAS861
– ident: ref42
  doi: 10.2307/2284239
– ident: ref19
  doi: 10.1111/j.1541-0420.2011.01714.x
– ident: ref25
  doi: 10.1007/s11222-016-9645-2
– volume: 20
  start-page: 595
  year: 2010
  ident: ref52
  article-title: On model selection consistency of the elastic net when p?n
  publication-title: Statistica Sinica
– ident: ref47
  doi: 10.1007/s11634-019-00373-8
– ident: ref12
  doi: 10.1109/TNN.2009.2013708
– volume: 18
  start-page: 3077
  year: 2017
  ident: ref8
  article-title: Hierarchical clustering via spreading metrics
  publication-title: J Mach Learn Res
– ident: ref18
  doi: 10.1111/j.1467-9868.2006.00545.x
– ident: ref27
  doi: 10.1080/01621459.2020.1764363
– ident: ref13
  doi: 10.1002/(SICI)1521-4036(199804)40:1<56::AID-BIMJ56>3.0.CO;2-#
– ident: ref50
  doi: 10.1111/biom.12292
– ident: ref46
  doi: 10.1007/s00180-018-0791-1
– ident: ref30
  doi: 10.1002/sim.8768
– ident: ref15
  doi: 10.1080/03610910903168603
– volume: 17
  start-page: 3915
  year: 2016
  ident: ref51
  article-title: Fused lasso approach in regression coefficients clustering: Learning parameter heterogeneity in data integration
  publication-title: J Mach Learn Res
– ident: ref33
  doi: 10.1109/TKDE.2005.97
– ident: ref14
  doi: 10.1109/TNNLS.2018.2791644
– ident: ref48
  doi: 10.1038/s41598-020-68230-9
– ident: ref1
  doi: 10.1109/TPAMI.2013.57
– ident: ref23
  doi: 10.1080/10618600.2019.1607744
– volume: 11
  start-page: 1425
  year: 2010
  ident: ref7
  article-title: Characterization, stability and convergence of hierarchical clustering methods
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1109/TFUZZ.2020.2969399
– ident: ref28
  doi: 10.1002/env.2437
– ident: ref40
  doi: 10.1007/BF01720593
– ident: ref21
  doi: 10.1007/s11222-008-9055-1
– ident: ref11
  doi: 10.1111/j.1541-0420.2009.01341.x
– volume: 4
  start-page: 1001
  year: 2004
  ident: ref10
  article-title: A unified framework for model-based clustering
  publication-title: J Mach Learn Res
– ident: ref5
  doi: 10.1109/TCBB.2017.2762302
– ident: ref41
  doi: 10.1007/s11222-015-9561-x
– ident: ref32
  doi: 10.1109/TPAMI.2004.71
– ident: ref37
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref34
  doi: 10.1016/j.patcog.2008.05.030
– ident: ref36
  doi: 10.1109/TKDE.2014.2373355
– ident: ref31
  doi: 10.1214/09-SS053
– ident: ref55
  doi: 10.1080/01621459.2014.983521
– ident: ref4
  doi: 10.1109/TNNLS.2015.2435155
– ident: ref43
  doi: 10.1162/153244303321897735
– ident: ref39
  doi: 10.1016/0893-6080(95)00014-3
SSID ssj0000605649
Score 2.4649286
Snippet We propose a probabilistic model for clustering spatially correlated functional data with multiple scalar covariates. The motivating application is to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7074
SubjectTerms Algorithms
Analytical models
Biological system modeling
Clustering
Clustering algorithms
Computational modeling
COVID-19
Data models
Ecological studies
Empirical analysis
Environmental management
Environmental science
Epidemics
L₁-penalized estimator
Markov processes
mixture model
Mixture models
Mixtures
Parameter estimation
Predictions
Probabilistic models
Risk factors
scalar covariates
spatially correlated functional data
Title Clustering Spatially Correlated Functional Data With Multiple Scalar Covariates
URI https://ieeexplore.ieee.org/document/9679476
https://www.ncbi.nlm.nih.gov/pubmed/35020597
https://www.proquest.com/docview/2873589015
https://www.proquest.com/docview/2619545250
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5te-KFDsZYRkFG4o2lTezaSR5RoZoQLQ-0om_RObG1iapFkCDBX89dfglNDPEWKRcnuTvrvs_23QG8IpRMqNb4kLCoDGeuzEKbYhxSaEQXSQIkyLnDy5W53szeb_X2CK6GXBjnXHP4zE34stnLLw9FzUtl08yQ9yTmGI6JuLW5WsN6SkS43DRoV8ZGhlIl2z5HJsqm69XqwydigzImkso19rhjjdKElTSXe_ojJDU9Vu6Hm03YWYxg2X9we9rky6Su7KT4daeW4__-0Sk87PCneNM6zCM4cvvHMOp7O4huqp_Bx_mu5hoKFNkEty0mN939FHPu5bEjeFqKBQXEdh1RvMUKxefb6kYsu-OJNA4SZSb5H8TFGc4-gc3i3Xp-HXbNF8JC6bgKVeEJ-iUZeuORQWCm0aoy1ZI0rUxmvUmdT4nNkYgm1oNlaiMsMPLapKjUOZzsD3t3AUJ6mSXobVkaP8OosJg4Qi3GWCeJm_sA4l7_edFVJucGGbu8YShRljfmy9l8eWe-AF4Pz3xt63L8U_qMdT9IdmoPYNybOe-m7vecKKTSKcOkAF4Ot2nS8U4K7t2hJhnDhfJ4RziAp617DGP3XnX593c-gwfcsb49DziGk-pb7Z4Trqnsi8ahfwNEvPCI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QAvbDA-AhsYiTdIl9i1kzyiblWBtjzQib5F58QW06oWQYLE_vrd5UsIAeItUi5OcnfW_X627w7gFaFkQrXGh4RFZTh2ZRbaFOOQQiO6SBIgQc4dXizN7GL8fq3Xe_BmyIVxzjWHz9yIL5u9_HJX1LxUdpoZ8p7E3ILbmpNx22ytYUUlImRuGrwrYyNDqZJ1nyUTZaer5XL-ifigjImmcpU97lmjNKElzQWffglKTZeVvwPOJvBMD2DRf3J73uRqVFd2VFz_Vs3xf__pEO51CFS8bV3mPuy57QM46Ls7iG6yH8HHyabmKgoU2wQ3LiZH3fwUE-7msSGAWoophcR2JVGcYYXi82X1RSy6A4o0DhJpJvkfxMYZ0D6Ei-n5ajILu_YLYaF0XIWq8AT-kgy98cgwMNNoVZlqSZpWJrPepM6nxOdIRBPvwTK1ERYYeW1SVOoR7G93W_cEhPQyS9DbsjR-jFFhMXGEW4yxThI79wHEvf7zoqtNzi0yNnnDUaIsb8yXs_nyznwBvB6e-dpW5vin9BHrfpDs1B7AcW_mvJu833MikUqnDJQCeDncpmnHeym4dbuaZAyXyuM94QAet-4xjN171dM_v_MF3JmtFvN8_m754Rnc5f717enAY9ivvtXuhFBOZZ83zn0D9Sfz0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Spatially+Correlated+Functional+Data+With+Multiple+Scalar+Covariates&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wu%2C+Hui&rft.au=Li%2C+Yan-Fu&rft.date=2023-10-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=34&rft.issue=10&rft.spage=7074&rft_id=info:doi/10.1109%2FTNNLS.2021.3137795&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon