Depth Selection for Deep ReLU Nets in Feature Extraction and Generalization

Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has triggered enormous research activities in machi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 4; pp. 1853 - 1868
Main Authors Han, Zhi, Yu, Siquan, Lin, Shao-Bo, Zhou, Ding-Xuan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has triggered enormous research activities in machine learning and pattern recognition. One of the most important challenges of deep learning is to figure out relations between a feature and the depth of deep neural networks (deep nets for short) to reflect the necessity of depth. Our purpose is to quantify this feature-depth correspondence in feature extraction and generalization. We present the adaptivity of features to depths and vice-verse via showing a depth-parameter trade-off in extracting both single feature and composite features. Based on these results, we prove that implementing the classical empirical risk minimization on deep nets can achieve the optimal generalization performance for numerous learning tasks. Our theoretical results are verified by a series of numerical experiments including toy simulations and a real application of earthquake seismic intensity prediction.
AbstractList Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has triggered enormous research activities in machine learning and pattern recognition. One of the most important challenges of deep learning is to figure out relations between a feature and the depth of deep neural networks (deep nets for short) to reflect the necessity of depth. Our purpose is to quantify this feature-depth correspondence in feature extraction and generalization. We present the adaptivity of features to depths and vice-verse via showing a depth-parameter trade-off in extracting both single feature and composite features. Based on these results, we prove that implementing the classical empirical risk minimization on deep nets can achieve the optimal generalization performance for numerous learning tasks. Our theoretical results are verified by a series of numerical experiments including toy simulations and a real application of earthquake seismic intensity prediction.Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has triggered enormous research activities in machine learning and pattern recognition. One of the most important challenges of deep learning is to figure out relations between a feature and the depth of deep neural networks (deep nets for short) to reflect the necessity of depth. Our purpose is to quantify this feature-depth correspondence in feature extraction and generalization. We present the adaptivity of features to depths and vice-verse via showing a depth-parameter trade-off in extracting both single feature and composite features. Based on these results, we prove that implementing the classical empirical risk minimization on deep nets can achieve the optimal generalization performance for numerous learning tasks. Our theoretical results are verified by a series of numerical experiments including toy simulations and a real application of earthquake seismic intensity prediction.
Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantages of human ingenuity and prior knowledge. Thus it has triggered enormous research activities in machine learning and pattern recognition. One of the most important challenges of deep learning is to figure out relations between a feature and the depth of deep neural networks (deep nets for short) to reflect the necessity of depth. Our purpose is to quantify this feature-depth correspondence in feature extraction and generalization. We present the adaptivity of features to depths and vice-verse via showing a depth-parameter trade-off in extracting both single feature and composite features. Based on these results, we prove that implementing the classical empirical risk minimization on deep nets can achieve the optimal generalization performance for numerous learning tasks. Our theoretical results are verified by a series of numerical experiments including toy simulations and a real application of earthquake seismic intensity prediction.
Author Han, Zhi
Lin, Shao-Bo
Zhou, Ding-Xuan
Yu, Siquan
Author_xml – sequence: 1
  givenname: Zhi
  orcidid: 0000-0002-8039-6679
  surname: Han
  fullname: Han, Zhi
  email: hanzhi@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
– sequence: 2
  givenname: Siquan
  orcidid: 0000-0003-2513-9175
  surname: Yu
  fullname: Yu, Siquan
  email: yusiquan@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
– sequence: 3
  givenname: Shao-Bo
  orcidid: 0000-0001-5122-9153
  surname: Lin
  fullname: Lin, Shao-Bo
  email: sblin1983@gmail.com
  organization: Center of Intelligent Decision-Making and Machine Learning, School of Management, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Ding-Xuan
  orcidid: 0000-0003-0224-9216
  surname: Zhou
  fullname: Zhou, Ding-Xuan
  email: mazhou@cityu.edu.hk
  organization: Liu Bie Ju Centre for Mathematical Sciences and Department of Mathematics, School of Data Science, City University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33079656$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFPGzEQha2KqiRp_wBIlaVeuGywZ9aOfUQQKGqgVQtny_HOqos2u8HelQq_ng1Jc-DAaTSj782M3huzg6ZtiLEjKaZSCnt69-vs5noKAsQUBUIO8IGNQGqRWbBwwEZCasiMAXPIxik9CCFzJfATO0QUM6uVHrEfF7Tu_vI_VFPoqrbhZRv5BdGa_6bFPb-lLvGq4Zfkuz4Sn__rot-Cvin4FTUUfV09-83oM_tY-jrRl12dsPvL-d3592zx8-r6_GyRBVSyyxA0LIPSXlgdAmogL3MQCo0thSiGvihznCmtS19YbWbSeoWy1PnSBPQeJ-xku3cd28eeUudWVQpU176htk8OcgXWoFRqQL-9QR_aPjbDdw40qpkENGagvu6ofrmiwq1jtfLxyf23aQBgC4TYphSp3CNSuE0W7jULt8nC7bIYROaNKFTdq1GDh1X9vvR4K62IaH_LAqIFiS80z5Oj
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1162_neco_a_01585
crossref_primary_10_1080_10589759_2024_2421941
crossref_primary_10_1016_j_matt_2023_04_016
crossref_primary_10_1109_ACCESS_2023_3325785
crossref_primary_10_1142_S0219530522400103
crossref_primary_10_3389_fenvs_2024_1426942
crossref_primary_10_1016_j_jbo_2024_100627
crossref_primary_10_1109_TNNLS_2024_3371025
crossref_primary_10_1007_s12539_024_00623_0
crossref_primary_10_3390_electronics13010201
crossref_primary_10_3389_frai_2023_1289669
crossref_primary_10_1016_j_cja_2023_11_017
crossref_primary_10_1016_j_jco_2023_101784
crossref_primary_10_1109_TIT_2025_3531048
crossref_primary_10_1109_JSEN_2025_3530972
crossref_primary_10_1016_j_neunet_2023_07_012
crossref_primary_10_1021_acs_jpclett_3c03491
crossref_primary_10_1142_S0219530522400085
crossref_primary_10_1088_1361_6463_ad396d
Cites_doi 10.1007/978-0-387-21606-5
10.1142/S0219530519400074
10.1007/b97848
10.1016/j.soildyn.2010.07.007
10.1007/bf02551274
10.1109/TIT.2003.813564
10.1193/1.1586022
10.1016/j.acha.2016.04.003
10.1016/j.acha.2019.06.004
10.1109/TPAMI.2013.50
10.1142/S0219530516400042
10.1016/j.neunet.2018.08.019
10.1017/CBO9780511618796
10.7551/mitpress/1113.003.0014
10.1109/TNNLS.2019.2951788
10.5555/2969033.2969153
10.1109/TNNLS.2013.2293637
10.1109/TIT.2016.2634401
10.1016/j.neunet.2017.07.002
10.1162/neco.2006.18.7.1527
10.1142/s0219530518500124
10.1142/S0219530517500026
10.1016/S0893-6080(05)80131-5
10.1007/978-3-642-69894-1
10.1017/s0962492900002919
10.1016/j.neunet.2020.01.018
10.1006/acha.1993.1008
10.1109/TPAMI.2012.230
10.1193/1.1469037
10.1142/S0219530518500203
10.1109/18.256500
10.1016/j.apm.2014.05.018
10.1007/s10955-017-1836-5
10.1016/j.acha.2015.08.007
10.1162/neco.1996.8.1.164
10.1090/S0025-5718-1994-1240656-2
10.3389/fams.2018.00014
10.1007/s00365-017-9379-1
10.1016/j.neunet.2017.06.016
10.1109/TPAMI.2007.70735
10.1109/TNNLS.2018.2868980
10.1109/TCYB.2017.2771463
10.1016/s0925-2312(98)00111-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.3032422
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1868
ExternalDocumentID 33079656
10_1109_TPAMI_2020_3032422
9233921
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research Grant Council of Hong Kong
  grantid: CityU 11306617
– fundername: National Natural Science Foundation of China
  grantid: 61773367; 61821005; 61876133; 61977038
  funderid: 10.13039/501100001809
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  grantid: 2016183
  funderid: 10.13039/501100004739
– fundername: Hong Kong Institute for Data Science
  funderid: 10.13039/100017449
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CGR
CUY
CVF
ECM
EIF
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-3262bc56a096cc362ea14205389f00d62edf437566fad968719a531f64b8c3aa3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 08:55:38 EDT 2025
Mon Jun 30 06:47:23 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Tue Jul 01 03:18:25 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Wed Aug 27 02:49:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-3262bc56a096cc362ea14205389f00d62edf437566fad968719a531f64b8c3aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2513-9175
0000-0003-0224-9216
0000-0001-5122-9153
0000-0002-8039-6679
PMID 33079656
PQID 2635712388
PQPubID 85458
PageCount 16
ParticipantIDs proquest_journals_2635712388
pubmed_primary_33079656
proquest_miscellaneous_2452983155
crossref_primary_10_1109_TPAMI_2020_3032422
crossref_citationtrail_10_1109_TPAMI_2020_3032422
ieee_primary_9233921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref53
Bishop (ref5) 2006
ref52
ref11
Safran (ref41)
ref10
Imaizumi (ref24)
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref44
ref43
ref49
ref8
ref7
Allen-Zhu (ref1)
ref9
ref4
ref3
ref6
Delalleau (ref12)
ref40
ref35
ref34
ref37
ref36
Vikraman (ref47) 2016
ref31
ref30
ref33
ref32
ref2
Harvey (ref22)
ref39
ref38
Hagan (ref20) 1996
Eldan (ref14)
ref23
ref26
ref25
ref21
ref28
ref27
ref29
Goodfellow (ref16) 2016
References_xml – ident: ref21
  doi: 10.1007/978-0-387-21606-5
– ident: ref9
  doi: 10.1142/S0219530519400074
– ident: ref19
  doi: 10.1007/b97848
– ident: ref42
  doi: 10.1016/j.soildyn.2010.07.007
– ident: ref11
  doi: 10.1007/bf02551274
– start-page: 2979
  ident: ref41
  article-title: Depth-width tradeoffs in approximating natural functions with neural networks
– ident: ref50
  doi: 10.1109/TIT.2003.813564
– ident: ref45
  doi: 10.1193/1.1586022
– start-page: 242
  ident: ref1
  article-title: A convergence theory for deep learning via over-parameterization
– ident: ref44
  doi: 10.1016/j.acha.2016.04.003
– ident: ref52
  doi: 10.1016/j.acha.2019.06.004
– year: 2016
  ident: ref47
  article-title: A deep neural network to identify foreshocks in real time
– ident: ref3
  doi: 10.1109/TPAMI.2013.50
– start-page: 869
  ident: ref24
  article-title: Deep neural networks learn non-smooth functions effectively
– ident: ref36
  doi: 10.1142/S0219530516400042
– ident: ref38
  doi: 10.1016/j.neunet.2018.08.019
– ident: ref10
  doi: 10.1017/CBO9780511618796
– start-page: 666
  volume-title: Proc. 24th Int. Conf. Neural Inf. Process. Syst.
  ident: ref12
  article-title: Shallow vs. deep sum-product networks
– ident: ref15
  doi: 10.7551/mitpress/1113.003.0014
– ident: ref18
  doi: 10.1109/TNNLS.2019.2951788
– ident: ref37
  doi: 10.5555/2969033.2969153
– ident: ref4
  doi: 10.1109/TNNLS.2013.2293637
– ident: ref25
  doi: 10.1109/TIT.2016.2634401
– ident: ref48
  doi: 10.1016/j.neunet.2017.07.002
– ident: ref23
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref51
  doi: 10.1142/s0219530518500124
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: ref5
– start-page: 907
  ident: ref14
  article-title: The power of depth for feedforward neural networks
– ident: ref17
  doi: 10.1142/S0219530517500026
– ident: ref26
  doi: 10.1016/S0893-6080(05)80131-5
– ident: ref39
  doi: 10.1007/978-3-642-69894-1
– ident: ref40
  doi: 10.1017/s0962492900002919
– ident: ref53
  doi: 10.1016/j.neunet.2020.01.018
– ident: ref13
  doi: 10.1006/acha.1993.1008
– ident: ref6
  doi: 10.1109/TPAMI.2012.230
– ident: ref46
  doi: 10.1193/1.1469037
– ident: ref43
  doi: 10.1142/S0219530518500203
– ident: ref2
  doi: 10.1109/18.256500
– ident: ref28
  doi: 10.1016/j.apm.2014.05.018
– ident: ref27
  doi: 10.1007/s10955-017-1836-5
– ident: ref49
  doi: 10.1016/j.acha.2015.08.007
– ident: ref35
  doi: 10.1162/neco.1996.8.1.164
– ident: ref7
  doi: 10.1090/S0025-5718-1994-1240656-2
– ident: ref8
  doi: 10.3389/fams.2018.00014
– ident: ref32
  doi: 10.1007/s00365-017-9379-1
– ident: ref30
  doi: 10.1016/j.neunet.2017.06.016
– volume-title: Neural Network Design
  year: 1996
  ident: ref20
– ident: ref33
  doi: 10.1109/TPAMI.2007.70735
– ident: ref31
  doi: 10.1109/TNNLS.2018.2868980
– ident: ref29
  doi: 10.1109/TCYB.2017.2771463
– ident: ref34
  doi: 10.1016/s0925-2312(98)00111-8
– volume-title: Deep Learning
  year: 2016
  ident: ref16
– start-page: 1064
  volume-title: Proc. Conf. Learn. Theory
  ident: ref22
  article-title: Nearly-tight VC-dimension bounds for piecewise linear neural networks
SSID ssj0014503
Score 2.5224242
Snippet Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1853
SubjectTerms Algorithms
Artificial neural networks
Cognitive tasks
Data mining
Deep learning
Deep nets
Earthquake prediction
Feature extraction
feature extractions
generalization
Humans
learning theory
Machine Learning
Machine learning algorithms
Neural Networks, Computer
Optimization
Pattern recognition
Task analysis
Title Depth Selection for Deep ReLU Nets in Feature Extraction and Generalization
URI https://ieeexplore.ieee.org/document/9233921
https://www.ncbi.nlm.nih.gov/pubmed/33079656
https://www.proquest.com/docview/2635712388
https://www.proquest.com/docview/2452983155
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSsRAEC3Ukx4cd-NGC940Y_blKC64jYg64C1UdzooSmYYExC_3upOJ4ioeEtIZ-NVpd5Ld1UB7LkYCvrocRsDcvLA8dFO3FjYiInwolR4MVf5zoOb6HwYXD6Gj1Nw0OXCSCn14jPZV5t6Lj8fiVr9KjskMkLhnLTONAm3JlermzEIQt0FmRgMeTjJiDZBxkkPH26PBhckBT1SqI4iEKqFDen4OI1U3-ov8Ug3WPmda-qYc9aDQfu0zVKTl35d8b74-FbI8b-vswDzhnyyo8ZaFmFKlkvQaxs7MOPnSzD3pUrhMlydyHH1xO51xxyCkRHPZSdSjtmdvB6yG1m9seeSKTJZTyQ7fa8mTbYEwzJnpq61SfdcgeHZ6cPxuW16MNjCD93KJnbncRFGSFJHCIp2Et3AI89N0sJxctrPi8CPiRQWmKcRya8Uya2LKOCJ8BH9VZgpR6VcB1ZgwiPkPBZEOb0UeUAYYBT7eeiruncWuC0SmTAFylWfjNdMCxUnzTSQmQIyM0BasN-dM27Kc_w5elmh0I00AFiw1QKeGQ9-y1SRnpjCepJYsNsdJt9TEypYylFNY9SsdeITJbNgrTGU7tqtfW38fM9NmPVUIoVeA7QFM9WklttEbyq-o-36E6hb8IE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS-RAEC7EfVh98D6yHtsLvmnG3MejeDCuM4PoDPgWqjsdFCUzjAks--ut7nSCiC77lpDOxVeV-r50VxXAkYuhoI8etzEgJw8cH-3EjYWNmAgvSoUXc5XvPBxF_Unw-yF8WICTLhdGSqkXn8me2tRz-flU1OpX2SmREQrnpHW-UdwPvSZbq5szCELdB5k4DPk4CYk2RcZJT8e3Z8NrEoMeaVRHUQjVxIaUfJxGqnP1u4ikW6x8zTZ11LlahWH7vM1ik-deXfGe-PuhlOP_vtAarBj6yc4ae1mHBVluwGrb2oEZT9-A5Xd1Cjfh5kLOqkd2r3vmEJCMmC67kHLG7uRgwkayemVPJVN0sp5Ldvmnmjf5EgzLnJnK1ibhcwsmV5fj875tujDYwg_dyiZ-53ERRkhiRwiKdxLdwCPfTdLCcXLaz4vAj4kWFpinEQmwFMmxiyjgifAR_W1YLKel3AVWYMIj5DwWRDq9FHlAGGAU-3noq8p3FrgtEpkwJcpVp4yXTEsVJ800kJkCMjNAWnDcnTNrCnT8c_SmQqEbaQCwYL8FPDM-_JqpMj0xBfYkseBXd5i8T02pYCmnNY1R89aJT6TMgp3GULprt_b14_N7_oTv_fFwkA2uRzd7sOSptAq9ImgfFqt5LQ-I7FT8UNv4G2GT88s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depth+Selection+for+Deep+ReLU+Nets+in+Feature+Extraction+and+Generalization&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Han%2C+Zhi&rft.au=Yu%2C+Siquan&rft.au=Lin%2C+Shao-Bo&rft.au=Zhou%2C+Ding-Xuan&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=44&rft.issue=4&rft.spage=1853&rft.epage=1868&rft_id=info:doi/10.1109%2FTPAMI.2020.3032422&rft_id=info%3Apmid%2F33079656&rft.externalDocID=9233921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon