Depth Selection for Deep ReLU Nets in Feature Extraction and Generalization
Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has triggered enormous research activities in machi...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 4; pp. 1853 - 1868 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has triggered enormous research activities in machine learning and pattern recognition. One of the most important challenges of deep learning is to figure out relations between a feature and the depth of deep neural networks (deep nets for short) to reflect the necessity of depth. Our purpose is to quantify this feature-depth correspondence in feature extraction and generalization. We present the adaptivity of features to depths and vice-verse via showing a depth-parameter trade-off in extracting both single feature and composite features. Based on these results, we prove that implementing the classical empirical risk minimization on deep nets can achieve the optimal generalization performance for numerous learning tasks. Our theoretical results are verified by a series of numerical experiments including toy simulations and a real application of earthquake seismic intensity prediction. |
---|---|
AbstractList | Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has triggered enormous research activities in machine learning and pattern recognition. One of the most important challenges of deep learning is to figure out relations between a feature and the depth of deep neural networks (deep nets for short) to reflect the necessity of depth. Our purpose is to quantify this feature-depth correspondence in feature extraction and generalization. We present the adaptivity of features to depths and vice-verse via showing a depth-parameter trade-off in extracting both single feature and composite features. Based on these results, we prove that implementing the classical empirical risk minimization on deep nets can achieve the optimal generalization performance for numerous learning tasks. Our theoretical results are verified by a series of numerical experiments including toy simulations and a real application of earthquake seismic intensity prediction.Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has triggered enormous research activities in machine learning and pattern recognition. One of the most important challenges of deep learning is to figure out relations between a feature and the depth of deep neural networks (deep nets for short) to reflect the necessity of depth. Our purpose is to quantify this feature-depth correspondence in feature extraction and generalization. We present the adaptivity of features to depths and vice-verse via showing a depth-parameter trade-off in extracting both single feature and composite features. Based on these results, we prove that implementing the classical empirical risk minimization on deep nets can achieve the optimal generalization performance for numerous learning tasks. Our theoretical results are verified by a series of numerical experiments including toy simulations and a real application of earthquake seismic intensity prediction. Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has triggered enormous research activities in machine learning and pattern recognition. One of the most important challenges of deep learning is to figure out relations between a feature and the depth of deep neural networks (deep nets for short) to reflect the necessity of depth. Our purpose is to quantify this feature-depth correspondence in feature extraction and generalization. We present the adaptivity of features to depths and vice-verse via showing a depth-parameter trade-off in extracting both single feature and composite features. Based on these results, we prove that implementing the classical empirical risk minimization on deep nets can achieve the optimal generalization performance for numerous learning tasks. Our theoretical results are verified by a series of numerical experiments including toy simulations and a real application of earthquake seismic intensity prediction. |
Author | Han, Zhi Lin, Shao-Bo Zhou, Ding-Xuan Yu, Siquan |
Author_xml | – sequence: 1 givenname: Zhi orcidid: 0000-0002-8039-6679 surname: Han fullname: Han, Zhi email: hanzhi@sia.cn organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China – sequence: 2 givenname: Siquan orcidid: 0000-0003-2513-9175 surname: Yu fullname: Yu, Siquan email: yusiquan@sia.cn organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China – sequence: 3 givenname: Shao-Bo orcidid: 0000-0001-5122-9153 surname: Lin fullname: Lin, Shao-Bo email: sblin1983@gmail.com organization: Center of Intelligent Decision-Making and Machine Learning, School of Management, Xi'an Jiaotong University, Xi'an, China – sequence: 4 givenname: Ding-Xuan orcidid: 0000-0003-0224-9216 surname: Zhou fullname: Zhou, Ding-Xuan email: mazhou@cityu.edu.hk organization: Liu Bie Ju Centre for Mathematical Sciences and Department of Mathematics, School of Data Science, City University of Hong Kong, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33079656$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFPGzEQha2KqiRp_wBIlaVeuGywZ9aOfUQQKGqgVQtny_HOqos2u8HelQq_ng1Jc-DAaTSj782M3huzg6ZtiLEjKaZSCnt69-vs5noKAsQUBUIO8IGNQGqRWbBwwEZCasiMAXPIxik9CCFzJfATO0QUM6uVHrEfF7Tu_vI_VFPoqrbhZRv5BdGa_6bFPb-lLvGq4Zfkuz4Sn__rot-Cvin4FTUUfV09-83oM_tY-jrRl12dsPvL-d3592zx8-r6_GyRBVSyyxA0LIPSXlgdAmogL3MQCo0thSiGvihznCmtS19YbWbSeoWy1PnSBPQeJ-xku3cd28eeUudWVQpU176htk8OcgXWoFRqQL-9QR_aPjbDdw40qpkENGagvu6ofrmiwq1jtfLxyf23aQBgC4TYphSp3CNSuE0W7jULt8nC7bIYROaNKFTdq1GDh1X9vvR4K62IaH_LAqIFiS80z5Oj |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1162_neco_a_01585 crossref_primary_10_1080_10589759_2024_2421941 crossref_primary_10_1016_j_matt_2023_04_016 crossref_primary_10_1109_ACCESS_2023_3325785 crossref_primary_10_1142_S0219530522400103 crossref_primary_10_3389_fenvs_2024_1426942 crossref_primary_10_1016_j_jbo_2024_100627 crossref_primary_10_1109_TNNLS_2024_3371025 crossref_primary_10_1007_s12539_024_00623_0 crossref_primary_10_3390_electronics13010201 crossref_primary_10_3389_frai_2023_1289669 crossref_primary_10_1016_j_cja_2023_11_017 crossref_primary_10_1016_j_jco_2023_101784 crossref_primary_10_1109_TIT_2025_3531048 crossref_primary_10_1109_JSEN_2025_3530972 crossref_primary_10_1016_j_neunet_2023_07_012 crossref_primary_10_1021_acs_jpclett_3c03491 crossref_primary_10_1142_S0219530522400085 crossref_primary_10_1088_1361_6463_ad396d |
Cites_doi | 10.1007/978-0-387-21606-5 10.1142/S0219530519400074 10.1007/b97848 10.1016/j.soildyn.2010.07.007 10.1007/bf02551274 10.1109/TIT.2003.813564 10.1193/1.1586022 10.1016/j.acha.2016.04.003 10.1016/j.acha.2019.06.004 10.1109/TPAMI.2013.50 10.1142/S0219530516400042 10.1016/j.neunet.2018.08.019 10.1017/CBO9780511618796 10.7551/mitpress/1113.003.0014 10.1109/TNNLS.2019.2951788 10.5555/2969033.2969153 10.1109/TNNLS.2013.2293637 10.1109/TIT.2016.2634401 10.1016/j.neunet.2017.07.002 10.1162/neco.2006.18.7.1527 10.1142/s0219530518500124 10.1142/S0219530517500026 10.1016/S0893-6080(05)80131-5 10.1007/978-3-642-69894-1 10.1017/s0962492900002919 10.1016/j.neunet.2020.01.018 10.1006/acha.1993.1008 10.1109/TPAMI.2012.230 10.1193/1.1469037 10.1142/S0219530518500203 10.1109/18.256500 10.1016/j.apm.2014.05.018 10.1007/s10955-017-1836-5 10.1016/j.acha.2015.08.007 10.1162/neco.1996.8.1.164 10.1090/S0025-5718-1994-1240656-2 10.3389/fams.2018.00014 10.1007/s00365-017-9379-1 10.1016/j.neunet.2017.06.016 10.1109/TPAMI.2007.70735 10.1109/TNNLS.2018.2868980 10.1109/TCYB.2017.2771463 10.1016/s0925-2312(98)00111-8 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2020.3032422 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 1868 |
ExternalDocumentID | 33079656 10_1109_TPAMI_2020_3032422 9233921 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Research Grant Council of Hong Kong grantid: CityU 11306617 – fundername: National Natural Science Foundation of China grantid: 61773367; 61821005; 61876133; 61977038 funderid: 10.13039/501100001809 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences grantid: 2016183 funderid: 10.13039/501100004739 – fundername: Hong Kong Institute for Data Science funderid: 10.13039/100017449 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CGR CUY CVF ECM EIF FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c351t-3262bc56a096cc362ea14205389f00d62edf437566fad968719a531f64b8c3aa3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 08:55:38 EDT 2025 Mon Jun 30 06:47:23 EDT 2025 Mon Jul 21 06:04:58 EDT 2025 Tue Jul 01 03:18:25 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Wed Aug 27 02:49:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-3262bc56a096cc362ea14205389f00d62edf437566fad968719a531f64b8c3aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2513-9175 0000-0003-0224-9216 0000-0001-5122-9153 0000-0002-8039-6679 |
PMID | 33079656 |
PQID | 2635712388 |
PQPubID | 85458 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2635712388 pubmed_primary_33079656 proquest_miscellaneous_2452983155 crossref_primary_10_1109_TPAMI_2020_3032422 crossref_citationtrail_10_1109_TPAMI_2020_3032422 ieee_primary_9233921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref53 Bishop (ref5) 2006 ref52 ref11 Safran (ref41) ref10 Imaizumi (ref24) ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref42 ref44 ref43 ref49 ref8 ref7 Allen-Zhu (ref1) ref9 ref4 ref3 ref6 Delalleau (ref12) ref40 ref35 ref34 ref37 ref36 Vikraman (ref47) 2016 ref31 ref30 ref33 ref32 ref2 Harvey (ref22) ref39 ref38 Hagan (ref20) 1996 Eldan (ref14) ref23 ref26 ref25 ref21 ref28 ref27 ref29 Goodfellow (ref16) 2016 |
References_xml | – ident: ref21 doi: 10.1007/978-0-387-21606-5 – ident: ref9 doi: 10.1142/S0219530519400074 – ident: ref19 doi: 10.1007/b97848 – ident: ref42 doi: 10.1016/j.soildyn.2010.07.007 – ident: ref11 doi: 10.1007/bf02551274 – start-page: 2979 ident: ref41 article-title: Depth-width tradeoffs in approximating natural functions with neural networks – ident: ref50 doi: 10.1109/TIT.2003.813564 – ident: ref45 doi: 10.1193/1.1586022 – start-page: 242 ident: ref1 article-title: A convergence theory for deep learning via over-parameterization – ident: ref44 doi: 10.1016/j.acha.2016.04.003 – ident: ref52 doi: 10.1016/j.acha.2019.06.004 – year: 2016 ident: ref47 article-title: A deep neural network to identify foreshocks in real time – ident: ref3 doi: 10.1109/TPAMI.2013.50 – start-page: 869 ident: ref24 article-title: Deep neural networks learn non-smooth functions effectively – ident: ref36 doi: 10.1142/S0219530516400042 – ident: ref38 doi: 10.1016/j.neunet.2018.08.019 – ident: ref10 doi: 10.1017/CBO9780511618796 – start-page: 666 volume-title: Proc. 24th Int. Conf. Neural Inf. Process. Syst. ident: ref12 article-title: Shallow vs. deep sum-product networks – ident: ref15 doi: 10.7551/mitpress/1113.003.0014 – ident: ref18 doi: 10.1109/TNNLS.2019.2951788 – ident: ref37 doi: 10.5555/2969033.2969153 – ident: ref4 doi: 10.1109/TNNLS.2013.2293637 – ident: ref25 doi: 10.1109/TIT.2016.2634401 – ident: ref48 doi: 10.1016/j.neunet.2017.07.002 – ident: ref23 doi: 10.1162/neco.2006.18.7.1527 – ident: ref51 doi: 10.1142/s0219530518500124 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: ref5 – start-page: 907 ident: ref14 article-title: The power of depth for feedforward neural networks – ident: ref17 doi: 10.1142/S0219530517500026 – ident: ref26 doi: 10.1016/S0893-6080(05)80131-5 – ident: ref39 doi: 10.1007/978-3-642-69894-1 – ident: ref40 doi: 10.1017/s0962492900002919 – ident: ref53 doi: 10.1016/j.neunet.2020.01.018 – ident: ref13 doi: 10.1006/acha.1993.1008 – ident: ref6 doi: 10.1109/TPAMI.2012.230 – ident: ref46 doi: 10.1193/1.1469037 – ident: ref43 doi: 10.1142/S0219530518500203 – ident: ref2 doi: 10.1109/18.256500 – ident: ref28 doi: 10.1016/j.apm.2014.05.018 – ident: ref27 doi: 10.1007/s10955-017-1836-5 – ident: ref49 doi: 10.1016/j.acha.2015.08.007 – ident: ref35 doi: 10.1162/neco.1996.8.1.164 – ident: ref7 doi: 10.1090/S0025-5718-1994-1240656-2 – ident: ref8 doi: 10.3389/fams.2018.00014 – ident: ref32 doi: 10.1007/s00365-017-9379-1 – ident: ref30 doi: 10.1016/j.neunet.2017.06.016 – volume-title: Neural Network Design year: 1996 ident: ref20 – ident: ref33 doi: 10.1109/TPAMI.2007.70735 – ident: ref31 doi: 10.1109/TNNLS.2018.2868980 – ident: ref29 doi: 10.1109/TCYB.2017.2771463 – ident: ref34 doi: 10.1016/s0925-2312(98)00111-8 – volume-title: Deep Learning year: 2016 ident: ref16 – start-page: 1064 volume-title: Proc. Conf. Learn. Theory ident: ref22 article-title: Nearly-tight VC-dimension bounds for piecewise linear neural networks |
SSID | ssj0014503 |
Score | 2.5224242 |
Snippet | Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1853 |
SubjectTerms | Algorithms Artificial neural networks Cognitive tasks Data mining Deep learning Deep nets Earthquake prediction Feature extraction feature extractions generalization Humans learning theory Machine Learning Machine learning algorithms Neural Networks, Computer Optimization Pattern recognition Task analysis |
Title | Depth Selection for Deep ReLU Nets in Feature Extraction and Generalization |
URI | https://ieeexplore.ieee.org/document/9233921 https://www.ncbi.nlm.nih.gov/pubmed/33079656 https://www.proquest.com/docview/2635712388 https://www.proquest.com/docview/2452983155 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSsRAEC3Ukx4cd-NGC940Y_blKC64jYg64C1UdzooSmYYExC_3upOJ4ioeEtIZ-NVpd5Ld1UB7LkYCvrocRsDcvLA8dFO3FjYiInwolR4MVf5zoOb6HwYXD6Gj1Nw0OXCSCn14jPZV5t6Lj8fiVr9KjskMkLhnLTONAm3JlermzEIQt0FmRgMeTjJiDZBxkkPH26PBhckBT1SqI4iEKqFDen4OI1U3-ov8Ug3WPmda-qYc9aDQfu0zVKTl35d8b74-FbI8b-vswDzhnyyo8ZaFmFKlkvQaxs7MOPnSzD3pUrhMlydyHH1xO51xxyCkRHPZSdSjtmdvB6yG1m9seeSKTJZTyQ7fa8mTbYEwzJnpq61SfdcgeHZ6cPxuW16MNjCD93KJnbncRFGSFJHCIp2Et3AI89N0sJxctrPi8CPiRQWmKcRya8Uya2LKOCJ8BH9VZgpR6VcB1ZgwiPkPBZEOb0UeUAYYBT7eeiruncWuC0SmTAFylWfjNdMCxUnzTSQmQIyM0BasN-dM27Kc_w5elmh0I00AFiw1QKeGQ9-y1SRnpjCepJYsNsdJt9TEypYylFNY9SsdeITJbNgrTGU7tqtfW38fM9NmPVUIoVeA7QFM9WklttEbyq-o-36E6hb8IE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS-RAEC7EfVh98D6yHtsLvmnG3MejeDCuM4PoDPgWqjsdFCUzjAks--ut7nSCiC77lpDOxVeV-r50VxXAkYuhoI8etzEgJw8cH-3EjYWNmAgvSoUXc5XvPBxF_Unw-yF8WICTLhdGSqkXn8me2tRz-flU1OpX2SmREQrnpHW-UdwPvSZbq5szCELdB5k4DPk4CYk2RcZJT8e3Z8NrEoMeaVRHUQjVxIaUfJxGqnP1u4ikW6x8zTZ11LlahWH7vM1ik-deXfGe-PuhlOP_vtAarBj6yc4ae1mHBVluwGrb2oEZT9-A5Xd1Cjfh5kLOqkd2r3vmEJCMmC67kHLG7uRgwkayemVPJVN0sp5Ldvmnmjf5EgzLnJnK1ibhcwsmV5fj875tujDYwg_dyiZ-53ERRkhiRwiKdxLdwCPfTdLCcXLaz4vAj4kWFpinEQmwFMmxiyjgifAR_W1YLKel3AVWYMIj5DwWRDq9FHlAGGAU-3noq8p3FrgtEpkwJcpVp4yXTEsVJ800kJkCMjNAWnDcnTNrCnT8c_SmQqEbaQCwYL8FPDM-_JqpMj0xBfYkseBXd5i8T02pYCmnNY1R89aJT6TMgp3GULprt_b14_N7_oTv_fFwkA2uRzd7sOSptAq9ImgfFqt5LQ-I7FT8UNv4G2GT88s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depth+Selection+for+Deep+ReLU+Nets+in+Feature+Extraction+and+Generalization&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Han%2C+Zhi&rft.au=Yu%2C+Siquan&rft.au=Lin%2C+Shao-Bo&rft.au=Zhou%2C+Ding-Xuan&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=44&rft.issue=4&rft.spage=1853&rft.epage=1868&rft_id=info:doi/10.1109%2FTPAMI.2020.3032422&rft_id=info%3Apmid%2F33079656&rft.externalDocID=9233921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |