Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces

Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject el...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 5; pp. 1117 - 1127
Main Authors Zhang, Wen, Wu, Dongrui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject electroencephalogram (EEG) classification, i.e., we have labeled EEG trials from one or more source subjects, but only unlabeled EEG trials from the target subject. We propose a novel manifold embedded knowledge transfer (MEKT) approach, which first aligns the covariance matrices of the EEG trials in the Riemannian manifold, extracts features in the tangent space, and then performs domain adaptation by minimizing the joint probability distribution shift between the source and the target domains, while preserving their geometric structures. MEKT can cope with one or multiple source domains, and can be computed efficiently. We also propose a domain transferability estimation (DTE) approach to identify the most beneficial source domains, in case there are a large number of source domains. Experiments on four EEG datasets from two different BCI paradigms demonstrated that MEKT outperformed several state-of-the-art transfer learning approaches, and DTE can reduce more than half of the computational cost when the number of source subjects is large, with little sacrifice of classification accuracy.
AbstractList Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject electroencephalogram (EEG) classification, i.e., we have labeled EEG trials from one or more source subjects, but only unlabeled EEG trials from the target subject. We propose a novel manifold embedded knowledge transfer (MEKT) approach, which first aligns the covariance matrices of the EEG trials in the Riemannian manifold, extracts features in the tangent space, and then performs domain adaptation by minimizing the joint probability distribution shift between the source and the target domains, while preserving their geometric structures. MEKT can cope with one or multiple source domains, and can be computed efficiently. We also propose a domain transferability estimation (DTE) approach to identify the most beneficial source domains, in case there are a large number of source domains. Experiments on four EEG datasets from two different BCI paradigms demonstrated that MEKT outperformed several state-of-the-art transfer learning approaches, and DTE can reduce more than half of the computational cost when the number of source subjects is large, with little sacrifice of classification accuracy.
Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject electroencephalogram (EEG) classification, i.e., we have labeled EEG trials from one or more source subjects, but only unlabeled EEG trials from the target subject. We propose a novel manifold embedded knowledge transfer (MEKT) approach, which first aligns the covariance matrices of the EEG trials in the Riemannian manifold, extracts features in the tangent space, and then performs domain adaptation by minimizing the joint probability distribution shift between the source and the target domains, while preserving their geometric structures. MEKT can cope with one or multiple source domains, and can be computed efficiently. We also propose a domain transferability estimation (DTE) approach to identify the most beneficial source domains, in case there are a large number of source domains. Experiments on four EEG datasets from two different BCI paradigms demonstrated that MEKT outperformed several state-of-the-art transfer learning approaches, and DTE can reduce more than half of the computational cost when the number of source subjects is large, with little sacrifice of classification accuracy.Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer interfaces (BCIs), for coping with variations among different subjects and/or tasks. This paper considers offline unsupervised cross-subject electroencephalogram (EEG) classification, i.e., we have labeled EEG trials from one or more source subjects, but only unlabeled EEG trials from the target subject. We propose a novel manifold embedded knowledge transfer (MEKT) approach, which first aligns the covariance matrices of the EEG trials in the Riemannian manifold, extracts features in the tangent space, and then performs domain adaptation by minimizing the joint probability distribution shift between the source and the target domains, while preserving their geometric structures. MEKT can cope with one or multiple source domains, and can be computed efficiently. We also propose a domain transferability estimation (DTE) approach to identify the most beneficial source domains, in case there are a large number of source domains. Experiments on four EEG datasets from two different BCI paradigms demonstrated that MEKT outperformed several state-of-the-art transfer learning approaches, and DTE can reduce more than half of the computational cost when the number of source subjects is large, with little sacrifice of classification accuracy.
Author Zhang, Wen
Wu, Dongrui
Author_xml – sequence: 1
  givenname: Wen
  orcidid: 0000-0002-5498-7918
  surname: Zhang
  fullname: Zhang, Wen
  email: wenz@hust.edu.cn
  organization: Ministry of Education Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Dongrui
  orcidid: 0000-0002-7153-9703
  surname: Wu
  fullname: Wu, Dongrui
  email: drwu@hust.edu.cn
  organization: Ministry of Education Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32286993$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1q3DAURkVJaP76Ai0UQzfdeKIrWZa1bIZJG5K0kEzXQpKvi4MtTSWb0rePJjPJIotsJCHO-bjc74Qc-OCRkI9AFwBUna9_3t-tFowyumCqEUrV78gxCNGUlAE92L55VVac0SNyktIDpSBrId-TI85YUyvFj8nFrfF9F4a2WI0W2xbb4tqHfwO2f7BYR-NTh7HoQiwuoul9uQzjZp7y15XPZ2ccpjNy2Jkh4Yf9fUp-X67Wyx_lza_vV8tvN6XjAqaSC2oZqFZw23VSWHBgoOFOCWlyTKMaaFFaC8rSytpa2oobJevaWeEqSfkp-brL3cTwd8Y06bFPDofBeAxz0owrCoIp1mT0yyv0IczR5-k0qygAr4SqM_V5T812xFZvYj-a-F8_bycDzQ5wMaQUsdOun8zUBz_lZQwaqN4WoZ-K0Nsi9L6IrLJX6nP6m9KnndQj4ougqJASGH8EZCySIg
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_jprocont_2025_103408
crossref_primary_10_1109_TNNLS_2023_3243339
crossref_primary_10_1109_TII_2022_3217120
crossref_primary_10_1109_TNSRE_2023_3257319
crossref_primary_10_1109_TNSRE_2022_3219418
crossref_primary_10_1109_TNSRE_2022_3229066
crossref_primary_10_1016_j_enbuild_2023_112826
crossref_primary_10_3389_fnhum_2024_1447662
crossref_primary_10_3389_fnins_2021_733546
crossref_primary_10_1016_j_heliyon_2024_e26255
crossref_primary_10_1080_27706710_2024_2447576
crossref_primary_10_1109_TCDS_2022_3193731
crossref_primary_10_3390_brainsci12050659
crossref_primary_10_3389_fnins_2023_1274320
crossref_primary_10_1109_TIM_2024_3420350
crossref_primary_10_1016_j_neunet_2022_06_008
crossref_primary_10_1109_TNSRE_2024_3445115
crossref_primary_10_1109_TFUZZ_2023_3288479
crossref_primary_10_1007_s11042_024_18648_4
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_3389_fnhum_2022_1049985
crossref_primary_10_1016_j_bspc_2022_104435
crossref_primary_10_1016_j_neucom_2023_01_087
crossref_primary_10_1016_j_eswa_2023_122777
crossref_primary_10_1109_TAFFC_2024_3392791
crossref_primary_10_1016_j_compbiomed_2022_106220
crossref_primary_10_1109_TNSRE_2023_3243257
crossref_primary_10_2139_ssrn_4163287
crossref_primary_10_3389_fpsyt_2021_837149
crossref_primary_10_3390_math13050802
crossref_primary_10_1109_TNSRE_2020_3023761
crossref_primary_10_1016_j_compbiomed_2024_108445
crossref_primary_10_1109_TIM_2024_3451593
crossref_primary_10_1016_j_bspc_2024_106311
crossref_primary_10_1109_JAS_2024_124290
crossref_primary_10_1016_j_engappai_2024_107877
crossref_primary_10_1109_JBHI_2020_3025865
crossref_primary_10_1109_MCI_2022_3199622
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_1109_TIM_2023_3341121
crossref_primary_10_2118_214312_PA
crossref_primary_10_3389_fpsyg_2022_899983
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1016_j_neucom_2024_129010
crossref_primary_10_1109_TNSRE_2023_3241301
crossref_primary_10_1016_j_eswa_2024_124673
crossref_primary_10_1016_j_bspc_2024_107132
crossref_primary_10_2139_ssrn_4155138
crossref_primary_10_1016_j_knosys_2024_112669
crossref_primary_10_1109_JBHI_2024_3402324
crossref_primary_10_1109_TBME_2024_3474049
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_1145_3654664
crossref_primary_10_1088_1741_2552_ac9c94
crossref_primary_10_1007_s11517_024_03036_9
crossref_primary_10_1016_j_neucom_2022_09_124
crossref_primary_10_3934_mbe_2023211
crossref_primary_10_1109_JBHI_2024_3463737
crossref_primary_10_1016_j_compeleceng_2024_109680
crossref_primary_10_1007_s11517_024_03094_z
crossref_primary_10_1109_TCDS_2021_3137530
crossref_primary_10_1109_TNSRE_2023_3241846
crossref_primary_10_1109_JSEN_2020_3020971
crossref_primary_10_3390_app13085205
crossref_primary_10_1016_j_compbiomed_2023_107806
crossref_primary_10_1117_1_JEI_32_4_043007
crossref_primary_10_1109_LSP_2024_3465348
crossref_primary_10_3389_fnins_2021_779231
crossref_primary_10_1016_j_eswa_2024_123492
crossref_primary_10_1109_TNSRE_2021_3125386
crossref_primary_10_1108_IJICC_01_2022_0002
crossref_primary_10_1088_1741_2552_ad430d
crossref_primary_10_1088_1741_2552_ac1ed2
crossref_primary_10_1109_TII_2024_3450010
crossref_primary_10_3390_s24186110
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_1109_JBHI_2022_3218453
crossref_primary_10_1016_j_bspc_2023_105556
crossref_primary_10_1016_j_bspc_2023_105155
crossref_primary_10_1016_j_neucom_2024_127944
crossref_primary_10_1109_TCSS_2023_3314508
crossref_primary_10_1109_TIM_2024_3476618
crossref_primary_10_31083_j_jin2312218
crossref_primary_10_1016_j_neucom_2024_128354
crossref_primary_10_1007_s11517_024_03032_z
crossref_primary_10_1109_JAS_2022_106004
crossref_primary_10_1109_TNSRE_2022_3207494
crossref_primary_10_1109_TNSRE_2020_3027004
crossref_primary_10_1109_TBME_2022_3168570
crossref_primary_10_1088_1741_2552_ad5fbd
crossref_primary_10_1007_s13042_023_01957_9
crossref_primary_10_1016_j_asoc_2024_112087
crossref_primary_10_1016_j_cmpb_2021_106150
crossref_primary_10_1109_JBHI_2024_3384816
crossref_primary_10_1016_j_jneumeth_2024_110332
crossref_primary_10_1016_j_asoc_2023_110656
crossref_primary_10_1016_j_eswa_2023_121612
crossref_primary_10_3390_app14062326
crossref_primary_10_1109_TCCN_2023_3330062
crossref_primary_10_1016_j_measurement_2025_116836
crossref_primary_10_1016_j_neunet_2020_12_013
crossref_primary_10_1007_s11571_023_09936_0
crossref_primary_10_1016_j_bspc_2022_104389
crossref_primary_10_1007_s11571_022_09821_2
crossref_primary_10_12677_AIRR_2023_121003
crossref_primary_10_1109_TAFFC_2022_3189222
crossref_primary_10_1109_JPHOT_2024_3392392
crossref_primary_10_1109_JSEN_2021_3101684
Cites_doi 10.1109/THMS.2016.2608931
10.1371/journal.pone.0056624
10.1109/ICASSP.2010.5495183
10.1109/TNSRE.2016.2627016
10.1109/SMC.2015.560
10.1088/1741-2552/aab2f2
10.1109/MCI.2015.2501545
10.1109/TKDE.2005.198
10.1016/j.neucom.2012.12.039
10.1109/TBME.2011.2172210
10.1109/TBME.2009.2012869
10.1109/TPAMI.1982.4767298
10.2307/2283970
10.1016/j.jneumeth.2003.10.009
10.1109/TFUZZ.2016.2633379
10.1109/TNN.2010.2091281
10.1007/11566465_15
10.1109/TBME.2019.2913914
10.1162/089976603321780317
10.1109/JPROC.2015.2407272
10.1109/IWW-BCI.2018.8311494
10.1109/TNSRE.2019.2908955
10.1515/9781400827787
10.1016/S1388-2457(02)00057-3
10.1111/j.2517-6161.1995.tb02031.x
10.1109/CVPR.2017.547
10.1155/2012/578295
10.1109/TBME.2018.2889705
10.1017/CBO9781139032803
10.1109/LSP.2009.2022557
10.1109/EMBC.2015.7318721
10.1109/TBME.2017.2742541
10.1109/ICCV.2013.274
10.1109/TNSRE.2016.2544108
10.1007/BF01129656
10.1145/1961189.1961199
10.1023/B:MACH.0000033120.25363.1e
10.1109/86.895946
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2020.2985996
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1127
ExternalDocumentID 32286993
10_1109_TNSRE_2020_2985996
9057712
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873321
  funderid: 10.13039/501100001809
– fundername: Hubei Technology Innovation Platform
  grantid: 2019AEA171
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-350b219d53bff75b1c1a183c957aace8981de7bb19b04bb67b43a9766cb5c4703
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 11:39:35 EDT 2025
Mon Jul 14 08:10:39 EDT 2025
Wed Feb 19 02:30:12 EST 2025
Tue Jul 01 00:43:20 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-350b219d53bff75b1c1a183c957aace8981de7bb19b04bb67b43a9766cb5c4703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7153-9703
0000-0002-5498-7918
PMID 32286993
PQID 2401134596
PQPubID 85423
PageCount 11
ParticipantIDs proquest_miscellaneous_2390152928
pubmed_primary_32286993
ieee_primary_9057712
proquest_journals_2401134596
crossref_citationtrail_10_1109_TNSRE_2020_2985996
crossref_primary_10_1109_TNSRE_2020_2985996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
sun (ref13) 2016
ref34
ref12
ref37
ref15
ref36
ref31
ref30
ref33
ref11
ref10
ref2
ref39
ref17
ref16
ref19
ref18
gretton (ref28) 2012; 13
ai (ref38) 2018
ref24
gong (ref14) 2012
ref45
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
belkin (ref32) 2006; 7
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
bishop (ref40) 2006
van der maaten (ref43) 2008; 9
wolpaw (ref1) 2002; 113
References_xml – ident: ref4
  doi: 10.1109/THMS.2016.2608931
– ident: ref17
  doi: 10.1371/journal.pone.0056624
– volume: 13
  start-page: 723
  year: 2012
  ident: ref28
  article-title: A kernel two-sample test
  publication-title: J Mach Learn Res
– ident: ref21
  doi: 10.1109/ICASSP.2010.5495183
– ident: ref9
  doi: 10.1109/TNSRE.2016.2627016
– ident: ref34
  doi: 10.1109/SMC.2015.560
– ident: ref5
  doi: 10.1088/1741-2552/aab2f2
– year: 2006
  ident: ref40
  publication-title: Pattern Recognition and Machine Learning
– ident: ref19
  doi: 10.1109/MCI.2015.2501545
– ident: ref30
  doi: 10.1109/TKDE.2005.198
– year: 2018
  ident: ref38
  publication-title: Advanced Rehabilitative Technology
– ident: ref25
  doi: 10.1016/j.neucom.2012.12.039
– ident: ref8
  doi: 10.1109/TBME.2011.2172210
– ident: ref39
  doi: 10.1109/TBME.2009.2012869
– start-page: 2066
  year: 2012
  ident: ref14
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref42
  doi: 10.1109/TPAMI.1982.4767298
– ident: ref44
  doi: 10.2307/2283970
– ident: ref36
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref33
  doi: 10.1109/TFUZZ.2016.2633379
– ident: ref12
  doi: 10.1109/TNN.2010.2091281
– ident: ref7
  doi: 10.1007/11566465_15
– ident: ref24
  doi: 10.1109/TBME.2019.2913914
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref43
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref31
  doi: 10.1162/089976603321780317
– ident: ref3
  doi: 10.1109/JPROC.2015.2407272
– ident: ref22
  doi: 10.1109/IWW-BCI.2018.8311494
– ident: ref37
  doi: 10.1109/TNSRE.2019.2908955
– ident: ref27
  doi: 10.1515/9781400827787
– volume: 113
  start-page: 767
  year: 2002
  ident: ref1
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin Neurophys
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref45
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: ref16
  doi: 10.1109/CVPR.2017.547
– ident: ref35
  doi: 10.1155/2012/578295
– ident: ref10
  doi: 10.1109/TBME.2018.2889705
– ident: ref2
  doi: 10.1017/CBO9781139032803
– ident: ref20
  doi: 10.1109/LSP.2009.2022557
– ident: ref11
  doi: 10.1109/EMBC.2015.7318721
– ident: ref23
  doi: 10.1109/TBME.2017.2742541
– ident: ref15
  doi: 10.1109/ICCV.2013.274
– ident: ref18
  doi: 10.1109/TNSRE.2016.2544108
– ident: ref6
  doi: 10.1007/BF01129656
– ident: ref41
  doi: 10.1145/1961189.1961199
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref32
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– ident: ref29
  doi: 10.1023/B:MACH.0000033120.25363.1e
– start-page: 2058
  year: 2016
  ident: ref13
  article-title: Return of frustratingly easy domain adaptation
  publication-title: Proc 30th AAAI Conf Artif Intell
– ident: ref26
  doi: 10.1109/86.895946
SSID ssj0017657
Score 2.6274798
Snippet Transfer learning makes use of data or knowledge in one problem to help solve a different, yet related, problem. It is particularly useful in brain-computer...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1117
SubjectTerms Brain-computer interfaces
Classification
Computational neuroscience
Covariance matrices
Covariance matrix
Domains
EEG
electroencephalogram
Electroencephalography
Feature extraction
Geometry
Human-computer interface
Interfaces
Knowledge management
Learning
Manifolds
Probability distribution
Riemann manifold
Riemannian manifold
Symmetric matrices
Task analysis
Transfer learning
Title Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/9057712
https://www.ncbi.nlm.nih.gov/pubmed/32286993
https://www.proquest.com/docview/2401134596
https://www.proquest.com/docview/2390152928
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHlAvUGgLWwoyEnCh3jqxHcdHiraqQNtD2Uq9RR7HkSpKFpXdS389Y-ehtgKElEOk2ImdGY-_eXgG4B0WDaGCUHJTesuVQ8GdsA3XMha6lcK7Otoh52fF6YX6cqkvN-BwPAsTQkjBZ2Eab5Mvv176dTSVHVkCFyaWFH5Eilt3Vmv0GJgiZfWkBay4krkYDsgIe7Q4-3Y-I1UwF9PcljEfyRY8JkYuC2vlvf0oFVj5O9ZMe87JU5gPo-1CTb5P1yuc-tsHiRz_dzrb8KQHn-xTxy3PYCO0z-H93UTDbNFlGWAf2Pm9HN47cDx37VWzvK7Z7AcGklc1-zoY5Fja8ppwwwgDs-NYdoIP9SJYMjo2MfRrFy5OZovPp7yvwMC91NmKSy2QRFqtJTaN0Zj5zJEM8FYbR91KS2g3GMTMolCIhUElHQGcwqP2ioTJHmy2yza8BGa8khG8ZNiQBhOkE3Rh9APXITe5mkA20KHy_dRilYzrKqkpwlaJjFUkY9WTcQIfxz4_u-Qc_2y9E2kwtux__wQOBnJX_fr9VRHOyTKpdOz1dnxMKy-6U1wblmtqk8xFuc3LCbzo2GR898Bd-3_-5ivYiiPrAicPYHN1sw6vCdys8E3i6t8PdvHd
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRYJeyqPQLrRgJOAC3tqxHcdHirZaaHcPZSv1FtmOIyFKFpXdS399x85DFFGElEOk2ImdGc98nhnPALxxeY2oIBRUF95QaR2jlpmaKhEL3QrmbRXtkLN5Pj2XXy7UxQZ8GM7ChBBS8FkYx9vky6-Wfh1NZYcGwYWOJYXvod5XvD2tNfgMdJ7yeuISllSKjPVHZJg5XMy_nk1wM5ixcWaKmJFkC-4jKxe5MeKWRkolVu5Gm0nrHD-EWT_eNtjk-3i9cmN__Ucqx_-d0CPY7uAn-djyy2PYCM0TePt7qmGyaPMMkHfk7FYW7x04mtnmW728rMjkhwsosSpy0pvkSFJ6dbgiiILJUSw8QfuKESSZHesY_PUUzo8ni09T2tVgoF4ovqJCMYdCrVLC1bVWjntuUQp4o7TFboVBvBu0c9w4Jp3LtZPCIsTJvVNeojh5BpvNsgl7QLSXIsIX7mrcwwRhGV4ueoKrkOlMjoD3dCh9N7VYJ-OyTBsVZspExjKSsezIOIL3Q5-fbXqOf7beiTQYWna_fwT7PbnLbgX_KhHpcC6kir1eD49x7UWHim3Cco1tksEoM1kxgt2WTYZ399z1_O_ffAUPpovZaXn6eX7yArbiKNswyn3YXF2twwFCnZV7mTj8BtUg9SY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manifold+Embedded+Knowledge+Transfer+for+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhang%2C+Wen&rft.au=Wu%2C+Dongrui&rft.date=2020-05-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=28&rft.issue=5&rft.spage=1117&rft.epage=1127&rft_id=info:doi/10.1109%2FTNSRE.2020.2985996&rft_id=info%3Apmid%2F32286993&rft.externalDocID=9057712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon