Numerical analysis of flow configurations and electrical contact positions in SOFC single cells and their impact on local effects
Predictable long-term operation is key to the industrial roll-out of SOFC technologies; as one of the primary factors hindering steady and reliable operation, performance degradation is one of the main challenges facing SOFC development. A homogeneous temperature profile is essential to the steady l...
Saved in:
Published in | International journal of hydrogen energy Vol. 44; no. 3; pp. 1877 - 1895 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predictable long-term operation is key to the industrial roll-out of SOFC technologies; as one of the primary factors hindering steady and reliable operation, performance degradation is one of the main challenges facing SOFC development. A homogeneous temperature profile is essential to the steady long-term operation of SOFC cells. In order to investigate and improve the temperature distribution across the cells, a ceramic housing was developed for an industrial scale (100×100mm2) SOFC single cell with the aid of a spatially resolved numerical model. This study investigated the influence of co-, counter-, and cross-flow configurations, as well as various electrical contact positions in order to analyse the current density distribution and temperature evolution within the cell. The chemical and electrochemical performance of the model were validated with in-house experimental data gained from operating the cell within the developed cell housing under three hydrogen/nitrogen mixtures of varying levels of humidification. The simulations revealed that the outermost parts of the cathode are subject to diffusion limitations, which can lead to local air starvation effects. Moreover, they showed that the position of the cell's electrical contacts has a distinct impact on the current density distribution, in addition to affecting the temperature profile of the cell. This study found that the counter-flow configuration, in combination with placing the electrical contacts on the inlet side of the cathode led to the most homogeneous current density and temperature distribution across the cell. Most importantly, the position of the electrical contacts was identified as having a major influence on the cell's current density profile, and these position changes were able to homogenize the temperature distribution across the electrolyte. This configuration is thus proposed as a viable method of both ensuring the steady long-term operation of SOFCs and prolonging their lifetimes.
•Detailed numerical study to scrutinize current density and temperature distribution.•Position of electrical contacts impacts current and temperature profile.•Flow configuration has highest influence on local current and temperature trend.•Counter-flow and taps at cathode inlet are best for long-term performance stability. |
---|---|
AbstractList | Predictable long-term operation is key to the industrial roll-out of SOFC technologies; as one of the primary factors hindering steady and reliable operation, performance degradation is one of the main challenges facing SOFC development. A homogeneous temperature profile is essential to the steady long-term operation of SOFC cells. In order to investigate and improve the temperature distribution across the cells, a ceramic housing was developed for an industrial scale (100×100mm2) SOFC single cell with the aid of a spatially resolved numerical model. This study investigated the influence of co-, counter-, and cross-flow configurations, as well as various electrical contact positions in order to analyse the current density distribution and temperature evolution within the cell. The chemical and electrochemical performance of the model were validated with in-house experimental data gained from operating the cell within the developed cell housing under three hydrogen/nitrogen mixtures of varying levels of humidification. The simulations revealed that the outermost parts of the cathode are subject to diffusion limitations, which can lead to local air starvation effects. Moreover, they showed that the position of the cell's electrical contacts has a distinct impact on the current density distribution, in addition to affecting the temperature profile of the cell. This study found that the counter-flow configuration, in combination with placing the electrical contacts on the inlet side of the cathode led to the most homogeneous current density and temperature distribution across the cell. Most importantly, the position of the electrical contacts was identified as having a major influence on the cell's current density profile, and these position changes were able to homogenize the temperature distribution across the electrolyte. This configuration is thus proposed as a viable method of both ensuring the steady long-term operation of SOFCs and prolonging their lifetimes.
•Detailed numerical study to scrutinize current density and temperature distribution.•Position of electrical contacts impacts current and temperature profile.•Flow configuration has highest influence on local current and temperature trend.•Counter-flow and taps at cathode inlet are best for long-term performance stability. |
Author | Schluckner, C. Hochenauer, C. Preißl, S. Subotić, V. |
Author_xml | – sequence: 1 givenname: C. surname: Schluckner fullname: Schluckner, C. email: christoph.schluckner@tugraz.at – sequence: 2 givenname: V. orcidid: 0000-0002-1425-2802 surname: Subotić fullname: Subotić, V. – sequence: 3 givenname: S. surname: Preißl fullname: Preißl, S. – sequence: 4 givenname: C. surname: Hochenauer fullname: Hochenauer, C. |
BookMark | eNqFkLFOwzAURT2ABAV-AfkHGvzqxG0kBlBFAQnBAMyW4zzTV7l2ZQdQR_6clMDC0ukN954rvTNiByEGZOwcRAEC1MWqoNVy22LAYiJgVgAUICcH7FhIJcYS6vqIjXJeCQFTUdbH7OvxfY2JrPHcBOO3mTKPjjsfP7mNwdHbezIdxZD7vOXo0XZDvU87Yzu-iZmGAgX-_LSY80zhzSO36P1AdUukxGm92fVj4D7uBtC5fiyfskNnfMaz33vCXhc3L_O78cPT7f38-mFsZQXdWMpm4qYtlK5q6kpUqq0AjLJl1U6aslZYThvnpqouVWuhUiU6OTPYlFLOauWEPGFq2LUp5pzQ6U2itUlbDULv5OmV_pOnd_I0gO7l9eDlP9BS9-OkS4b8fvxqwLF_7oMw6WwJg8WWUv-_biPtm_gGAAmWzQ |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2019_04_053 crossref_primary_10_1016_j_ijhydene_2023_11_263 crossref_primary_10_1002_fuce_202200058 crossref_primary_10_1039_D0SE01914C crossref_primary_10_1016_j_ijhydene_2020_07_165 crossref_primary_10_1016_j_jpowsour_2019_227608 crossref_primary_10_1016_j_energy_2021_123085 crossref_primary_10_1016_j_electacta_2023_142234 crossref_primary_10_1016_j_ijhydene_2023_06_140 crossref_primary_10_1016_j_ijhydene_2023_09_028 crossref_primary_10_1016_j_jpowsour_2021_230058 crossref_primary_10_1016_j_ijhydene_2024_04_251 crossref_primary_10_1016_j_jpowsour_2023_233449 crossref_primary_10_3390_en16020788 crossref_primary_10_1016_j_ijhydene_2022_10_265 crossref_primary_10_1016_j_ijhydene_2019_07_016 crossref_primary_10_1016_j_ijhydene_2019_10_252 crossref_primary_10_1063_5_0223633 crossref_primary_10_3390_en16010159 crossref_primary_10_2139_ssrn_4120350 crossref_primary_10_1016_j_surfcoat_2019_125093 crossref_primary_10_1016_j_pecs_2022_101011 crossref_primary_10_1016_j_apenergy_2020_116426 crossref_primary_10_1016_j_ijhydene_2019_12_220 crossref_primary_10_1016_j_ijhydene_2022_08_236 crossref_primary_10_1016_j_enconman_2022_116048 crossref_primary_10_1016_j_ijhydene_2020_07_154 crossref_primary_10_1016_j_ijhydene_2024_01_071 crossref_primary_10_1016_j_enconman_2020_113764 crossref_primary_10_1016_j_electacta_2022_141414 crossref_primary_10_1016_j_ijhydene_2021_04_001 crossref_primary_10_1016_j_ijhydene_2019_12_089 crossref_primary_10_1002_er_7129 crossref_primary_10_1080_15435075_2022_2154609 crossref_primary_10_2139_ssrn_4093771 |
Cites_doi | 10.1115/1.4023216 10.1149/05045.0139ecst 10.1016/j.ijhydene.2014.09.108 10.1115/1.4031862 10.1016/j.jpowsour.2014.11.077 10.1039/b612060c 10.1016/j.ijhydene.2015.06.024 10.1016/j.ijhydene.2013.09.140 10.1115/1.4002618 10.1016/j.ijhydene.2009.08.073 10.1016/j.ijhydene.2012.03.023 10.1016/j.ijhydene.2012.03.043 10.1016/j.ijhydene.2016.11.162 10.1149/2.0491510jes 10.1016/j.ijheatmasstransfer.2011.10.032 10.1016/j.ijhydene.2013.01.072 10.1002/fuce.201200151 10.1016/j.apenergy.2014.08.052 10.1016/j.ssi.2009.10.011 10.1016/j.jpowsour.2015.06.133 10.1016/j.jpcs.2004.06.057 10.1016/j.jpowsour.2006.05.055 10.1016/j.ijhydene.2017.11.109 10.1016/j.jpowsour.2012.12.123 10.1149/07542.0015ecst 10.1016/S0167-2738(02)00349-1 10.1149/06402.0155ecst 10.1149/1.2048228 10.1016/j.ijheatmasstransfer.2004.04.010 10.1016/j.jpowsour.2007.02.019 10.1016/j.ijhydene.2011.09.062 10.1016/j.jpowsour.2008.02.039 10.1149/2.0061608jes 10.1016/j.ijhydene.2013.05.153 10.1016/j.ijhydene.2012.09.061 10.1149/06801.2861ecst 10.1016/j.ijhydene.2013.04.087 10.1016/j.ijhydene.2016.02.045 10.1016/j.ijhydene.2016.06.171 10.1016/j.rser.2014.10.080 |
ContentType | Journal Article |
Copyright | 2018 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2018 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2018.11.132 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 1895 |
ExternalDocumentID | 10_1016_j_ijhydene_2018_11_132 S0360319918337376 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADECG ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFZHZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGQPQ AIGII APXCP ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW T9H WUQ |
ID | FETCH-LOGICAL-c351t-33b2f7d14f5b95056d511a6c45d2b496e47bff76946dc1564ef38aeb433896f03 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Thu Apr 24 22:52:18 EDT 2025 Wed Aug 13 23:56:26 EDT 2025 Sat Aug 30 17:13:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Temperature distribution optimization SOFC single cell simulation Scrutiny of flow configuration and electrical contact position Method of prolonging SOFC lifetimes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-33b2f7d14f5b95056d511a6c45d2b496e47bff76946dc1564ef38aeb433896f03 |
ORCID | 0000-0002-1425-2802 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2018_11_132 crossref_citationtrail_10_1016_j_ijhydene_2018_11_132 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2018_11_132 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-15 |
PublicationDateYYYYMMDD | 2019-01-15 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Blum, Batfalsky, Fang, Haart, Malzbender, Margaritis, Menzler, Peters (bib6) 2015; 162 Fang, Blum, Batfalsky, Menzler, Packbier, Stolten (bib5) 2013; 38 McLarty, Brouwer, Samuelsen (bib12) 2013; 38 Klein (bib41) 2013 Nakajo, Mueller, Brouwer, Van herle, Favrat (bib28) 2012; 37 Danilov, Tade (bib32) 2009; 34 O. Razbani, M. Assadi, M. Andersson, Three dimensional CFD modeling and experimental validation of an electrolyte supported solid oxide fuel cell fed with methane-free biogas, Int J Hydrogen Energy 38 (24). ANSYS Inc (bib39) 2017; 2 Andersson, Yuan, Sundn (bib16) 2012; 55 Schluckner, Subotić, Lawlor, Hochenauer (bib35) 2016; 163 Suzuki, Shikazono, Fukagata, Kasagi (bib44) 2008; 180 Fan, Dimitriou, Pourquie, Liu, Verkooijen, Aravind (bib18) 2013; 38 Peksen, Al-Masri, Blum, Stolten (bib23) 2013; 38 ANSYS Inc (bib40) 2011 Hosseini, Ahmed, Tade (bib10) 2013; 234 B. Haberman, J. Young, Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell, Int J Heat Mass Tran 47 (17). Hussain, Li, Dincer (bib45) 2006; 161 Xu, Li, Yang, Andersson, Fransson, Larsson, Sundén (bib29) 2016; 41 Brett, Atkinson, Brandon, Skinner (bib4) 2008; 37 Schluckner, Subotić, Lawlor, Hochenauer (bib30) 2014; 39 Al-Masri, Peksen, Blum, Stolten (bib15) 2014; 135 Canavar, Mat, Celik, Timurkutluk, Kaplan (bib25) 2016; 41 Incropera, DeWitt, Bergman, Lavine (bib38) 2013 Frank (bib46) 2010 Peksen, Al-Masri, Peters, Blum, Stolten (bib20) 2017; 75 Peksen, Al-Masri, Peters, Blum, Stolten (bib22) 2014; 64 Shaffer, Brouwer (bib11) 2012; 9 Andersson, Paradis, Yuan, Sunden (bib14) 2011; 8 Nakajo, Mueller, Brouwer, Van herle, Favrat (bib27) 2012; 37 Schluckner, Subotić, Lawlor, Hochenauer (bib31) 2015; 40 Sase, Ueno, Yashiro, Kaimai, Kawada, Mizusaki (bib37) 2005; 66 Wang, Yang, Zhang, Xia (bib42) 2007; 167 Klemenso, Chung, Larsen, Mogensen (bib8) 2005; 152 Peksen, Al-Masri, Peters, Blum, Stolten (bib19) 2015; 68 Blum, Fang, Haart, Malzbender, Margaritis, Menzler, Peters (bib24) 2017; 78 Schluckner, Subotić, Lawlor, Hochenauer (bib36) 2017; 42 Seo, Kim, Park, Lim (bib26) 2018; 43 Zhang, Liu, Tu, Dong, Cheng (bib9) 2009; 180 Subotić, Schluckner, Mathe, Rechberger, Schroettner, Hochenauer (bib2) 2015; 295 Lawlor, Klein, Hochenauer, Griesser, Kuehn, Olabi, Cordiner, Buchinger (bib13) 2013; 10 Lee, Park, Kim, Seo, Kim, Song, Park, Park (bib47) 2015; 276 Peksen, Al-Masri, Blum, Stolten (bib21) 2013; 50 Schluckner, Subotić, Lawlor, Hochenauer (bib34) 2015; 12 Singhal (bib1) 2002; 152–153 Blum, Packbier, Vinke, Haart (bib3) 2013; 13 Elmer, Worall, Wu, Riffat (bib7) 2015; 42 Tseronis, Bonis, Kookos, Theodoropoulos (bib43) 2012; 37 Singhal (10.1016/j.ijhydene.2018.11.132_bib1) 2002; 152–153 Nakajo (10.1016/j.ijhydene.2018.11.132_bib27) 2012; 37 McLarty (10.1016/j.ijhydene.2018.11.132_bib12) 2013; 38 Schluckner (10.1016/j.ijhydene.2018.11.132_bib36) 2017; 42 Hussain (10.1016/j.ijhydene.2018.11.132_bib45) 2006; 161 Hosseini (10.1016/j.ijhydene.2018.11.132_bib10) 2013; 234 Fan (10.1016/j.ijhydene.2018.11.132_bib18) 2013; 38 ANSYS Inc (10.1016/j.ijhydene.2018.11.132_bib39) 2017; 2 Tseronis (10.1016/j.ijhydene.2018.11.132_bib43) 2012; 37 Schluckner (10.1016/j.ijhydene.2018.11.132_bib34) 2015; 12 Schluckner (10.1016/j.ijhydene.2018.11.132_bib31) 2015; 40 Fang (10.1016/j.ijhydene.2018.11.132_bib5) 2013; 38 Shaffer (10.1016/j.ijhydene.2018.11.132_bib11) 2012; 9 Lawlor (10.1016/j.ijhydene.2018.11.132_bib13) 2013; 10 Nakajo (10.1016/j.ijhydene.2018.11.132_bib28) 2012; 37 ANSYS Inc (10.1016/j.ijhydene.2018.11.132_bib40) 2011 Frank (10.1016/j.ijhydene.2018.11.132_bib46) 2010 Canavar (10.1016/j.ijhydene.2018.11.132_bib25) 2016; 41 Klemenso (10.1016/j.ijhydene.2018.11.132_bib8) 2005; 152 10.1016/j.ijhydene.2018.11.132_bib33 Peksen (10.1016/j.ijhydene.2018.11.132_bib21) 2013; 50 Brett (10.1016/j.ijhydene.2018.11.132_bib4) 2008; 37 Subotić (10.1016/j.ijhydene.2018.11.132_bib2) 2015; 295 10.1016/j.ijhydene.2018.11.132_bib17 Peksen (10.1016/j.ijhydene.2018.11.132_bib19) 2015; 68 Blum (10.1016/j.ijhydene.2018.11.132_bib24) 2017; 78 Lee (10.1016/j.ijhydene.2018.11.132_bib47) 2015; 276 Blum (10.1016/j.ijhydene.2018.11.132_bib6) 2015; 162 Al-Masri (10.1016/j.ijhydene.2018.11.132_bib15) 2014; 135 Wang (10.1016/j.ijhydene.2018.11.132_bib42) 2007; 167 Schluckner (10.1016/j.ijhydene.2018.11.132_bib30) 2014; 39 Elmer (10.1016/j.ijhydene.2018.11.132_bib7) 2015; 42 Seo (10.1016/j.ijhydene.2018.11.132_bib26) 2018; 43 Suzuki (10.1016/j.ijhydene.2018.11.132_bib44) 2008; 180 Incropera (10.1016/j.ijhydene.2018.11.132_bib38) 2013 Andersson (10.1016/j.ijhydene.2018.11.132_bib16) 2012; 55 Andersson (10.1016/j.ijhydene.2018.11.132_bib14) 2011; 8 Schluckner (10.1016/j.ijhydene.2018.11.132_bib35) 2016; 163 Blum (10.1016/j.ijhydene.2018.11.132_bib3) 2013; 13 Peksen (10.1016/j.ijhydene.2018.11.132_bib20) 2017; 75 Peksen (10.1016/j.ijhydene.2018.11.132_bib22) 2014; 64 Peksen (10.1016/j.ijhydene.2018.11.132_bib23) 2013; 38 Danilov (10.1016/j.ijhydene.2018.11.132_bib32) 2009; 34 Zhang (10.1016/j.ijhydene.2018.11.132_bib9) 2009; 180 Xu (10.1016/j.ijhydene.2018.11.132_bib29) 2016; 41 Klein (10.1016/j.ijhydene.2018.11.132_bib41) 2013 Sase (10.1016/j.ijhydene.2018.11.132_bib37) 2005; 66 |
References_xml | – volume: 38 start-page: 7935 year: 2013 end-page: 7946 ident: bib12 article-title: A spatially resolved physical model for transient system analysis of high temperature fuel cells publication-title: Int J Hydrogen Energy – volume: 38 start-page: 510 year: 2013 end-page: 524 ident: bib18 article-title: Prediction of the performance of a solid oxide fuel cell fuelled with biosyngas: influence of different steam-reforming reaction kinetic parameters publication-title: Int J Hydrogen Energy – year: 2013 ident: bib41 article-title: EES - engineering equation solver - user Manual – volume: 167 start-page: 398 year: 2007 end-page: 405 ident: bib42 article-title: 3-D model of thermo-fluid and electrochemical for planar SOFC publication-title: J Power Sources – volume: 152 start-page: A2186 year: 2005 ident: bib8 article-title: The mechanism behind redox instability of anodes in high-temperature SOFCs publication-title: J Electrochem Soc – volume: 42 start-page: 4434 year: 2017 end-page: 4448 ident: bib36 article-title: CFD-simulation of effective carbon gasification strategies from high temperature SOFC Ni-YSZ cermet anodes publication-title: Int J Hydrogen Energy – volume: 10 year: 2013 ident: bib13 article-title: Experimental and numerical study of various MT-SOFC flow manifold techniques: single MT-SOFC analysis publication-title: J Fuel Cell Sci Technol – volume: 9 year: 2012 ident: bib11 article-title: Dynamic model for understanding spatial temperature and species distributions in internal-reforming solid oxide fuel cells publication-title: Transactions of the ASME-U-Journal of Fuel Cell Science and Technology – volume: 37 start-page: 1568 year: 2008 end-page: 1578 ident: bib4 article-title: Intermediate temperature solid oxide fuel cells publication-title: Chem Soc Rev – volume: 152–153 start-page: 405 year: 2002 end-page: 410 ident: bib1 article-title: Solid oxide fuel cells for stationary, mobile, and military applications publication-title: Solid State Ionics – volume: 38 start-page: 16344 year: 2013 end-page: 16353 ident: bib5 article-title: Durability test and degradation behavior of a 2.5 kW SOFC stack with internal reforming of LNG publication-title: Int J Hydrogen Energy – volume: 40 start-page: 10943 year: 2015 end-page: 10959 ident: bib31 article-title: Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part II: detailed reforming chemistry and carbon deposition analysis publication-title: Int J Hydrogen Energy – volume: 12 year: 2015 ident: bib34 article-title: Carbon deposition simulation in porous SOFC anodes: a detailed numerical analysis of major carbon precursors publication-title: J Fuel Cell Sci Technol – volume: 78 start-page: 1791 year: 2017 end-page: 1804 ident: bib24 publication-title: SOC Development at Forschungszentrum Jülich, ECS Transactions – volume: 37 start-page: 9249 year: 2012 end-page: 9268 ident: bib28 article-title: Mechanical reliability and durability of SOFC stacks. Part I : modelling of the effect of operating conditions and design alternatives on the reliability publication-title: Int J Hydrogen Energy – volume: 276 start-page: 120 year: 2015 end-page: 132 ident: bib47 article-title: Degradation analysis of anode-supported intermediate temperature-solid oxide fuel cells under various failure modes publication-title: J Power Sources – volume: 180 start-page: 1580 year: 2009 end-page: 1586 ident: bib9 article-title: Understanding of redox behavior of Ni-YSZ cermets publication-title: Solid State Ionics – volume: 37 start-page: 9269 year: 2012 end-page: 9286 ident: bib27 article-title: Mechanical reliability and durability of SOFC stacks. Part II: modelling of mechanical failures during ageing and cycling publication-title: Int J Hydrogen Energy – volume: 2 year: 2017 ident: bib39 publication-title: ANSYS FLUENT user's guide V18 – year: 2013 ident: bib38 article-title: Principles of heat and mass transfer – volume: 41 start-page: 14927 year: 2016 end-page: 14940 ident: bib29 article-title: Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses publication-title: Int J Hydrogen Energy – volume: 42 start-page: 913 year: 2015 end-page: 931 ident: bib7 article-title: Fuel cell technology for domestic built environment applications: state of-the-art review publication-title: Renew Sustain Energy Rev – volume: 41 start-page: 10030 year: 2016 end-page: 10036 ident: bib25 article-title: Investigation of temperature distribution and performance of SOFC short stack with/without machined gas channels publication-title: Int J Hydrogen Energy – volume: 8 year: 2011 ident: bib14 article-title: Modeling analysis of different renewable fuels in an anode supported SOFC publication-title: J Fuel Cell Sci Technol – reference: O. Razbani, M. Assadi, M. Andersson, Three dimensional CFD modeling and experimental validation of an electrolyte supported solid oxide fuel cell fed with methane-free biogas, Int J Hydrogen Energy 38 (24). – volume: 34 start-page: 8998 year: 2009 end-page: 9006 ident: bib32 article-title: A CFD-based model of a planar SOFC for anode flow field design publication-title: Int J Hydrogen Energy – volume: 37 start-page: 530 year: 2012 end-page: 547 ident: bib43 article-title: Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells publication-title: Int J Hydrogen Energy – volume: 55 start-page: 773 year: 2012 end-page: 788 ident: bib16 article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries publication-title: Int J Heat Mass Tran – volume: 162 start-page: F1199 year: 2015 end-page: F1205 ident: bib6 article-title: SOFC stack and system development at forschungszentrum jülich publication-title: J Electrochem Soc – volume: 43 start-page: 2349 year: 2018 end-page: 2358 ident: bib26 article-title: Investigating the effect of current collecting conditions on solid oxide fuel cell (SOFC) performance with additional voltage probes publication-title: Int J Hydrogen Energy – volume: 38 start-page: 4099 year: 2013 end-page: 4107 ident: bib23 article-title: 3D transient thermomechanical behaviour of a full scale SOFC short stack publication-title: Int J Hydrogen Energy – volume: 75 start-page: 15 year: 2017 end-page: 22 ident: bib20 article-title: Recent developments in 3D multiphysics modelling of whole fuel cell systems for assisting commercialisation and improved reliability publication-title: ECS Transactions – volume: 180 start-page: 29 year: 2008 end-page: 40 ident: bib44 article-title: Numerical analysis of coupled transport and reaction phenomena in an anode-supported flat-tube solid oxide fuel cell publication-title: J Power Sources – volume: 68 start-page: 2861 year: 2015 end-page: 2866 ident: bib19 article-title: 3D multiscale-multiphysics SOFC modelling status at the institute of electrochemical process engineering, FZ jülich publication-title: ECS Transactions – volume: 135 start-page: 539 year: 2014 end-page: 547 ident: bib15 article-title: A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions publication-title: Appl Energy – year: 2011 ident: bib40 article-title: ANSYS FLUENT fuel cell modules manual – volume: 161 start-page: 1012 year: 2006 end-page: 1022 ident: bib45 article-title: Mathematical modeling of planar solid oxide fuel cells publication-title: J Power Sources – volume: 234 start-page: 180 year: 2013 end-page: 196 ident: bib10 article-title: CFD model of a methane fuelled single cell SOFC stack for analysing the combined effects of macro/micro structural parameters publication-title: J Power Sources – volume: 163 start-page: F761 year: 2016 end-page: F770 ident: bib35 article-title: Numerical SOFC anode catalyst occupation study: internal reforming of carbonaceous fuel mixtures publication-title: J Electrochem Soc – volume: 66 start-page: 343 year: 2005 end-page: 348 ident: bib37 article-title: Interfacial reaction and electrochemical properties of dense (La,Sr) CoO publication-title: J Phys Chem Solid – volume: 50 start-page: 139 year: 2013 end-page: 142 ident: bib21 article-title: 3D coupled thermofluid-thermomechanical modelling and experimental validation of a whole solid oxide fuel cell system publication-title: ECS Transactions – year: 2010 ident: bib46 article-title: Umsetzung von Kohlenwasserstoffen in SOFCs – volume: 64 start-page: 155 year: 2014 end-page: 159 ident: bib22 article-title: 3D multiphysics modelling and design optimisation of a complete SOFC system operating in jülich publication-title: ECS Transactions – volume: 39 start-page: 19102 year: 2014 end-page: 19118 ident: bib30 article-title: Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part I: creation of a base model for further carbon deposition modeling publication-title: Int J Hydrogen Energy – volume: 295 start-page: 55 year: 2015 end-page: 66 ident: bib2 article-title: Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate publication-title: J Power Sources – reference: B. Haberman, J. Young, Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell, Int J Heat Mass Tran 47 (17). – volume: 13 start-page: 646 year: 2013 end-page: 653 ident: bib3 article-title: Long-term testing of SOFC stacks at forschungszentrum jülich publication-title: Fuel Cell – volume: 10 issue: 1 year: 2013 ident: 10.1016/j.ijhydene.2018.11.132_bib13 article-title: Experimental and numerical study of various MT-SOFC flow manifold techniques: single MT-SOFC analysis publication-title: J Fuel Cell Sci Technol doi: 10.1115/1.4023216 – volume: 50 start-page: 139 issue: 45 year: 2013 ident: 10.1016/j.ijhydene.2018.11.132_bib21 article-title: 3D coupled thermofluid-thermomechanical modelling and experimental validation of a whole solid oxide fuel cell system publication-title: ECS Transactions doi: 10.1149/05045.0139ecst – volume: 39 start-page: 19102 issue: 33 year: 2014 ident: 10.1016/j.ijhydene.2018.11.132_bib30 article-title: Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part I: creation of a base model for further carbon deposition modeling publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.09.108 – volume: 12 issue: 5 year: 2015 ident: 10.1016/j.ijhydene.2018.11.132_bib34 article-title: Carbon deposition simulation in porous SOFC anodes: a detailed numerical analysis of major carbon precursors publication-title: J Fuel Cell Sci Technol doi: 10.1115/1.4031862 – volume: 276 start-page: 120 year: 2015 ident: 10.1016/j.ijhydene.2018.11.132_bib47 article-title: Degradation analysis of anode-supported intermediate temperature-solid oxide fuel cells under various failure modes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.11.077 – volume: 37 start-page: 1568 issue: 8 year: 2008 ident: 10.1016/j.ijhydene.2018.11.132_bib4 article-title: Intermediate temperature solid oxide fuel cells publication-title: Chem Soc Rev doi: 10.1039/b612060c – volume: 40 start-page: 10943 issue: 34 year: 2015 ident: 10.1016/j.ijhydene.2018.11.132_bib31 article-title: Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat - Part II: detailed reforming chemistry and carbon deposition analysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.024 – volume: 38 start-page: 16344 issue: 36 year: 2013 ident: 10.1016/j.ijhydene.2018.11.132_bib5 article-title: Durability test and degradation behavior of a 2.5 kW SOFC stack with internal reforming of LNG publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.140 – volume: 8 issue: 3 year: 2011 ident: 10.1016/j.ijhydene.2018.11.132_bib14 article-title: Modeling analysis of different renewable fuels in an anode supported SOFC publication-title: J Fuel Cell Sci Technol doi: 10.1115/1.4002618 – volume: 34 start-page: 8998 issue: 21 year: 2009 ident: 10.1016/j.ijhydene.2018.11.132_bib32 article-title: A CFD-based model of a planar SOFC for anode flow field design publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.08.073 – volume: 78 start-page: 1791 issue: 1 year: 2017 ident: 10.1016/j.ijhydene.2018.11.132_bib24 publication-title: SOC Development at Forschungszentrum Jülich, ECS Transactions – volume: 37 start-page: 9269 issue: 11 year: 2012 ident: 10.1016/j.ijhydene.2018.11.132_bib27 article-title: Mechanical reliability and durability of SOFC stacks. Part II: modelling of mechanical failures during ageing and cycling publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.03.023 – volume: 37 start-page: 9249 issue: 11 year: 2012 ident: 10.1016/j.ijhydene.2018.11.132_bib28 article-title: Mechanical reliability and durability of SOFC stacks. Part I : modelling of the effect of operating conditions and design alternatives on the reliability publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.03.043 – volume: 42 start-page: 4434 issue: 7 year: 2017 ident: 10.1016/j.ijhydene.2018.11.132_bib36 article-title: CFD-simulation of effective carbon gasification strategies from high temperature SOFC Ni-YSZ cermet anodes publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.162 – volume: 162 start-page: F1199 issue: 10 year: 2015 ident: 10.1016/j.ijhydene.2018.11.132_bib6 article-title: SOFC stack and system development at forschungszentrum jülich publication-title: J Electrochem Soc doi: 10.1149/2.0491510jes – volume: 55 start-page: 773 issue: 4 year: 2012 ident: 10.1016/j.ijhydene.2018.11.132_bib16 article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2011.10.032 – volume: 38 start-page: 4099 issue: 10 year: 2013 ident: 10.1016/j.ijhydene.2018.11.132_bib23 article-title: 3D transient thermomechanical behaviour of a full scale SOFC short stack publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.072 – volume: 13 start-page: 646 issue: 4 year: 2013 ident: 10.1016/j.ijhydene.2018.11.132_bib3 article-title: Long-term testing of SOFC stacks at forschungszentrum jülich publication-title: Fuel Cell doi: 10.1002/fuce.201200151 – volume: 135 start-page: 539 year: 2014 ident: 10.1016/j.ijhydene.2018.11.132_bib15 article-title: A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.08.052 – volume: 180 start-page: 1580 issue: 36–39 year: 2009 ident: 10.1016/j.ijhydene.2018.11.132_bib9 article-title: Understanding of redox behavior of Ni-YSZ cermets publication-title: Solid State Ionics doi: 10.1016/j.ssi.2009.10.011 – volume: 295 start-page: 55 year: 2015 ident: 10.1016/j.ijhydene.2018.11.132_bib2 article-title: Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.06.133 – volume: 66 start-page: 343 issue: 2 year: 2005 ident: 10.1016/j.ijhydene.2018.11.132_bib37 article-title: Interfacial reaction and electrochemical properties of dense (La,Sr) CoO3-δ cathode on YSZ (1 0 0) publication-title: J Phys Chem Solid doi: 10.1016/j.jpcs.2004.06.057 – volume: 161 start-page: 1012 issue: 2 year: 2006 ident: 10.1016/j.ijhydene.2018.11.132_bib45 article-title: Mathematical modeling of planar solid oxide fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.05.055 – year: 2013 ident: 10.1016/j.ijhydene.2018.11.132_bib38 – volume: 2 year: 2017 ident: 10.1016/j.ijhydene.2018.11.132_bib39 – volume: 43 start-page: 2349 issue: 4 year: 2018 ident: 10.1016/j.ijhydene.2018.11.132_bib26 article-title: Investigating the effect of current collecting conditions on solid oxide fuel cell (SOFC) performance with additional voltage probes publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.11.109 – volume: 234 start-page: 180 year: 2013 ident: 10.1016/j.ijhydene.2018.11.132_bib10 article-title: CFD model of a methane fuelled single cell SOFC stack for analysing the combined effects of macro/micro structural parameters publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.12.123 – volume: 75 start-page: 15 issue: 42 year: 2017 ident: 10.1016/j.ijhydene.2018.11.132_bib20 article-title: Recent developments in 3D multiphysics modelling of whole fuel cell systems for assisting commercialisation and improved reliability publication-title: ECS Transactions doi: 10.1149/07542.0015ecst – volume: 152–153 start-page: 405 year: 2002 ident: 10.1016/j.ijhydene.2018.11.132_bib1 article-title: Solid oxide fuel cells for stationary, mobile, and military applications publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00349-1 – volume: 64 start-page: 155 issue: 2 year: 2014 ident: 10.1016/j.ijhydene.2018.11.132_bib22 article-title: 3D multiphysics modelling and design optimisation of a complete SOFC system operating in jülich publication-title: ECS Transactions doi: 10.1149/06402.0155ecst – volume: 152 start-page: A2186 issue: 11 year: 2005 ident: 10.1016/j.ijhydene.2018.11.132_bib8 article-title: The mechanism behind redox instability of anodes in high-temperature SOFCs publication-title: J Electrochem Soc doi: 10.1149/1.2048228 – ident: 10.1016/j.ijhydene.2018.11.132_bib33 doi: 10.1016/j.ijheatmasstransfer.2004.04.010 – volume: 9 issue: 4 year: 2012 ident: 10.1016/j.ijhydene.2018.11.132_bib11 article-title: Dynamic model for understanding spatial temperature and species distributions in internal-reforming solid oxide fuel cells publication-title: Transactions of the ASME-U-Journal of Fuel Cell Science and Technology – volume: 167 start-page: 398 issue: 2 year: 2007 ident: 10.1016/j.ijhydene.2018.11.132_bib42 article-title: 3-D model of thermo-fluid and electrochemical for planar SOFC publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.02.019 – year: 2011 ident: 10.1016/j.ijhydene.2018.11.132_bib40 – volume: 37 start-page: 530 issue: 1 year: 2012 ident: 10.1016/j.ijhydene.2018.11.132_bib43 article-title: Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.09.062 – volume: 180 start-page: 29 issue: 1 year: 2008 ident: 10.1016/j.ijhydene.2018.11.132_bib44 article-title: Numerical analysis of coupled transport and reaction phenomena in an anode-supported flat-tube solid oxide fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.02.039 – volume: 163 start-page: F761 issue: 7 year: 2016 ident: 10.1016/j.ijhydene.2018.11.132_bib35 article-title: Numerical SOFC anode catalyst occupation study: internal reforming of carbonaceous fuel mixtures publication-title: J Electrochem Soc doi: 10.1149/2.0061608jes – ident: 10.1016/j.ijhydene.2018.11.132_bib17 doi: 10.1016/j.ijhydene.2013.05.153 – volume: 38 start-page: 510 issue: 1 year: 2013 ident: 10.1016/j.ijhydene.2018.11.132_bib18 article-title: Prediction of the performance of a solid oxide fuel cell fuelled with biosyngas: influence of different steam-reforming reaction kinetic parameters publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.09.061 – volume: 68 start-page: 2861 issue: 1 year: 2015 ident: 10.1016/j.ijhydene.2018.11.132_bib19 article-title: 3D multiscale-multiphysics SOFC modelling status at the institute of electrochemical process engineering, FZ jülich publication-title: ECS Transactions doi: 10.1149/06801.2861ecst – volume: 38 start-page: 7935 issue: 19 year: 2013 ident: 10.1016/j.ijhydene.2018.11.132_bib12 article-title: A spatially resolved physical model for transient system analysis of high temperature fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.04.087 – volume: 41 start-page: 10030 issue: 23 year: 2016 ident: 10.1016/j.ijhydene.2018.11.132_bib25 article-title: Investigation of temperature distribution and performance of SOFC short stack with/without machined gas channels publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.02.045 – volume: 41 start-page: 14927 issue: 33 year: 2016 ident: 10.1016/j.ijhydene.2018.11.132_bib29 article-title: Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.06.171 – year: 2013 ident: 10.1016/j.ijhydene.2018.11.132_bib41 – volume: 42 start-page: 913 year: 2015 ident: 10.1016/j.ijhydene.2018.11.132_bib7 article-title: Fuel cell technology for domestic built environment applications: state of-the-art review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.10.080 – year: 2010 ident: 10.1016/j.ijhydene.2018.11.132_bib46 |
SSID | ssj0017049 |
Score | 2.4468086 |
Snippet | Predictable long-term operation is key to the industrial roll-out of SOFC technologies; as one of the primary factors hindering steady and reliable operation,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1877 |
SubjectTerms | Method of prolonging SOFC lifetimes Scrutiny of flow configuration and electrical contact position SOFC single cell simulation Temperature distribution optimization |
Title | Numerical analysis of flow configurations and electrical contact positions in SOFC single cells and their impact on local effects |
URI | https://dx.doi.org/10.1016/j.ijhydene.2018.11.132 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jXvQgfuLnyMFr16X5aHscwzEV52EOditp02jHaId2iBfB_9yXNh0ThB08ts2DkvfyPpLf-wWhG48pSONhISVEC4dBxHWkTHwnZgHky54KCTf9zo9jMZqy-xmftdCg6YUxsErr-2ufXnlr-8a1s-kus8ydgO81LTghGCX1YZ2YDnbmGyvvfq1hHsS3KTAMdszojS7heTebv37C8jZ0mSQA79El1Ps7QG0EneEB2rfZIu7XP3SIWml-hPY2OASP0fd4VR-6LLC0BCO40Fgvig8Mta7OXla1kt_hu8L1tTfVcINSl0mJ17gtnOV48jQcYLN_sEix2dSvparjBFx3VOIix1UExBYLcoKmw9vnwcix9yo4CeWkdCiNPe0rwjSPQ5MBKci6pEgYV17MQpEyP9baFyETKjFkMqmmgUxjBuVsKHSPnqJ2XuTpGcKqx1NCdSyFlobpLJBQfwWhph5XinryHPFmMqPEko6buy8WUYMum0eNEiKjBKhIIlDCOXLXcsuadmOrRNjoKvplQBHEhi2yF_-QvUS78GQwZw7hV6hdvq3Sa8hTyrhTGWIH7fTvHkbjH3Qx6gQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwED5RGNoOVZ8qfXroGiCxnceIUBEtjw6AxBY5cdwGoYBaUNWx_7xn4iAqVWLoGvukyHe--86--wzw4DCJMB43Umwr12IYcS0hYs-KmI942ZGBzXW_c3_gdsbsecInJWgVvTC6rNL4_tynr721-VI3q1lfpGl9iL5Xt-AEaJTUw32yBxXNTsXLUGk-dTuDzWWCZ1Awzre0wFaj8LSWTt--cIdrxkzbRwdSs6nzd4zaijvtYzgygJE08386gVKSncLhFo3gGXwPVvm9y4wIwzFC5oqo2fyTYLqr0tdVrucPHJckf_lmPV0Xqot4STalWyTNyPCl3SL6CGGWEH2un0utbxRI3lRJ5hlZB0FiykHOYdx-HLU6lnlawYopt5cWpZGjPGkzxaNAgyCJwEu4MePSiVjgJsyLlPLcgLky1nwyiaK-SCKGGW3gqga9gHI2z5JLILLBE5uqSLhKaLIzX2AK5geKOlxK6ogq8GIxw9jwjuvnL2ZhUWA2DQslhFoJmJSEqIQq1Ddyi5x5Y6dEUOgq_GVDIYaHHbJX_5C9h_3OqN8Le0-D7jUc4IguQbNsfgPl5fsquUXYsozujFn-AHag7LU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+flow+configurations+and+electrical+contact+positions+in+SOFC+single+cells+and+their+impact+on+local+effects&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Schluckner%2C+C.&rft.au=Suboti%C4%87%2C+V.&rft.au=Prei%C3%9Fl%2C+S.&rft.au=Hochenauer%2C+C.&rft.date=2019-01-15&rft.issn=0360-3199&rft.volume=44&rft.issue=3&rft.spage=1877&rft.epage=1895&rft_id=info:doi/10.1016%2Fj.ijhydene.2018.11.132&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2018_11_132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |