Small Angle Neutron Scattering Reveals Wood Nanostructural Features in Decay Resistant Chemically Modified Wood

While it is known that modifying the hydroxyls in wood can improve the decay resistance; what is often missing in the literature is whether these modifications alter wood nanostructure, and how these changes correlate to the improved decay resistance. Here, we used small angle neutron scattering (SA...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Forests and Global Change Vol. 4
Main Authors Ibach, Rebecca E., Plaza, Nayomi Z., Pingali, Sai Venkatesh
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 11.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While it is known that modifying the hydroxyls in wood can improve the decay resistance; what is often missing in the literature is whether these modifications alter wood nanostructure, and how these changes correlate to the improved decay resistance. Here, we used small angle neutron scattering (SANS) to probe the effects of alkylene oxide modifications on wood nanostructure. Southern pine wood samples were chemically modified to various weight percentage gains (WPG) using four different alkylene oxides: propylene oxide (PO), butylene oxide (BO), epichlorohydrin (EpH), and epoxybutene (EpB). After modification, the samples were water leached for 2 weeks to remove any unreacted reagents or homopolymers and then equilibrium moisture content (EMC) was determined at 90% relative humidity (RH) and 27°C. Laboratory soil block decay evaluations against the brown rot fungus Gloeophyllum trabeum were performed to determine weight loss and biological efficacy of the modifications. To assist in understanding the mechanism, SANS was used to study samples that were fully immersed in deuterium oxide (D 2 O). These measurements revealed that the modifications altered the water distribution inside the cell wall, and the most effective modifications reduced the microfibril swelling and preserved the microfibril structure even after being subject to 12 weeks of brown rot exposure.
AbstractList While it is known that modifying the hydroxyls in wood can improve the decay resistance; what is often missing in the literature is whether these modifications alter wood nanostructure, and how these changes correlate to the improved decay resistance. Here, we used small angle neutron scattering (SANS) to probe the effects of alkylene oxide modifications on wood nanostructure. Southern pine wood samples were chemically modified to various weight percentage gains (WPG) using four different alkylene oxides: propylene oxide (PO), butylene oxide (BO), epichlorohydrin (EpH), and epoxybutene (EpB). After modification, the samples were water leached for 2 weeks to remove any unreacted reagents or homopolymers and then equilibrium moisture content (EMC) was determined at 90% relative humidity (RH) and 27°C. Laboratory soil block decay evaluations against the brown rot fungus Gloeophyllum trabeum were performed to determine weight loss and biological efficacy of the modifications. To assist in understanding the mechanism, SANS was used to study samples that were fully immersed in deuterium oxide (D 2 O). These measurements revealed that the modifications altered the water distribution inside the cell wall, and the most effective modifications reduced the microfibril swelling and preserved the microfibril structure even after being subject to 12 weeks of brown rot exposure.
While it is known that modifying the hydroxyls in wood can improve the decay resistance; what is often missing in the literature is whether these modifications alter wood nanostructure, and how these changes correlate to the improved decay resistance. Here, we used small angle neutron scattering (SANS) to probe the effects of alkylene oxide modifications on wood nanostructure. Southern pine wood samples were chemically modified to various weight percentage gains (WPG) using four different alkylene oxides: propylene oxide (PO), butylene oxide (BO), epichlorohydrin (EpH), and epoxybutene (EpB). After modification, the samples were water leached for 2 weeks to remove any unreacted reagents or homopolymers and then equilibrium moisture content (EMC) was determined at 90% relative humidity (RH) and 27°C. Laboratory soil block decay evaluations against the brown rot fungus Gloeophyllum trabeum were performed to determine weight loss and biological efficacy of the modifications. To assist in understanding the mechanism, SANS was used to study samples that were fully immersed in deuterium oxide (D2O). These measurements revealed that the modifications altered the water distribution inside the cell wall, and the most effective modifications reduced the microfibril swelling and preserved the microfibril structure even after being subject to 12 weeks of brown rot exposure.
Author Ibach, Rebecca E.
Plaza, Nayomi Z.
Pingali, Sai Venkatesh
Author_xml – sequence: 1
  givenname: Rebecca E.
  surname: Ibach
  fullname: Ibach, Rebecca E.
– sequence: 2
  givenname: Nayomi Z.
  surname: Plaza
  fullname: Plaza, Nayomi Z.
– sequence: 3
  givenname: Sai Venkatesh
  surname: Pingali
  fullname: Pingali, Sai Venkatesh
BookMark eNp1kEtrGzEUhUVJoUmafZf6A3Z0pRnNaBncvCAPyIN2J-7o4SqMpSDJAf_7jONQQiCrezjc8y2-A7IXU3SE_AI2F6JXx94vzZwzDvMeGtbLb2SfS97MeiX-7n3IP8hRKU-MMd71U8n2Sbpf4TjSk7gcHb1x65pTpPcGa3U5xCW9cy8Ox0L_pGTpDcZUal6bus440jOHU3CFhkh_O4Ob6buEUjFWuvjnVsFM6A29Tjb44Owb4yf57ieeO3q_h-Tx7PRhcTG7uj2_XJxczYxooc4EGtG1Te-5sFYZMYDinIHqUDEcWItSimbApu2cFQigDHgQZuiBN94OShySyx3XJnzSzzmsMG90wqDfipSXGnMNZnQaBEjbDsx4YE2rZA8KOqakwEF2rrMTi-1YJqdSsvP_ecD01r_e-tdb_3rnf5rITxMTKtaQYs0Yxq-Hr9EJjUg
CitedBy_id crossref_primary_10_1016_j_tcsw_2023_100105
crossref_primary_10_1016_j_culher_2024_11_021
crossref_primary_10_3389_fchem_2022_1004269
crossref_primary_10_1016_j_ibiod_2022_105562
crossref_primary_10_3390_f13122051
crossref_primary_10_3390_fib10050040
Cites_doi 10.3389/fmicb.2020.01389
10.3390/coatings10121210
10.1021/bk-2004-0864.ch013
10.1107/S0021889809002222
10.1007/s00253-020-10479-1
10.1107/S1600576714011285
10.1073/pnas.1108942108
10.1016/j.jsb.2020.107532
10.1007/s10570-020-03091-z
10.1021/acs.jpcb.9b01430
10.1038/s41598-020-77755-y
10.1080/10587250008025645
10.13073/FPJ-D-17-00065
10.1007/s10570-019-02781-7
10.1021/acs.nanolett.0c05038
10.3390/f10060522
10.3389/fpls.2019.01398
10.1007/s10570-016-0933-y
10.1186/s13068-017-0865-2
10.1007/s00226-006-0121-6
10.1515/hfsg.1994.48.3.181
10.1107/S0021889895005292
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/ffgc.2021.814086
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2624-893X
ExternalDocumentID oai_doaj_org_article_1316d5b0cf104596819170963ab67e7d
10_3389_ffgc_2021_814086
GroupedDBID 9T4
AAFWJ
AAYXX
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c351t-3ac37548f23dd9c3b19220197a90ab05a6634ba457ed3a119c1f13cb8124fdb93
IEDL.DBID DOA
ISSN 2624-893X
IngestDate Wed Aug 27 01:26:14 EDT 2025
Tue Jul 01 00:58:19 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-3ac37548f23dd9c3b19220197a90ab05a6634ba457ed3a119c1f13cb8124fdb93
OpenAccessLink https://doaj.org/article/1316d5b0cf104596819170963ab67e7d
ParticipantIDs doaj_primary_oai_doaj_org_article_1316d5b0cf104596819170963ab67e7d
crossref_primary_10_3389_ffgc_2021_814086
crossref_citationtrail_10_3389_ffgc_2021_814086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-11
PublicationDateYYYYMMDD 2022-01-11
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-11
  day: 11
PublicationDecade 2020
PublicationTitle Frontiers in Forests and Global Change
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References (B2) 1999; 9
Beaucage (B4) 1995; 28
Jakes (B19) 2019; 123
Lyczakowski (B21) 2019; 10
Rowell (B28) 1984
Ibach (B15) 2019
Fernandes (B10) 2011; 108
(B3) 1999
Plaza (B25) 2016; 23
Rowell (B30) 1979; 11
Plaza (B24) 2019; 68
Zhu (B32) 2020; 11
Rowell (B29) 1975; 7
Ibach (B17) 2000
Ringman (B26) 2019; 10
Chen (B6) 1994; 48
Adobes-Vidal (B1) 2020; 211
Heller (B13) 2014; 47
Enoki (B9) 1990; 18
Goodell (B12) 2017; 10
Ibach (B16) 2000; 353
Thomas (B31) 2020; 27
Donaldson (B8) 2007; 41
Goodell (B11) 2020; 10
Ilavsky (B18) 2009; 42
Jakes (B20) 2013; 2
Brischke (B5) 2020; 104
Penttilä (B23); 27
Ibach (B14) 2002
Penttilä (B22); 10
Rowell (B27) 2013
Chen (B7) 2021; 21
References_xml – volume: 11
  start-page: 1389
  year: 2020
  ident: B32
  article-title: Nanostructural analysis of enzymatic and non-enzymatic brown rot fungal deconstruction of the lignocellulose cell wall†.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01389
– volume: 10
  start-page: 1210
  year: 2020
  ident: B11
  article-title: Fungal degradation of wood: emerging data, new insights and changing perceptions.
  publication-title: Coatings
  doi: 10.3390/coatings10121210
– volume: 2
  start-page: 10
  year: 2013
  ident: B20
  article-title: Mechanism of transport through wood cell wall polymers.
  publication-title: J. For. Prod. Ind.
  doi: 10.1021/bk-2004-0864.ch013
– volume: 11
  start-page: 271
  year: 1979
  ident: B30
  article-title: Resistance of alkylene-oxide treatments on dimensional stability of wood.
  publication-title: Wood Sci.
– volume: 42
  start-page: 347
  year: 2009
  ident: B18
  article-title: Irena: tool suite for modeling and analysis of small-angle scattering
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889809002222
– volume: 104
  start-page: 3781
  year: 2020
  ident: B5
  article-title: Wood-water relationships and their role for wood susceptibility to fungal decay.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-020-10479-1
– volume: 47
  start-page: 1238
  year: 2014
  ident: B13
  article-title: The bio-Sans instrument at the high flux isotope reactor of oak ridge national laboratory.
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576714011285
– year: 2002
  ident: B14
  article-title: The effect on biological and moisture resistance of epichlorohydrin chemically modified wood,
  publication-title: Proceedings of the 33rd Annual Meeting of the International Research Group on Wood Preservation IRG Document No: IRG/WP/02-40224
– start-page: 451
  year: 1984
  ident: B28
  publication-title: Reaction of Epoxides with Wood.
– volume: 108
  start-page: E1195
  year: 2011
  ident: B10
  article-title: Nanostructure of cellulose microfibrils in spruce wood.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1108942108
– volume: 211
  start-page: 107532
  year: 2020
  ident: B1
  article-title: Atomic force microscopy imaging of delignified secondary cell walls in liquid conditions facilitates interpretation of wood ultrastructure.
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2020.107532
– year: 2013
  ident: B27
  publication-title: Handbook of Wood Chemistry and Wood Composites
– volume: 7
  start-page: 240
  year: 1975
  ident: B29
  article-title: Chemical modification of wood: reactions of alkylene oxides with southern yellow pine.
  publication-title: Wood Sci.
– volume: 27
  start-page: 4249
  year: 2020
  ident: B31
  article-title: Hemicellulose binding and the spacing of cellulose microfibrils in spruce wood.
  publication-title: Cellulose
  doi: 10.1007/s10570-020-03091-z
– volume: 123
  start-page: 4333
  year: 2019
  ident: B19
  article-title: Mechanism for diffusion through secondary cell walls in lignocellulosic biomass.
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b01430
– volume: 10
  start-page: 20844
  ident: B22
  article-title: Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scattering.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-77755-y
– start-page: 386
  year: 1999
  ident: B3
  publication-title: E11-97 Standard Method of Determining the Leachability of Wood Preservatives.
– volume: 353
  start-page: 23
  year: 2000
  ident: B16
  article-title: Improvements in decay resistance based on moisture exclusion
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/10587250008025645
– volume: 68
  start-page: 349
  year: 2019
  ident: B24
  article-title: Small-angle neutron scattering as a new tool to evaluate moisture-induced swelling in the nanostructure of chemically modified wood cell walls.
  publication-title: For. Prod. J.
  doi: 10.13073/FPJ-D-17-00065
– volume: 27
  start-page: 71
  ident: B23
  article-title: Moisture-related changes in the nanostructure of woods studied with X-ray and neutron scattering.
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02781-7
– start-page: 1
  year: 2019
  ident: B15
  article-title: Using X-ray scattering to elucidate the mechanisms behind the moisture and fungal decay resistance of epoxybutene modified wood,
  publication-title: Proceedings of the 15th Annual Meeting of the International Research Group on Wood Protection IRG/WP 19-40854
– volume: 21
  start-page: 2883
  year: 2021
  ident: B7
  article-title: Small angle neutron scattering shows nanoscale PMMA distribution in transparent wood biocomposites.
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c05038
– volume: 18
  start-page: 431
  year: 1990
  ident: B9
  article-title: Fungal and termite resistance and dimensional stability of etherified woods prepared with epichlorohydrin.
  publication-title: J. Antibacter. Antifung. Agents
– volume: 10
  start-page: 522
  year: 2019
  ident: B26
  article-title: The importance of moisture for brown rot degradation of modified wood: a critical discussion.
  publication-title: Forests
  doi: 10.3390/f10060522
– volume: 10
  start-page: 1398
  year: 2019
  ident: B21
  article-title: Structural imaging of native cryo-preserved secondary cell walls reveals the presence of macrofibrils and their formation requires normal cellulose, lignin and xylan biosynthesis.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01398
– volume: 23
  start-page: 1593
  year: 2016
  ident: B25
  article-title: Informing the improvement of forest products durability using small angle neutron scattering.
  publication-title: Cellulose
  doi: 10.1007/s10570-016-0933-y
– volume: 10
  start-page: 179
  year: 2017
  ident: B12
  article-title: Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi.
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0865-2
– volume: 9
  start-page: 1413
  year: 1999
  ident: B2
  article-title: ASTM standard method of testing wood preservatives by laboratory soil-block cultures.
  publication-title: Am. Soc. Test. Mater. Des.
– volume: 41
  start-page: 443
  year: 2007
  ident: B8
  article-title: Cellulose microfibril aggregates and their size variation with cell wall type.
  publication-title: Wood Sci. Technol.
  doi: 10.1007/s00226-006-0121-6
– start-page: 197
  year: 2000
  ident: B17
  article-title: Decay protection based on moisture exclusion resulting from chemical modification of wood,
  publication-title: Proceedings of the 5th Pacific Rim Bio-Based Composites
– volume: 48
  start-page: 181
  year: 1994
  ident: B6
  article-title: Fungal decay resistance of wood reacted with chlorosulfonyl isocyanate or epichlorohydrin.
  publication-title: Holzforschung
  doi: 10.1515/hfsg.1994.48.3.181
– volume: 28
  start-page: 717
  year: 1995
  ident: B4
  article-title: Approximations leading to a unified exponential/power-law approach to small-angle scattering.
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889895005292
SSID ssj0002782620
Score 2.2185729
Snippet While it is known that modifying the hydroxyls in wood can improve the decay resistance; what is often missing in the literature is whether these modifications...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms alkylene oxides
epoxybutene
fungal decay
propylene oxide
SANS
solid wood modification
Title Small Angle Neutron Scattering Reveals Wood Nanostructural Features in Decay Resistant Chemically Modified Wood
URI https://doaj.org/article/1316d5b0cf104596819170963ab67e7d
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMLQ2gc51GPvKoKqR0oFd0iP6uikCC1Req_5y5Oq0ywsGSwbCv6crr7Lmd_R8gNVkiEAe8H3h8eFswYRdYDx7iMXBqFsq7gj8bpcBq_zJJZq9UXngnz8sAeuB7jLDWJCrWDxCERaZ1gAO_mUqWZzQx6X4h5rWTqw5fTUGnd1yUhCxM95-aoWBixO9R4wqvTrTjUkuuv48rgkBw0hJDe-xc5Inu2PCbV5FMWMFjOC0vHdo3_q-lE11qYEGvoq_0Ggrek71VlKDjIysvAooQGRVK3hiSaLkr6ZLXcwOwlssRyRbfyAMWGjiqzcMA_6z1OyHTw_PY4DJrWCIHmCVsFXGrsXdt3ETdGaK6AqEEoFxlAK1WYSCASsZJxklnDJWNCM0BfKwznzijBT0mnrEp7RigTkicui2FNGLsskn0eKiOZhMxDAthd0tsCletGNxzbVxQ55A8IbY7Q5ght7qHtktvdii-vmfHL3AfEfjcP1a7rAbCBvLGB_C8bOP-PTS7IfoRXG0IWMHZJOvDd7BUQjpW6rm3rBwN30BY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Angle+Neutron+Scattering+Reveals+Wood+Nanostructural+Features+in+Decay+Resistant+Chemically+Modified+Wood&rft.jtitle=Frontiers+in+Forests+and+Global+Change&rft.au=Ibach%2C+Rebecca+E.&rft.au=Plaza%2C+Nayomi+Z.&rft.au=Pingali%2C+Sai+Venkatesh&rft.date=2022-01-11&rft.issn=2624-893X&rft.eissn=2624-893X&rft.volume=4&rft_id=info:doi/10.3389%2Fffgc.2021.814086&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_ffgc_2021_814086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-893X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-893X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-893X&client=summon