Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces
Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject el...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 5; pp. 1117 - 1127 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject electroencephalogram (EEG) classification, i.e., we have labeled EEG trials from one or more source subjects, but only unlabeled EEG trials from the target subject. We propose a novel manifold embedded knowledge transfer (MEKT) approach, which first aligns the covariance matrices of the EEG trials in the Riemannian manifold, extracts features in the tangent space, and then performs domain adaptation by minimizing the joint probability distribution shift between the source and the target domains, while preserving their geometric structures. MEKT can cope with one or multiple source domains, and can be computed efficiently. We also propose a domain transferability estimation (DTE) approach to identify the most beneficial source domains, in case there are a large number of source domains. Experiments on four EEG datasets from two different BCI paradigms demonstrated that MEKT outperformed several state-of-the-art transfer learning approaches, and DTE can reduce more than half of the computational cost when the number of source subjects is large, with little sacrifice of classification accuracy. |
---|---|
AbstractList | Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject electroencephalogram (EEG) classification, i.e., we have labeled EEG trials from one or more source subjects, but only unlabeled EEG trials from the target subject. We propose a novel manifold embedded knowledge transfer (MEKT) approach, which first aligns the covariance matrices of the EEG trials in the Riemannian manifold, extracts features in the tangent space, and then performs domain adaptation by minimizing the joint probability distribution shift between the source and the target domains, while preserving their geometric structures. MEKT can cope with one or multiple source domains, and can be computed efficiently. We also propose a domain transferability estimation (DTE) approach to identify the most beneficial source domains, in case there are a large number of source domains. Experiments on four EEG datasets from two different BCI paradigms demonstrated that MEKT outperformed several state-of-the-art transfer learning approaches, and DTE can reduce more than half of the computational cost when the number of source subjects is large, with little sacrifice of classification accuracy. Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject electroencephalogram (EEG) classification, i.e., we have labeled EEG trials from one or more source subjects, but only unlabeled EEG trials from the target subject. We propose a novel manifold embedded knowledge transfer (MEKT) approach, which first aligns the covariance matrices of the EEG trials in the Riemannian manifold, extracts features in the tangent space, and then performs domain adaptation by minimizing the joint probability distribution shift between the source and the target domains, while preserving their geometric structures. MEKT can cope with one or multiple source domains, and can be computed efficiently. We also propose a domain transferability estimation (DTE) approach to identify the most beneficial source domains, in case there are a large number of source domains. Experiments on four EEG datasets from two different BCI paradigms demonstrated that MEKT outperformed several state-of-the-art transfer learning approaches, and DTE can reduce more than half of the computational cost when the number of source subjects is large, with little sacrifice of classification accuracy.Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject electroencephalogram (EEG) classification, i.e., we have labeled EEG trials from one or more source subjects, but only unlabeled EEG trials from the target subject. We propose a novel manifold embedded knowledge transfer (MEKT) approach, which first aligns the covariance matrices of the EEG trials in the Riemannian manifold, extracts features in the tangent space, and then performs domain adaptation by minimizing the joint probability distribution shift between the source and the target domains, while preserving their geometric structures. MEKT can cope with one or multiple source domains, and can be computed efficiently. We also propose a domain transferability estimation (DTE) approach to identify the most beneficial source domains, in case there are a large number of source domains. Experiments on four EEG datasets from two different BCI paradigms demonstrated that MEKT outperformed several state-of-the-art transfer learning approaches, and DTE can reduce more than half of the computational cost when the number of source subjects is large, with little sacrifice of classification accuracy. |
Author | Zhang, Wen Wu, Dongrui |
Author_xml | – sequence: 1 givenname: Wen orcidid: 0000-0002-5498-7918 surname: Zhang fullname: Zhang, Wen email: wenz@hust.edu.cn organization: Ministry of Education Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Dongrui orcidid: 0000-0002-7153-9703 surname: Wu fullname: Wu, Dongrui email: drwu@hust.edu.cn organization: Ministry of Education Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32286993$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1q3DAURkVJaP76Ai0UQzfdeKIrWZa1bIZJG5K0kEzXQpKvi4MtTSWb0rePJjPJIotsJCHO-bjc74Qc-OCRkI9AFwBUna9_3t-tFowyumCqEUrV78gxCNGUlAE92L55VVac0SNyktIDpSBrId-TI85YUyvFj8nFrfF9F4a2WI0W2xbb4tqHfwO2f7BYR-NTh7HoQiwuoul9uQzjZp7y15XPZ2ccpjNy2Jkh4Yf9fUp-X67Wyx_lza_vV8tvN6XjAqaSC2oZqFZw23VSWHBgoOFOCWlyTKMaaFFaC8rSytpa2oobJevaWeEqSfkp-brL3cTwd8Y06bFPDofBeAxz0owrCoIp1mT0yyv0IczR5-k0qygAr4SqM_V5T812xFZvYj-a-F8_bycDzQ5wMaQUsdOun8zUBz_lZQwaqN4WoZ-K0Nsi9L6IrLJX6nP6m9KnndQj4ougqJASGH8EZCySIg |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_jprocont_2025_103408 crossref_primary_10_1109_TNNLS_2023_3243339 crossref_primary_10_1109_TII_2022_3217120 crossref_primary_10_1109_TNSRE_2023_3257319 crossref_primary_10_1109_TNSRE_2022_3219418 crossref_primary_10_1109_TNSRE_2022_3229066 crossref_primary_10_1016_j_enbuild_2023_112826 crossref_primary_10_3389_fnhum_2024_1447662 crossref_primary_10_3389_fnins_2021_733546 crossref_primary_10_1016_j_heliyon_2024_e26255 crossref_primary_10_1080_27706710_2024_2447576 crossref_primary_10_1109_TCDS_2022_3193731 crossref_primary_10_3390_brainsci12050659 crossref_primary_10_3389_fnins_2023_1274320 crossref_primary_10_1109_TIM_2024_3420350 crossref_primary_10_1016_j_neunet_2022_06_008 crossref_primary_10_1109_TNSRE_2024_3445115 crossref_primary_10_1109_TFUZZ_2023_3288479 crossref_primary_10_1007_s11042_024_18648_4 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_3389_fnhum_2022_1049985 crossref_primary_10_1016_j_bspc_2022_104435 crossref_primary_10_1016_j_neucom_2023_01_087 crossref_primary_10_1016_j_eswa_2023_122777 crossref_primary_10_1109_TAFFC_2024_3392791 crossref_primary_10_1016_j_compbiomed_2022_106220 crossref_primary_10_1109_TNSRE_2023_3243257 crossref_primary_10_2139_ssrn_4163287 crossref_primary_10_3389_fpsyt_2021_837149 crossref_primary_10_3390_math13050802 crossref_primary_10_1109_TNSRE_2020_3023761 crossref_primary_10_1016_j_compbiomed_2024_108445 crossref_primary_10_1109_TIM_2024_3451593 crossref_primary_10_1016_j_bspc_2024_106311 crossref_primary_10_1109_JAS_2024_124290 crossref_primary_10_1016_j_engappai_2024_107877 crossref_primary_10_1109_JBHI_2020_3025865 crossref_primary_10_1109_MCI_2022_3199622 crossref_primary_10_1007_s12204_022_2488_4 crossref_primary_10_1109_TIM_2023_3341121 crossref_primary_10_2118_214312_PA crossref_primary_10_3389_fpsyg_2022_899983 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_1016_j_neucom_2024_129010 crossref_primary_10_1109_TNSRE_2023_3241301 crossref_primary_10_1016_j_eswa_2024_124673 crossref_primary_10_1016_j_bspc_2024_107132 crossref_primary_10_2139_ssrn_4155138 crossref_primary_10_1016_j_knosys_2024_112669 crossref_primary_10_1109_JBHI_2024_3402324 crossref_primary_10_1109_TBME_2024_3474049 crossref_primary_10_1007_s11571_021_09676_z crossref_primary_10_1145_3654664 crossref_primary_10_1088_1741_2552_ac9c94 crossref_primary_10_1007_s11517_024_03036_9 crossref_primary_10_1016_j_neucom_2022_09_124 crossref_primary_10_3934_mbe_2023211 crossref_primary_10_1109_JBHI_2024_3463737 crossref_primary_10_1016_j_compeleceng_2024_109680 crossref_primary_10_1007_s11517_024_03094_z crossref_primary_10_1109_TCDS_2021_3137530 crossref_primary_10_1109_TNSRE_2023_3241846 crossref_primary_10_1109_JSEN_2020_3020971 crossref_primary_10_3390_app13085205 crossref_primary_10_1016_j_compbiomed_2023_107806 crossref_primary_10_1117_1_JEI_32_4_043007 crossref_primary_10_1109_LSP_2024_3465348 crossref_primary_10_3389_fnins_2021_779231 crossref_primary_10_1016_j_eswa_2024_123492 crossref_primary_10_1109_TNSRE_2021_3125386 crossref_primary_10_1108_IJICC_01_2022_0002 crossref_primary_10_1088_1741_2552_ad430d crossref_primary_10_1088_1741_2552_ac1ed2 crossref_primary_10_1109_TII_2024_3450010 crossref_primary_10_3390_s24186110 crossref_primary_10_1016_j_neucom_2020_09_017 crossref_primary_10_1109_JBHI_2022_3218453 crossref_primary_10_1016_j_bspc_2023_105556 crossref_primary_10_1016_j_bspc_2023_105155 crossref_primary_10_1016_j_neucom_2024_127944 crossref_primary_10_1109_TCSS_2023_3314508 crossref_primary_10_1109_TIM_2024_3476618 crossref_primary_10_31083_j_jin2312218 crossref_primary_10_1016_j_neucom_2024_128354 crossref_primary_10_1007_s11517_024_03032_z crossref_primary_10_1109_JAS_2022_106004 crossref_primary_10_1109_TNSRE_2022_3207494 crossref_primary_10_1109_TNSRE_2020_3027004 crossref_primary_10_1109_TBME_2022_3168570 crossref_primary_10_1088_1741_2552_ad5fbd crossref_primary_10_1007_s13042_023_01957_9 crossref_primary_10_1016_j_asoc_2024_112087 crossref_primary_10_1016_j_cmpb_2021_106150 crossref_primary_10_1109_JBHI_2024_3384816 crossref_primary_10_1016_j_jneumeth_2024_110332 crossref_primary_10_1016_j_asoc_2023_110656 crossref_primary_10_1016_j_eswa_2023_121612 crossref_primary_10_3390_app14062326 crossref_primary_10_1109_TCCN_2023_3330062 crossref_primary_10_1016_j_measurement_2025_116836 crossref_primary_10_1016_j_neunet_2020_12_013 crossref_primary_10_1007_s11571_023_09936_0 crossref_primary_10_1016_j_bspc_2022_104389 crossref_primary_10_1007_s11571_022_09821_2 crossref_primary_10_12677_AIRR_2023_121003 crossref_primary_10_1109_TAFFC_2022_3189222 crossref_primary_10_1109_JPHOT_2024_3392392 crossref_primary_10_1109_JSEN_2021_3101684 |
Cites_doi | 10.1109/THMS.2016.2608931 10.1371/journal.pone.0056624 10.1109/ICASSP.2010.5495183 10.1109/TNSRE.2016.2627016 10.1109/SMC.2015.560 10.1088/1741-2552/aab2f2 10.1109/MCI.2015.2501545 10.1109/TKDE.2005.198 10.1016/j.neucom.2012.12.039 10.1109/TBME.2011.2172210 10.1109/TBME.2009.2012869 10.1109/TPAMI.1982.4767298 10.2307/2283970 10.1016/j.jneumeth.2003.10.009 10.1109/TFUZZ.2016.2633379 10.1109/TNN.2010.2091281 10.1007/11566465_15 10.1109/TBME.2019.2913914 10.1162/089976603321780317 10.1109/JPROC.2015.2407272 10.1109/IWW-BCI.2018.8311494 10.1109/TNSRE.2019.2908955 10.1515/9781400827787 10.1016/S1388-2457(02)00057-3 10.1111/j.2517-6161.1995.tb02031.x 10.1109/CVPR.2017.547 10.1155/2012/578295 10.1109/TBME.2018.2889705 10.1017/CBO9781139032803 10.1109/LSP.2009.2022557 10.1109/EMBC.2015.7318721 10.1109/TBME.2017.2742541 10.1109/ICCV.2013.274 10.1109/TNSRE.2016.2544108 10.1007/BF01129656 10.1145/1961189.1961199 10.1023/B:MACH.0000033120.25363.1e 10.1109/86.895946 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2020.2985996 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1127 |
ExternalDocumentID | 32286993 10_1109_TNSRE_2020_2985996 9057712 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873321 funderid: 10.13039/501100001809 – fundername: Hubei Technology Innovation Platform grantid: 2019AEA171 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c351t-350b219d53bff75b1c1a183c957aace8981de7bb19b04bb67b43a9766cb5c4703 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 11:39:35 EDT 2025 Mon Jul 14 08:10:39 EDT 2025 Wed Feb 19 02:30:12 EST 2025 Tue Jul 01 00:43:20 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-350b219d53bff75b1c1a183c957aace8981de7bb19b04bb67b43a9766cb5c4703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7153-9703 0000-0002-5498-7918 |
PMID | 32286993 |
PQID | 2401134596 |
PQPubID | 85423 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2390152928 pubmed_primary_32286993 ieee_primary_9057712 proquest_journals_2401134596 crossref_citationtrail_10_1109_TNSRE_2020_2985996 crossref_primary_10_1109_TNSRE_2020_2985996 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 sun (ref13) 2016 ref34 ref12 ref37 ref15 ref36 ref31 ref30 ref33 ref11 ref10 ref2 ref39 ref17 ref16 ref19 ref18 gretton (ref28) 2012; 13 ai (ref38) 2018 ref24 gong (ref14) 2012 ref45 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 belkin (ref32) 2006; 7 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 bishop (ref40) 2006 van der maaten (ref43) 2008; 9 wolpaw (ref1) 2002; 113 |
References_xml | – ident: ref4 doi: 10.1109/THMS.2016.2608931 – ident: ref17 doi: 10.1371/journal.pone.0056624 – volume: 13 start-page: 723 year: 2012 ident: ref28 article-title: A kernel two-sample test publication-title: J Mach Learn Res – ident: ref21 doi: 10.1109/ICASSP.2010.5495183 – ident: ref9 doi: 10.1109/TNSRE.2016.2627016 – ident: ref34 doi: 10.1109/SMC.2015.560 – ident: ref5 doi: 10.1088/1741-2552/aab2f2 – year: 2006 ident: ref40 publication-title: Pattern Recognition and Machine Learning – ident: ref19 doi: 10.1109/MCI.2015.2501545 – ident: ref30 doi: 10.1109/TKDE.2005.198 – year: 2018 ident: ref38 publication-title: Advanced Rehabilitative Technology – ident: ref25 doi: 10.1016/j.neucom.2012.12.039 – ident: ref8 doi: 10.1109/TBME.2011.2172210 – ident: ref39 doi: 10.1109/TBME.2009.2012869 – start-page: 2066 year: 2012 ident: ref14 article-title: Geodesic flow kernel for unsupervised domain adaptation publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref42 doi: 10.1109/TPAMI.1982.4767298 – ident: ref44 doi: 10.2307/2283970 – ident: ref36 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref33 doi: 10.1109/TFUZZ.2016.2633379 – ident: ref12 doi: 10.1109/TNN.2010.2091281 – ident: ref7 doi: 10.1007/11566465_15 – ident: ref24 doi: 10.1109/TBME.2019.2913914 – volume: 9 start-page: 2579 year: 2008 ident: ref43 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: ref31 doi: 10.1162/089976603321780317 – ident: ref3 doi: 10.1109/JPROC.2015.2407272 – ident: ref22 doi: 10.1109/IWW-BCI.2018.8311494 – ident: ref37 doi: 10.1109/TNSRE.2019.2908955 – ident: ref27 doi: 10.1515/9781400827787 – volume: 113 start-page: 767 year: 2002 ident: ref1 article-title: Brain-computer interfaces for communication and control publication-title: Clin Neurophys doi: 10.1016/S1388-2457(02)00057-3 – ident: ref45 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: ref16 doi: 10.1109/CVPR.2017.547 – ident: ref35 doi: 10.1155/2012/578295 – ident: ref10 doi: 10.1109/TBME.2018.2889705 – ident: ref2 doi: 10.1017/CBO9781139032803 – ident: ref20 doi: 10.1109/LSP.2009.2022557 – ident: ref11 doi: 10.1109/EMBC.2015.7318721 – ident: ref23 doi: 10.1109/TBME.2017.2742541 – ident: ref15 doi: 10.1109/ICCV.2013.274 – ident: ref18 doi: 10.1109/TNSRE.2016.2544108 – ident: ref6 doi: 10.1007/BF01129656 – ident: ref41 doi: 10.1145/1961189.1961199 – volume: 7 start-page: 2399 year: 2006 ident: ref32 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples publication-title: J Mach Learn Res – ident: ref29 doi: 10.1023/B:MACH.0000033120.25363.1e – start-page: 2058 year: 2016 ident: ref13 article-title: Return of frustratingly easy domain adaptation publication-title: Proc 30th AAAI Conf Artif Intell – ident: ref26 doi: 10.1109/86.895946 |
SSID | ssj0017657 |
Score | 2.6274798 |
Snippet | Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1117 |
SubjectTerms | Brain-computer interfaces Classification Computational neuroscience Covariance matrices Covariance matrix Domains EEG electroencephalogram Electroencephalography Feature extraction Geometry Human-computer interface Interfaces Knowledge management Learning Manifolds Probability distribution Riemann manifold Riemannian manifold Symmetric matrices Task analysis Transfer learning |
Title | Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces |
URI | https://ieeexplore.ieee.org/document/9057712 https://www.ncbi.nlm.nih.gov/pubmed/32286993 https://www.proquest.com/docview/2401134596 https://www.proquest.com/docview/2390152928 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHlAvUGgLWwoyEnCh3jqxHcdHiraqQNtD2Uq9RR7HkSpKFpXdS389Y-ehtgKElEOk2ImdGY-_eXgG4B0WDaGCUHJTesuVQ8GdsA3XMha6lcK7Otoh52fF6YX6cqkvN-BwPAsTQkjBZ2Eab5Mvv176dTSVHVkCFyaWFH5Eilt3Vmv0GJgiZfWkBay4krkYDsgIe7Q4-3Y-I1UwF9PcljEfyRY8JkYuC2vlvf0oFVj5O9ZMe87JU5gPo-1CTb5P1yuc-tsHiRz_dzrb8KQHn-xTxy3PYCO0z-H93UTDbNFlGWAf2Pm9HN47cDx37VWzvK7Z7AcGklc1-zoY5Fja8ppwwwgDs-NYdoIP9SJYMjo2MfRrFy5OZovPp7yvwMC91NmKSy2QRFqtJTaN0Zj5zJEM8FYbR91KS2g3GMTMolCIhUElHQGcwqP2ioTJHmy2yza8BGa8khG8ZNiQBhOkE3Rh9APXITe5mkA20KHy_dRilYzrKqkpwlaJjFUkY9WTcQIfxz4_u-Qc_2y9E2kwtux__wQOBnJX_fr9VRHOyTKpdOz1dnxMKy-6U1wblmtqk8xFuc3LCbzo2GR898Bd-3_-5ivYiiPrAicPYHN1sw6vCdys8E3i6t8PdvHd |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRYJeyqPQLrRgJOAC3tqxHcdHirZaaHcPZSv1FtmOIyFKFpXdS399x85DFFGElEOk2ImdGc98nhnPALxxeY2oIBRUF95QaR2jlpmaKhEL3QrmbRXtkLN5Pj2XXy7UxQZ8GM7ChBBS8FkYx9vky6-Wfh1NZYcGwYWOJYXvod5XvD2tNfgMdJ7yeuISllSKjPVHZJg5XMy_nk1wM5ixcWaKmJFkC-4jKxe5MeKWRkolVu5Gm0nrHD-EWT_eNtjk-3i9cmN__Ucqx_-d0CPY7uAn-djyy2PYCM0TePt7qmGyaPMMkHfk7FYW7x04mtnmW728rMjkhwsosSpy0pvkSFJ6dbgiiILJUSw8QfuKESSZHesY_PUUzo8ni09T2tVgoF4ovqJCMYdCrVLC1bVWjntuUQp4o7TFboVBvBu0c9w4Jp3LtZPCIsTJvVNeojh5BpvNsgl7QLSXIsIX7mrcwwRhGV4ueoKrkOlMjoD3dCh9N7VYJ-OyTBsVZspExjKSsezIOIL3Q5-fbXqOf7beiTQYWna_fwT7PbnLbgX_KhHpcC6kir1eD49x7UWHim3Cco1tksEoM1kxgt2WTYZ399z1_O_ffAUPpovZaXn6eX7yArbiKNswyn3YXF2twwFCnZV7mTj8BtUg9SY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manifold+Embedded+Knowledge+Transfer+for+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhang%2C+Wen&rft.au=Wu%2C+Dongrui&rft.date=2020-05-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=28&rft.issue=5&rft.spage=1117&rft.epage=1127&rft_id=info:doi/10.1109%2FTNSRE.2020.2985996&rft_id=info%3Apmid%2F32286993&rft.externalDocID=9057712 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |