Numerical analysis of flow configurations and electrical contact positions in SOFC single cells and their impact on local effects

Predictable long-term operation is key to the industrial roll-out of SOFC technologies; as one of the primary factors hindering steady and reliable operation, performance degradation is one of the main challenges facing SOFC development. A homogeneous temperature profile is essential to the steady l...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 44; no. 3; pp. 1877 - 1895
Main Authors Schluckner, C., Subotić, V., Preißl, S., Hochenauer, C.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predictable long-term operation is key to the industrial roll-out of SOFC technologies; as one of the primary factors hindering steady and reliable operation, performance degradation is one of the main challenges facing SOFC development. A homogeneous temperature profile is essential to the steady long-term operation of SOFC cells. In order to investigate and improve the temperature distribution across the cells, a ceramic housing was developed for an industrial scale (100×100mm2) SOFC single cell with the aid of a spatially resolved numerical model. This study investigated the influence of co-, counter-, and cross-flow configurations, as well as various electrical contact positions in order to analyse the current density distribution and temperature evolution within the cell. The chemical and electrochemical performance of the model were validated with in-house experimental data gained from operating the cell within the developed cell housing under three hydrogen/nitrogen mixtures of varying levels of humidification. The simulations revealed that the outermost parts of the cathode are subject to diffusion limitations, which can lead to local air starvation effects. Moreover, they showed that the position of the cell's electrical contacts has a distinct impact on the current density distribution, in addition to affecting the temperature profile of the cell. This study found that the counter-flow configuration, in combination with placing the electrical contacts on the inlet side of the cathode led to the most homogeneous current density and temperature distribution across the cell. Most importantly, the position of the electrical contacts was identified as having a major influence on the cell's current density profile, and these position changes were able to homogenize the temperature distribution across the electrolyte. This configuration is thus proposed as a viable method of both ensuring the steady long-term operation of SOFCs and prolonging their lifetimes. •Detailed numerical study to scrutinize current density and temperature distribution.•Position of electrical contacts impacts current and temperature profile.•Flow configuration has highest influence on local current and temperature trend.•Counter-flow and taps at cathode inlet are best for long-term performance stability.
AbstractList Predictable long-term operation is key to the industrial roll-out of SOFC technologies; as one of the primary factors hindering steady and reliable operation, performance degradation is one of the main challenges facing SOFC development. A homogeneous temperature profile is essential to the steady long-term operation of SOFC cells. In order to investigate and improve the temperature distribution across the cells, a ceramic housing was developed for an industrial scale (100×100mm2) SOFC single cell with the aid of a spatially resolved numerical model. This study investigated the influence of co-, counter-, and cross-flow configurations, as well as various electrical contact positions in order to analyse the current density distribution and temperature evolution within the cell. The chemical and electrochemical performance of the model were validated with in-house experimental data gained from operating the cell within the developed cell housing under three hydrogen/nitrogen mixtures of varying levels of humidification. The simulations revealed that the outermost parts of the cathode are subject to diffusion limitations, which can lead to local air starvation effects. Moreover, they showed that the position of the cell's electrical contacts has a distinct impact on the current density distribution, in addition to affecting the temperature profile of the cell. This study found that the counter-flow configuration, in combination with placing the electrical contacts on the inlet side of the cathode led to the most homogeneous current density and temperature distribution across the cell. Most importantly, the position of the electrical contacts was identified as having a major influence on the cell's current density profile, and these position changes were able to homogenize the temperature distribution across the electrolyte. This configuration is thus proposed as a viable method of both ensuring the steady long-term operation of SOFCs and prolonging their lifetimes. •Detailed numerical study to scrutinize current density and temperature distribution.•Position of electrical contacts impacts current and temperature profile.•Flow configuration has highest influence on local current and temperature trend.•Counter-flow and taps at cathode inlet are best for long-term performance stability.
Author Schluckner, C.
Hochenauer, C.
Preißl, S.
Subotić, V.
Author_xml – sequence: 1
  givenname: C.
  surname: Schluckner
  fullname: Schluckner, C.
  email: christoph.schluckner@tugraz.at
– sequence: 2
  givenname: V.
  orcidid: 0000-0002-1425-2802
  surname: Subotić
  fullname: Subotić, V.
– sequence: 3
  givenname: S.
  surname: Preißl
  fullname: Preißl, S.
– sequence: 4
  givenname: C.
  surname: Hochenauer
  fullname: Hochenauer, C.
BookMark eNqFkLFOwzAURT2ABAV-AfkHGvzqxG0kBlBFAQnBAMyW4zzTV7l2ZQdQR_6clMDC0ukN954rvTNiByEGZOwcRAEC1MWqoNVy22LAYiJgVgAUICcH7FhIJcYS6vqIjXJeCQFTUdbH7OvxfY2JrPHcBOO3mTKPjjsfP7mNwdHbezIdxZD7vOXo0XZDvU87Yzu-iZmGAgX-_LSY80zhzSO36P1AdUukxGm92fVj4D7uBtC5fiyfskNnfMaz33vCXhc3L_O78cPT7f38-mFsZQXdWMpm4qYtlK5q6kpUqq0AjLJl1U6aslZYThvnpqouVWuhUiU6OTPYlFLOauWEPGFq2LUp5pzQ6U2itUlbDULv5OmV_pOnd_I0gO7l9eDlP9BS9-OkS4b8fvxqwLF_7oMw6WwJg8WWUv-_biPtm_gGAAmWzQ
CitedBy_id crossref_primary_10_1016_j_apenergy_2019_04_053
crossref_primary_10_1016_j_ijhydene_2023_11_263
crossref_primary_10_1002_fuce_202200058
crossref_primary_10_1039_D0SE01914C
crossref_primary_10_1016_j_ijhydene_2020_07_165
crossref_primary_10_1016_j_jpowsour_2019_227608
crossref_primary_10_1016_j_energy_2021_123085
crossref_primary_10_1016_j_electacta_2023_142234
crossref_primary_10_1016_j_ijhydene_2023_06_140
crossref_primary_10_1016_j_ijhydene_2023_09_028
crossref_primary_10_1016_j_jpowsour_2021_230058
crossref_primary_10_1016_j_ijhydene_2024_04_251
crossref_primary_10_1016_j_jpowsour_2023_233449
crossref_primary_10_3390_en16020788
crossref_primary_10_1016_j_ijhydene_2022_10_265
crossref_primary_10_1016_j_ijhydene_2019_07_016
crossref_primary_10_1016_j_ijhydene_2019_10_252
crossref_primary_10_1063_5_0223633
crossref_primary_10_3390_en16010159
crossref_primary_10_2139_ssrn_4120350
crossref_primary_10_1016_j_surfcoat_2019_125093
crossref_primary_10_1016_j_pecs_2022_101011
crossref_primary_10_1016_j_apenergy_2020_116426
crossref_primary_10_1016_j_ijhydene_2019_12_220
crossref_primary_10_1016_j_ijhydene_2022_08_236
crossref_primary_10_1016_j_enconman_2022_116048
crossref_primary_10_1016_j_ijhydene_2020_07_154
crossref_primary_10_1016_j_ijhydene_2024_01_071
crossref_primary_10_1016_j_enconman_2020_113764
crossref_primary_10_1016_j_electacta_2022_141414
crossref_primary_10_1016_j_ijhydene_2021_04_001
crossref_primary_10_1016_j_ijhydene_2019_12_089
crossref_primary_10_1002_er_7129
crossref_primary_10_1080_15435075_2022_2154609
crossref_primary_10_2139_ssrn_4093771
Cites_doi 10.1115/1.4023216
10.1149/05045.0139ecst
10.1016/j.ijhydene.2014.09.108
10.1115/1.4031862
10.1016/j.jpowsour.2014.11.077
10.1039/b612060c
10.1016/j.ijhydene.2015.06.024
10.1016/j.ijhydene.2013.09.140
10.1115/1.4002618
10.1016/j.ijhydene.2009.08.073
10.1016/j.ijhydene.2012.03.023
10.1016/j.ijhydene.2012.03.043
10.1016/j.ijhydene.2016.11.162
10.1149/2.0491510jes
10.1016/j.ijheatmasstransfer.2011.10.032
10.1016/j.ijhydene.2013.01.072
10.1002/fuce.201200151
10.1016/j.apenergy.2014.08.052
10.1016/j.ssi.2009.10.011
10.1016/j.jpowsour.2015.06.133
10.1016/j.jpcs.2004.06.057
10.1016/j.jpowsour.2006.05.055
10.1016/j.ijhydene.2017.11.109
10.1016/j.jpowsour.2012.12.123
10.1149/07542.0015ecst
10.1016/S0167-2738(02)00349-1
10.1149/06402.0155ecst
10.1149/1.2048228
10.1016/j.ijheatmasstransfer.2004.04.010
10.1016/j.jpowsour.2007.02.019
10.1016/j.ijhydene.2011.09.062
10.1016/j.jpowsour.2008.02.039
10.1149/2.0061608jes
10.1016/j.ijhydene.2013.05.153
10.1016/j.ijhydene.2012.09.061
10.1149/06801.2861ecst
10.1016/j.ijhydene.2013.04.087
10.1016/j.ijhydene.2016.02.045
10.1016/j.ijhydene.2016.06.171
10.1016/j.rser.2014.10.080
ContentType Journal Article
Copyright 2018 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2018 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2018.11.132
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1895
ExternalDocumentID 10_1016_j_ijhydene_2018_11_132
S0360319918337376
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFPUW
AFRZQ
AFTJW
AFZHZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGQPQ
AIGII
APXCP
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SEW
T9H
WUQ
ID FETCH-LOGICAL-c351t-33b2f7d14f5b95056d511a6c45d2b496e47bff76946dc1564ef38aeb433896f03
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Thu Apr 24 22:52:18 EDT 2025
Wed Aug 13 23:56:26 EDT 2025
Sat Aug 30 17:13:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Temperature distribution optimization
SOFC single cell simulation
Scrutiny of flow configuration and electrical contact position
Method of prolonging SOFC lifetimes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-33b2f7d14f5b95056d511a6c45d2b496e47bff76946dc1564ef38aeb433896f03
ORCID 0000-0002-1425-2802
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2018_11_132
crossref_citationtrail_10_1016_j_ijhydene_2018_11_132
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2018_11_132
PublicationCentury 2000
PublicationDate 2019-01-15
PublicationDateYYYYMMDD 2019-01-15
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-15
  day: 15
PublicationDecade 2010
PublicationTitle International journal of hydrogen energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Blum, Batfalsky, Fang, Haart, Malzbender, Margaritis, Menzler, Peters (bib6) 2015; 162
Fang, Blum, Batfalsky, Menzler, Packbier, Stolten (bib5) 2013; 38
McLarty, Brouwer, Samuelsen (bib12) 2013; 38
Klein (bib41) 2013
Nakajo, Mueller, Brouwer, Van herle, Favrat (bib28) 2012; 37
Danilov, Tade (bib32) 2009; 34
O. Razbani, M. Assadi, M. Andersson, Three dimensional CFD modeling and experimental validation of an electrolyte supported solid oxide fuel cell fed with methane-free biogas, Int J Hydrogen Energy 38 (24).
ANSYS Inc (bib39) 2017; 2
Andersson, Yuan, Sundn (bib16) 2012; 55
Schluckner, Subotić, Lawlor, Hochenauer (bib35) 2016; 163
Suzuki, Shikazono, Fukagata, Kasagi (bib44) 2008; 180
Fan, Dimitriou, Pourquie, Liu, Verkooijen, Aravind (bib18) 2013; 38
Peksen, Al-Masri, Blum, Stolten (bib23) 2013; 38
ANSYS Inc (bib40) 2011
Hosseini, Ahmed, Tade (bib10) 2013; 234
B. Haberman, J. Young, Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell, Int J Heat Mass Tran 47 (17).
Hussain, Li, Dincer (bib45) 2006; 161
Xu, Li, Yang, Andersson, Fransson, Larsson, Sundén (bib29) 2016; 41
Brett, Atkinson, Brandon, Skinner (bib4) 2008; 37
Schluckner, Subotić, Lawlor, Hochenauer (bib30) 2014; 39
Al-Masri, Peksen, Blum, Stolten (bib15) 2014; 135
Canavar, Mat, Celik, Timurkutluk, Kaplan (bib25) 2016; 41
Incropera, DeWitt, Bergman, Lavine (bib38) 2013
Frank (bib46) 2010
Peksen, Al-Masri, Peters, Blum, Stolten (bib20) 2017; 75
Peksen, Al-Masri, Peters, Blum, Stolten (bib22) 2014; 64
Shaffer, Brouwer (bib11) 2012; 9
Andersson, Paradis, Yuan, Sunden (bib14) 2011; 8
Nakajo, Mueller, Brouwer, Van herle, Favrat (bib27) 2012; 37
Schluckner, Subotić, Lawlor, Hochenauer (bib31) 2015; 40
Sase, Ueno, Yashiro, Kaimai, Kawada, Mizusaki (bib37) 2005; 66
Wang, Yang, Zhang, Xia (bib42) 2007; 167
Klemenso, Chung, Larsen, Mogensen (bib8) 2005; 152
Peksen, Al-Masri, Peters, Blum, Stolten (bib19) 2015; 68
Blum, Fang, Haart, Malzbender, Margaritis, Menzler, Peters (bib24) 2017; 78
Schluckner, Subotić, Lawlor, Hochenauer (bib36) 2017; 42
Seo, Kim, Park, Lim (bib26) 2018; 43
Zhang, Liu, Tu, Dong, Cheng (bib9) 2009; 180
Subotić, Schluckner, Mathe, Rechberger, Schroettner, Hochenauer (bib2) 2015; 295
Lawlor, Klein, Hochenauer, Griesser, Kuehn, Olabi, Cordiner, Buchinger (bib13) 2013; 10
Lee, Park, Kim, Seo, Kim, Song, Park, Park (bib47) 2015; 276
Peksen, Al-Masri, Blum, Stolten (bib21) 2013; 50
Schluckner, Subotić, Lawlor, Hochenauer (bib34) 2015; 12
Singhal (bib1) 2002; 152–153
Blum, Packbier, Vinke, Haart (bib3) 2013; 13
Elmer, Worall, Wu, Riffat (bib7) 2015; 42
Tseronis, Bonis, Kookos, Theodoropoulos (bib43) 2012; 37
Singhal (10.1016/j.ijhydene.2018.11.132_bib1) 2002; 152–153
Nakajo (10.1016/j.ijhydene.2018.11.132_bib27) 2012; 37
McLarty (10.1016/j.ijhydene.2018.11.132_bib12) 2013; 38
Schluckner (10.1016/j.ijhydene.2018.11.132_bib36) 2017; 42
Hussain (10.1016/j.ijhydene.2018.11.132_bib45) 2006; 161
Hosseini (10.1016/j.ijhydene.2018.11.132_bib10) 2013; 234
Fan (10.1016/j.ijhydene.2018.11.132_bib18) 2013; 38
ANSYS Inc (10.1016/j.ijhydene.2018.11.132_bib39) 2017; 2
Tseronis (10.1016/j.ijhydene.2018.11.132_bib43) 2012; 37
Schluckner (10.1016/j.ijhydene.2018.11.132_bib34) 2015; 12
Schluckner (10.1016/j.ijhydene.2018.11.132_bib31) 2015; 40
Fang (10.1016/j.ijhydene.2018.11.132_bib5) 2013; 38
Shaffer (10.1016/j.ijhydene.2018.11.132_bib11) 2012; 9
Lawlor (10.1016/j.ijhydene.2018.11.132_bib13) 2013; 10
Nakajo (10.1016/j.ijhydene.2018.11.132_bib28) 2012; 37
ANSYS Inc (10.1016/j.ijhydene.2018.11.132_bib40) 2011
Frank (10.1016/j.ijhydene.2018.11.132_bib46) 2010
Canavar (10.1016/j.ijhydene.2018.11.132_bib25) 2016; 41
Klemenso (10.1016/j.ijhydene.2018.11.132_bib8) 2005; 152
10.1016/j.ijhydene.2018.11.132_bib33
Peksen (10.1016/j.ijhydene.2018.11.132_bib21) 2013; 50
Brett (10.1016/j.ijhydene.2018.11.132_bib4) 2008; 37
Subotić (10.1016/j.ijhydene.2018.11.132_bib2) 2015; 295
10.1016/j.ijhydene.2018.11.132_bib17
Peksen (10.1016/j.ijhydene.2018.11.132_bib19) 2015; 68
Blum (10.1016/j.ijhydene.2018.11.132_bib24) 2017; 78
Lee (10.1016/j.ijhydene.2018.11.132_bib47) 2015; 276
Blum (10.1016/j.ijhydene.2018.11.132_bib6) 2015; 162
Al-Masri (10.1016/j.ijhydene.2018.11.132_bib15) 2014; 135
Wang (10.1016/j.ijhydene.2018.11.132_bib42) 2007; 167
Schluckner (10.1016/j.ijhydene.2018.11.132_bib30) 2014; 39
Elmer (10.1016/j.ijhydene.2018.11.132_bib7) 2015; 42
Seo (10.1016/j.ijhydene.2018.11.132_bib26) 2018; 43
Suzuki (10.1016/j.ijhydene.2018.11.132_bib44) 2008; 180
Incropera (10.1016/j.ijhydene.2018.11.132_bib38) 2013
Andersson (10.1016/j.ijhydene.2018.11.132_bib16) 2012; 55
Andersson (10.1016/j.ijhydene.2018.11.132_bib14) 2011; 8
Schluckner (10.1016/j.ijhydene.2018.11.132_bib35) 2016; 163
Blum (10.1016/j.ijhydene.2018.11.132_bib3) 2013; 13
Peksen (10.1016/j.ijhydene.2018.11.132_bib20) 2017; 75
Peksen (10.1016/j.ijhydene.2018.11.132_bib22) 2014; 64
Peksen (10.1016/j.ijhydene.2018.11.132_bib23) 2013; 38
Danilov (10.1016/j.ijhydene.2018.11.132_bib32) 2009; 34
Zhang (10.1016/j.ijhydene.2018.11.132_bib9) 2009; 180
Xu (10.1016/j.ijhydene.2018.11.132_bib29) 2016; 41
Klein (10.1016/j.ijhydene.2018.11.132_bib41) 2013
Sase (10.1016/j.ijhydene.2018.11.132_bib37) 2005; 66
References_xml – volume: 38
  start-page: 7935
  year: 2013
  end-page: 7946
  ident: bib12
  article-title: A spatially resolved physical model for transient system analysis of high temperature fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 510
  year: 2013
  end-page: 524
  ident: bib18
  article-title: Prediction of the performance of a solid oxide fuel cell fuelled with biosyngas: influence of different steam-reforming reaction kinetic parameters
  publication-title: Int J Hydrogen Energy
– year: 2013
  ident: bib41
  article-title: EES - engineering equation solver - user Manual
– volume: 167
  start-page: 398
  year: 2007
  end-page: 405
  ident: bib42
  article-title: 3-D model of thermo-fluid and electrochemical for planar SOFC
  publication-title: J Power Sources
– volume: 152
  start-page: A2186
  year: 2005
  ident: bib8
  article-title: The mechanism behind redox instability of anodes in high-temperature SOFCs
  publication-title: J Electrochem Soc
– volume: 42
  start-page: 4434
  year: 2017
  end-page: 4448
  ident: bib36
  article-title: CFD-simulation of effective carbon gasification strategies from high temperature SOFC Ni-YSZ cermet anodes
  publication-title: Int J Hydrogen Energy
– volume: 10
  year: 2013
  ident: bib13
  article-title: Experimental and numerical study of various MT-SOFC flow manifold techniques: single MT-SOFC analysis
  publication-title: J Fuel Cell Sci Technol
– volume: 9
  year: 2012
  ident: bib11
  article-title: Dynamic model for understanding spatial temperature and species distributions in internal-reforming solid oxide fuel cells
  publication-title: Transactions of the ASME-U-Journal of Fuel Cell Science and Technology
– volume: 37
  start-page: 1568
  year: 2008
  end-page: 1578
  ident: bib4
  article-title: Intermediate temperature solid oxide fuel cells
  publication-title: Chem Soc Rev
– volume: 152–153
  start-page: 405
  year: 2002
  end-page: 410
  ident: bib1
  article-title: Solid oxide fuel cells for stationary, mobile, and military applications
  publication-title: Solid State Ionics
– volume: 38
  start-page: 16344
  year: 2013
  end-page: 16353
  ident: bib5
  article-title: Durability test and degradation behavior of a 2.5 kW SOFC stack with internal reforming of LNG
  publication-title: Int J Hydrogen Energy
– volume: 40
  start-page: 10943
  year: 2015
  end-page: 10959
  ident: bib31
  article-title: Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part II: detailed reforming chemistry and carbon deposition analysis
  publication-title: Int J Hydrogen Energy
– volume: 12
  year: 2015
  ident: bib34
  article-title: Carbon deposition simulation in porous SOFC anodes: a detailed numerical analysis of major carbon precursors
  publication-title: J Fuel Cell Sci Technol
– volume: 78
  start-page: 1791
  year: 2017
  end-page: 1804
  ident: bib24
  publication-title: SOC Development at Forschungszentrum Jülich, ECS Transactions
– volume: 37
  start-page: 9249
  year: 2012
  end-page: 9268
  ident: bib28
  article-title: Mechanical reliability and durability of SOFC stacks. Part I : modelling of the effect of operating conditions and design alternatives on the reliability
  publication-title: Int J Hydrogen Energy
– volume: 276
  start-page: 120
  year: 2015
  end-page: 132
  ident: bib47
  article-title: Degradation analysis of anode-supported intermediate temperature-solid oxide fuel cells under various failure modes
  publication-title: J Power Sources
– volume: 180
  start-page: 1580
  year: 2009
  end-page: 1586
  ident: bib9
  article-title: Understanding of redox behavior of Ni-YSZ cermets
  publication-title: Solid State Ionics
– volume: 37
  start-page: 9269
  year: 2012
  end-page: 9286
  ident: bib27
  article-title: Mechanical reliability and durability of SOFC stacks. Part II: modelling of mechanical failures during ageing and cycling
  publication-title: Int J Hydrogen Energy
– volume: 2
  year: 2017
  ident: bib39
  publication-title: ANSYS FLUENT user's guide V18
– year: 2013
  ident: bib38
  article-title: Principles of heat and mass transfer
– volume: 41
  start-page: 14927
  year: 2016
  end-page: 14940
  ident: bib29
  article-title: Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses
  publication-title: Int J Hydrogen Energy
– volume: 42
  start-page: 913
  year: 2015
  end-page: 931
  ident: bib7
  article-title: Fuel cell technology for domestic built environment applications: state of-the-art review
  publication-title: Renew Sustain Energy Rev
– volume: 41
  start-page: 10030
  year: 2016
  end-page: 10036
  ident: bib25
  article-title: Investigation of temperature distribution and performance of SOFC short stack with/without machined gas channels
  publication-title: Int J Hydrogen Energy
– volume: 8
  year: 2011
  ident: bib14
  article-title: Modeling analysis of different renewable fuels in an anode supported SOFC
  publication-title: J Fuel Cell Sci Technol
– reference: O. Razbani, M. Assadi, M. Andersson, Three dimensional CFD modeling and experimental validation of an electrolyte supported solid oxide fuel cell fed with methane-free biogas, Int J Hydrogen Energy 38 (24).
– volume: 34
  start-page: 8998
  year: 2009
  end-page: 9006
  ident: bib32
  article-title: A CFD-based model of a planar SOFC for anode flow field design
  publication-title: Int J Hydrogen Energy
– volume: 37
  start-page: 530
  year: 2012
  end-page: 547
  ident: bib43
  article-title: Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 55
  start-page: 773
  year: 2012
  end-page: 788
  ident: bib16
  article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries
  publication-title: Int J Heat Mass Tran
– volume: 162
  start-page: F1199
  year: 2015
  end-page: F1205
  ident: bib6
  article-title: SOFC stack and system development at forschungszentrum jülich
  publication-title: J Electrochem Soc
– volume: 43
  start-page: 2349
  year: 2018
  end-page: 2358
  ident: bib26
  article-title: Investigating the effect of current collecting conditions on solid oxide fuel cell (SOFC) performance with additional voltage probes
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 4099
  year: 2013
  end-page: 4107
  ident: bib23
  article-title: 3D transient thermomechanical behaviour of a full scale SOFC short stack
  publication-title: Int J Hydrogen Energy
– volume: 75
  start-page: 15
  year: 2017
  end-page: 22
  ident: bib20
  article-title: Recent developments in 3D multiphysics modelling of whole fuel cell systems for assisting commercialisation and improved reliability
  publication-title: ECS Transactions
– volume: 180
  start-page: 29
  year: 2008
  end-page: 40
  ident: bib44
  article-title: Numerical analysis of coupled transport and reaction phenomena in an anode-supported flat-tube solid oxide fuel cell
  publication-title: J Power Sources
– volume: 68
  start-page: 2861
  year: 2015
  end-page: 2866
  ident: bib19
  article-title: 3D multiscale-multiphysics SOFC modelling status at the institute of electrochemical process engineering, FZ jülich
  publication-title: ECS Transactions
– volume: 135
  start-page: 539
  year: 2014
  end-page: 547
  ident: bib15
  article-title: A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions
  publication-title: Appl Energy
– year: 2011
  ident: bib40
  article-title: ANSYS FLUENT fuel cell modules manual
– volume: 161
  start-page: 1012
  year: 2006
  end-page: 1022
  ident: bib45
  article-title: Mathematical modeling of planar solid oxide fuel cells
  publication-title: J Power Sources
– volume: 234
  start-page: 180
  year: 2013
  end-page: 196
  ident: bib10
  article-title: CFD model of a methane fuelled single cell SOFC stack for analysing the combined effects of macro/micro structural parameters
  publication-title: J Power Sources
– volume: 163
  start-page: F761
  year: 2016
  end-page: F770
  ident: bib35
  article-title: Numerical SOFC anode catalyst occupation study: internal reforming of carbonaceous fuel mixtures
  publication-title: J Electrochem Soc
– volume: 66
  start-page: 343
  year: 2005
  end-page: 348
  ident: bib37
  article-title: Interfacial reaction and electrochemical properties of dense (La,Sr) CoO
  publication-title: J Phys Chem Solid
– volume: 50
  start-page: 139
  year: 2013
  end-page: 142
  ident: bib21
  article-title: 3D coupled thermofluid-thermomechanical modelling and experimental validation of a whole solid oxide fuel cell system
  publication-title: ECS Transactions
– year: 2010
  ident: bib46
  article-title: Umsetzung von Kohlenwasserstoffen in SOFCs
– volume: 64
  start-page: 155
  year: 2014
  end-page: 159
  ident: bib22
  article-title: 3D multiphysics modelling and design optimisation of a complete SOFC system operating in jülich
  publication-title: ECS Transactions
– volume: 39
  start-page: 19102
  year: 2014
  end-page: 19118
  ident: bib30
  article-title: Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part I: creation of a base model for further carbon deposition modeling
  publication-title: Int J Hydrogen Energy
– volume: 295
  start-page: 55
  year: 2015
  end-page: 66
  ident: bib2
  article-title: Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate
  publication-title: J Power Sources
– reference: B. Haberman, J. Young, Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell, Int J Heat Mass Tran 47 (17).
– volume: 13
  start-page: 646
  year: 2013
  end-page: 653
  ident: bib3
  article-title: Long-term testing of SOFC stacks at forschungszentrum jülich
  publication-title: Fuel Cell
– volume: 10
  issue: 1
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.132_bib13
  article-title: Experimental and numerical study of various MT-SOFC flow manifold techniques: single MT-SOFC analysis
  publication-title: J Fuel Cell Sci Technol
  doi: 10.1115/1.4023216
– volume: 50
  start-page: 139
  issue: 45
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.132_bib21
  article-title: 3D coupled thermofluid-thermomechanical modelling and experimental validation of a whole solid oxide fuel cell system
  publication-title: ECS Transactions
  doi: 10.1149/05045.0139ecst
– volume: 39
  start-page: 19102
  issue: 33
  year: 2014
  ident: 10.1016/j.ijhydene.2018.11.132_bib30
  article-title: Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part I: creation of a base model for further carbon deposition modeling
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.09.108
– volume: 12
  issue: 5
  year: 2015
  ident: 10.1016/j.ijhydene.2018.11.132_bib34
  article-title: Carbon deposition simulation in porous SOFC anodes: a detailed numerical analysis of major carbon precursors
  publication-title: J Fuel Cell Sci Technol
  doi: 10.1115/1.4031862
– volume: 276
  start-page: 120
  year: 2015
  ident: 10.1016/j.ijhydene.2018.11.132_bib47
  article-title: Degradation analysis of anode-supported intermediate temperature-solid oxide fuel cells under various failure modes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.11.077
– volume: 37
  start-page: 1568
  issue: 8
  year: 2008
  ident: 10.1016/j.ijhydene.2018.11.132_bib4
  article-title: Intermediate temperature solid oxide fuel cells
  publication-title: Chem Soc Rev
  doi: 10.1039/b612060c
– volume: 40
  start-page: 10943
  issue: 34
  year: 2015
  ident: 10.1016/j.ijhydene.2018.11.132_bib31
  article-title: Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part II: detailed reforming chemistry and carbon deposition analysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.024
– volume: 38
  start-page: 16344
  issue: 36
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.132_bib5
  article-title: Durability test and degradation behavior of a 2.5 kW SOFC stack with internal reforming of LNG
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.140
– volume: 8
  issue: 3
  year: 2011
  ident: 10.1016/j.ijhydene.2018.11.132_bib14
  article-title: Modeling analysis of different renewable fuels in an anode supported SOFC
  publication-title: J Fuel Cell Sci Technol
  doi: 10.1115/1.4002618
– volume: 34
  start-page: 8998
  issue: 21
  year: 2009
  ident: 10.1016/j.ijhydene.2018.11.132_bib32
  article-title: A CFD-based model of a planar SOFC for anode flow field design
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.08.073
– volume: 78
  start-page: 1791
  issue: 1
  year: 2017
  ident: 10.1016/j.ijhydene.2018.11.132_bib24
  publication-title: SOC Development at Forschungszentrum Jülich, ECS Transactions
– volume: 37
  start-page: 9269
  issue: 11
  year: 2012
  ident: 10.1016/j.ijhydene.2018.11.132_bib27
  article-title: Mechanical reliability and durability of SOFC stacks. Part II: modelling of mechanical failures during ageing and cycling
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.03.023
– volume: 37
  start-page: 9249
  issue: 11
  year: 2012
  ident: 10.1016/j.ijhydene.2018.11.132_bib28
  article-title: Mechanical reliability and durability of SOFC stacks. Part I : modelling of the effect of operating conditions and design alternatives on the reliability
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.03.043
– volume: 42
  start-page: 4434
  issue: 7
  year: 2017
  ident: 10.1016/j.ijhydene.2018.11.132_bib36
  article-title: CFD-simulation of effective carbon gasification strategies from high temperature SOFC Ni-YSZ cermet anodes
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.162
– volume: 162
  start-page: F1199
  issue: 10
  year: 2015
  ident: 10.1016/j.ijhydene.2018.11.132_bib6
  article-title: SOFC stack and system development at forschungszentrum jülich
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0491510jes
– volume: 55
  start-page: 773
  issue: 4
  year: 2012
  ident: 10.1016/j.ijhydene.2018.11.132_bib16
  article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2011.10.032
– volume: 38
  start-page: 4099
  issue: 10
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.132_bib23
  article-title: 3D transient thermomechanical behaviour of a full scale SOFC short stack
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.072
– volume: 13
  start-page: 646
  issue: 4
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.132_bib3
  article-title: Long-term testing of SOFC stacks at forschungszentrum jülich
  publication-title: Fuel Cell
  doi: 10.1002/fuce.201200151
– volume: 135
  start-page: 539
  year: 2014
  ident: 10.1016/j.ijhydene.2018.11.132_bib15
  article-title: A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.052
– volume: 180
  start-page: 1580
  issue: 36–39
  year: 2009
  ident: 10.1016/j.ijhydene.2018.11.132_bib9
  article-title: Understanding of redox behavior of Ni-YSZ cermets
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2009.10.011
– volume: 295
  start-page: 55
  year: 2015
  ident: 10.1016/j.ijhydene.2018.11.132_bib2
  article-title: Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.06.133
– volume: 66
  start-page: 343
  issue: 2
  year: 2005
  ident: 10.1016/j.ijhydene.2018.11.132_bib37
  article-title: Interfacial reaction and electrochemical properties of dense (La,Sr) CoO3-δ cathode on YSZ (1 0 0)
  publication-title: J Phys Chem Solid
  doi: 10.1016/j.jpcs.2004.06.057
– volume: 161
  start-page: 1012
  issue: 2
  year: 2006
  ident: 10.1016/j.ijhydene.2018.11.132_bib45
  article-title: Mathematical modeling of planar solid oxide fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.05.055
– year: 2013
  ident: 10.1016/j.ijhydene.2018.11.132_bib38
– volume: 2
  year: 2017
  ident: 10.1016/j.ijhydene.2018.11.132_bib39
– volume: 43
  start-page: 2349
  issue: 4
  year: 2018
  ident: 10.1016/j.ijhydene.2018.11.132_bib26
  article-title: Investigating the effect of current collecting conditions on solid oxide fuel cell (SOFC) performance with additional voltage probes
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.11.109
– volume: 234
  start-page: 180
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.132_bib10
  article-title: CFD model of a methane fuelled single cell SOFC stack for analysing the combined effects of macro/micro structural parameters
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.12.123
– volume: 75
  start-page: 15
  issue: 42
  year: 2017
  ident: 10.1016/j.ijhydene.2018.11.132_bib20
  article-title: Recent developments in 3D multiphysics modelling of whole fuel cell systems for assisting commercialisation and improved reliability
  publication-title: ECS Transactions
  doi: 10.1149/07542.0015ecst
– volume: 152–153
  start-page: 405
  year: 2002
  ident: 10.1016/j.ijhydene.2018.11.132_bib1
  article-title: Solid oxide fuel cells for stationary, mobile, and military applications
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00349-1
– volume: 64
  start-page: 155
  issue: 2
  year: 2014
  ident: 10.1016/j.ijhydene.2018.11.132_bib22
  article-title: 3D multiphysics modelling and design optimisation of a complete SOFC system operating in jülich
  publication-title: ECS Transactions
  doi: 10.1149/06402.0155ecst
– volume: 152
  start-page: A2186
  issue: 11
  year: 2005
  ident: 10.1016/j.ijhydene.2018.11.132_bib8
  article-title: The mechanism behind redox instability of anodes in high-temperature SOFCs
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2048228
– ident: 10.1016/j.ijhydene.2018.11.132_bib33
  doi: 10.1016/j.ijheatmasstransfer.2004.04.010
– volume: 9
  issue: 4
  year: 2012
  ident: 10.1016/j.ijhydene.2018.11.132_bib11
  article-title: Dynamic model for understanding spatial temperature and species distributions in internal-reforming solid oxide fuel cells
  publication-title: Transactions of the ASME-U-Journal of Fuel Cell Science and Technology
– volume: 167
  start-page: 398
  issue: 2
  year: 2007
  ident: 10.1016/j.ijhydene.2018.11.132_bib42
  article-title: 3-D model of thermo-fluid and electrochemical for planar SOFC
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.02.019
– year: 2011
  ident: 10.1016/j.ijhydene.2018.11.132_bib40
– volume: 37
  start-page: 530
  issue: 1
  year: 2012
  ident: 10.1016/j.ijhydene.2018.11.132_bib43
  article-title: Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.09.062
– volume: 180
  start-page: 29
  issue: 1
  year: 2008
  ident: 10.1016/j.ijhydene.2018.11.132_bib44
  article-title: Numerical analysis of coupled transport and reaction phenomena in an anode-supported flat-tube solid oxide fuel cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.02.039
– volume: 163
  start-page: F761
  issue: 7
  year: 2016
  ident: 10.1016/j.ijhydene.2018.11.132_bib35
  article-title: Numerical SOFC anode catalyst occupation study: internal reforming of carbonaceous fuel mixtures
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0061608jes
– ident: 10.1016/j.ijhydene.2018.11.132_bib17
  doi: 10.1016/j.ijhydene.2013.05.153
– volume: 38
  start-page: 510
  issue: 1
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.132_bib18
  article-title: Prediction of the performance of a solid oxide fuel cell fuelled with biosyngas: influence of different steam-reforming reaction kinetic parameters
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.09.061
– volume: 68
  start-page: 2861
  issue: 1
  year: 2015
  ident: 10.1016/j.ijhydene.2018.11.132_bib19
  article-title: 3D multiscale-multiphysics SOFC modelling status at the institute of electrochemical process engineering, FZ jülich
  publication-title: ECS Transactions
  doi: 10.1149/06801.2861ecst
– volume: 38
  start-page: 7935
  issue: 19
  year: 2013
  ident: 10.1016/j.ijhydene.2018.11.132_bib12
  article-title: A spatially resolved physical model for transient system analysis of high temperature fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.04.087
– volume: 41
  start-page: 10030
  issue: 23
  year: 2016
  ident: 10.1016/j.ijhydene.2018.11.132_bib25
  article-title: Investigation of temperature distribution and performance of SOFC short stack with/without machined gas channels
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.02.045
– volume: 41
  start-page: 14927
  issue: 33
  year: 2016
  ident: 10.1016/j.ijhydene.2018.11.132_bib29
  article-title: Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.06.171
– year: 2013
  ident: 10.1016/j.ijhydene.2018.11.132_bib41
– volume: 42
  start-page: 913
  year: 2015
  ident: 10.1016/j.ijhydene.2018.11.132_bib7
  article-title: Fuel cell technology for domestic built environment applications: state of-the-art review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.10.080
– year: 2010
  ident: 10.1016/j.ijhydene.2018.11.132_bib46
SSID ssj0017049
Score 2.4468086
Snippet Predictable long-term operation is key to the industrial roll-out of SOFC technologies; as one of the primary factors hindering steady and reliable operation,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1877
SubjectTerms Method of prolonging SOFC lifetimes
Scrutiny of flow configuration and electrical contact position
SOFC single cell simulation
Temperature distribution optimization
Title Numerical analysis of flow configurations and electrical contact positions in SOFC single cells and their impact on local effects
URI https://dx.doi.org/10.1016/j.ijhydene.2018.11.132
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuLnyMFr16X5aHscwzEV52EOditp02jHaId2iBfB_9yXNh0ThB08ts2DkvfyPpLf-wWhG48pSONhISVEC4dBxHWkTHwnZgHky54KCTf9zo9jMZqy-xmftdCg6YUxsErr-2ufXnlr-8a1s-kus8ydgO81LTghGCX1YZ2YDnbmGyvvfq1hHsS3KTAMdszojS7heTebv37C8jZ0mSQA79El1Ps7QG0EneEB2rfZIu7XP3SIWml-hPY2OASP0fd4VR-6LLC0BCO40Fgvig8Mta7OXla1kt_hu8L1tTfVcINSl0mJ17gtnOV48jQcYLN_sEix2dSvparjBFx3VOIix1UExBYLcoKmw9vnwcix9yo4CeWkdCiNPe0rwjSPQ5MBKci6pEgYV17MQpEyP9baFyETKjFkMqmmgUxjBuVsKHSPnqJ2XuTpGcKqx1NCdSyFlobpLJBQfwWhph5XinryHPFmMqPEko6buy8WUYMum0eNEiKjBKhIIlDCOXLXcsuadmOrRNjoKvplQBHEhi2yF_-QvUS78GQwZw7hV6hdvq3Sa8hTyrhTGWIH7fTvHkbjH3Qx6gQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOVZ8qfXroGiCxnceIUBEtjw6AxBY5cdwGoYBaUNWx_7xn4iAqVWLoGvukyHe--86--wzw4DCJMB43Umwr12IYcS0hYs-KmI942ZGBzXW_c3_gdsbsecInJWgVvTC6rNL4_tynr721-VI3q1lfpGl9iL5Xt-AEaJTUw32yBxXNTsXLUGk-dTuDzWWCZ1Awzre0wFaj8LSWTt--cIdrxkzbRwdSs6nzd4zaijvtYzgygJE08386gVKSncLhFo3gGXwPVvm9y4wIwzFC5oqo2fyTYLqr0tdVrucPHJckf_lmPV0Xqot4STalWyTNyPCl3SL6CGGWEH2un0utbxRI3lRJ5hlZB0FiykHOYdx-HLU6lnlawYopt5cWpZGjPGkzxaNAgyCJwEu4MePSiVjgJsyLlPLcgLky1nwyiaK-SCKGGW3gqga9gHI2z5JLILLBE5uqSLhKaLIzX2AK5geKOlxK6ogq8GIxw9jwjuvnL2ZhUWA2DQslhFoJmJSEqIQq1Ddyi5x5Y6dEUOgq_GVDIYaHHbJX_5C9h_3OqN8Le0-D7jUc4IguQbNsfgPl5fsquUXYsozujFn-AHag7LU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+flow+configurations+and+electrical+contact+positions+in+SOFC+single+cells+and+their+impact+on+local+effects&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Schluckner%2C+C.&rft.au=Suboti%C4%87%2C+V.&rft.au=Prei%C3%9Fl%2C+S.&rft.au=Hochenauer%2C+C.&rft.date=2019-01-15&rft.issn=0360-3199&rft.volume=44&rft.issue=3&rft.spage=1877&rft.epage=1895&rft_id=info:doi/10.1016%2Fj.ijhydene.2018.11.132&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2018_11_132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon