TIME PERIODIC SOLUTIONS OF NON-ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM
In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodi...
Saved in:
Published in | Acta mathematica scientia Vol. 35; no. 1; pp. 216 - 234 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2015
School of Mathematical Sciences, Xiamen University, Xiamen 361005, China |
Subjects | |
Online Access | Get full text |
ISSN | 0252-9602 1572-9087 |
DOI | 10.1016/S0252-9602(14)60153-3 |
Cover
Abstract | In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem. |
---|---|
AbstractList | In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in . Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n greater than or equal to 5. Our proof is based on a combination of the energy method and the contraction mapping theorem. In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in ℝn. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n ≥ 5. Our proof is based on a combination of the energy method and the contraction mapping theorem. In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem. |
Author | 许秋菊 蔡虹 谭忠 |
AuthorAffiliation | School of Mathematical Sciences, Xiamen University, Xiamen 361005, China |
AuthorAffiliation_xml | – name: School of Mathematical Sciences, Xiamen University, Xiamen 361005, China |
Author_xml | – sequence: 1 fullname: 许秋菊 蔡虹 谭忠 |
BookMark | eNqFkMtOwzAQRS0EEuXxCUgRK1gE_Iobr1BpA0Rq4tKERVeW69gQVJIStzz-HpcCW2ZjaXzv3JlzAHabtjEAnCB4gSBilwXEEQ45g_gM0XMGUURCsgN6KOr7Noz7u6D3J9kHB849Q-_DjPbAfZlmSTBJpqkYpcOgEOOHMhV5EYibIBd5mBZJXk7FxP8NRTaZJkWRXo-TIBvc5kkp7majqRjN8kG2Mc-KMsmOwJ5VC2eOf95D8HCTlMO7cCxu0-FgHGoSoVVIoKHMVhW1vjChLI61ZZob2I8qjOacE8uhsjHRXMVcWQVxXNGK0khhPZ-TQ3C-nfuuGquaR_ncrrvGJ0r38b74mEuDPQnoCfW99myrXXbt69q4lXypnTaLhWpMu3YSMY4J8ytwL422Ut21znXGymVXv6juUyIoN7jlN265YSkRld-4JfG-q63P-JvfatNJp2vTaFPVndErWbX1vxNOf5Kf2ubxtfYn_UYzRmLMcMTJF5kojT8 |
Cites_doi | 10.1016/j.nonrwa.2007.10.001 10.3934/dcds.2006.14.579 10.1016/j.na.2007.10.005 10.1016/j.na.2010.02.019 10.1007/BF03167869 10.1215/kjm/1250522322 10.1017/S0308210509001632 10.1007/s00205-010-0295-9 10.1006/jdeq.2001.4111 10.1016/j.jde.2009.11.031 10.1137/S0036139902409284 10.1007/s00220-004-1062-2 10.3792/pjaa.58.384 10.1142/S0219530506000784 10.1007/s00033-003-1017-z 10.1142/S021820250700208X 10.1007/s00220-008-0497-2 10.1007/s00033-005-4057-8 10.1137/120893355 10.1016/j.na.2012.08.012 10.1007/s00220-007-0366-4 10.1007/BF03167068 |
ContentType | Journal Article |
Copyright | 2015 Wuhan Institute of Physics and Mathematics Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2015 Wuhan Institute of Physics and Mathematics – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/S0252-9602(14)60153-3 |
DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
DocumentTitleAlternate | TIME PERIODIC SOLUTIONS OF NON-ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM |
EISSN | 1572-9087 |
EndPage | 234 |
ExternalDocumentID | sxwlxb_e201501017 10_1016_S0252_9602_14_60153_3 S0252960214601533 663826259 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11271305 – fundername: National Natural Science Foundation of China funderid: (11271305) |
GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 23M 2B. 2C. 2RA 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 5XL 7-5 71M 8P~ 92E 92I 92L 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFGU AAHNG AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABAOU ABECU ABFGW ABFNM ABFTV ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABXDB ABXPI ABYKQ ACAOD ACAZW ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACMLO ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADBBV ADEZE ADKNI ADMDM ADMUD ADOXG ADTPH ADURQ ADYFF AEBSH AEFTE AEJRE AEKER AENEX AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AIAKS AIEXJ AIGVJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF ARUGR AXJTR AXYYD BGNMA BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CS3 CSCUP CW9 DPUIP EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNLPD FNPLU FYGXN GBLVA GJIRD HVGLF HZ~ IKXTQ IWAJR J1W JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MHUIS MO0 N9A NPVJJ NQJWS NU0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. PT4 Q-- Q-0 Q38 R-A REI RIG ROL RSV RT1 S.. SDC SDF SDG SDH SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SSW SSZ T5K T8Q TCJ TGP TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW ZMTXR ~G- ~L9 ~WA AGQEE FIGPU AACDK AAJBT AASML AATTM AAXKI AAYWO AAYXX ABAKF ABBRH ABDBE ABFSG ABJNI ABWVN ACDTI ACPIV ACRPL ACSTC ACVFH ADCNI ADNMO AEFQL AEIPS AEMSY AEUPX AEZWR AFBBN AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIGIU AIIUN AIXLP AKBMS AKRWK AKYEP ANKPU ATHPR AYFIA CITATION HG6 SJYHP SSH 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D 4A8 PSX |
ID | FETCH-LOGICAL-c351t-30e46fdd4ffff234688cf6c9e075d21b993f90af83c9a89afa028d4d445a2cbb3 |
IEDL.DBID | AIKHN |
ISSN | 0252-9602 |
IngestDate | Thu May 29 04:00:08 EDT 2025 Thu Sep 04 21:53:07 EDT 2025 Tue Jul 01 02:27:32 EDT 2025 Fri Feb 23 02:25:03 EST 2024 Wed Feb 14 10:34:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | optimal time decay rates energy estimates non-isentropic compressible magnetohydrodynamic system 35Q35 35B10 time periodic solution 35M10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-30e46fdd4ffff234688cf6c9e075d21b993f90af83c9a89afa028d4d445a2cbb3 |
Notes | In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem. non-isentropic compressible magnetohydrodynamic system; time periodic solution; optimal time decay rates; energy estimates 42-1227/O ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1692366889 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | wanfang_journals_sxwlxb_e201501017 proquest_miscellaneous_1692366889 crossref_primary_10_1016_S0252_9602_14_60153_3 elsevier_sciencedirect_doi_10_1016_S0252_9602_14_60153_3 chongqing_primary_663826259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015 January 2015 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | Acta mathematica scientia |
PublicationTitleAlternate | Acta Mathematica Scientia |
PublicationTitle_FL | Acta Mathematica Scientia |
PublicationYear | 2015 |
Publisher | Elsevier Ltd School of Mathematical Sciences, Xiamen University, Xiamen 361005, China |
Publisher_xml | – name: Elsevier Ltd – name: School of Mathematical Sciences, Xiamen University, Xiamen 361005, China |
References | Chen, Wang (bib3) 2003; 54 Hu, Wang (bib10) 2008; 283 Ukai, Yang (bib24) 2006; 4 Tan, Wang (bib20) 2013; 76 Hoff, Tsyganov (bib9) 2005; 56 Ju (bib12) 2004; 251 Kawashima (bib15) 1984; 1 Ukai (bib22) 2006; 14 Chen, Tan (bib1) 2010; 72 Wang (bib26) 2003; 63 Chen, Wang (bib2) 2002; 182 Matsumura, Nishida (bib19) 1980; 20 Chen, Xiao, Zhao (bib4) 2012; arXiv Fan, Yu (bib7) 2008; 69 Michael (bib21) 1996 Hu, Wang (bib11) 2010; 197 Ma, Ukai, Yang (bib18) 2010; 248 Duan, Ukai, Yang, Zhao (bib6) 2008; 277 Umeda, Kawashiwa, Shizuta (bib23) 1984; 1 Fan, Yu (bib8) 2009; 10 Li, Xu, Zhang (bib16) 2013; 45 Kawashima, Okada (bib13) 1982; 58 Kawashima (bib14) 1983 Li, Yu (bib17) 2011; 141 Volpert, Khudiaev (bib25) 1972; 87 Duan, Ukai, Yang, Zhao (bib5) 2007; 17 Fan (10.1016/S0252-9602(14)60153-3_bib8) 2009; 10 Duan (10.1016/S0252-9602(14)60153-3_bib6) 2008; 277 Umeda (10.1016/S0252-9602(14)60153-3_bib23) 1984; 1 Ukai (10.1016/S0252-9602(14)60153-3_bib22) 2006; 14 Chen (10.1016/S0252-9602(14)60153-3_bib1) 2010; 72 Ukai (10.1016/S0252-9602(14)60153-3_bib24) 2006; 4 Li (10.1016/S0252-9602(14)60153-3_bib16) 2013; 45 Michael (10.1016/S0252-9602(14)60153-3_bib21) 1996 Matsumura (10.1016/S0252-9602(14)60153-3_bib19) 1980; 20 Fan (10.1016/S0252-9602(14)60153-3_bib7) 2008; 69 Chen (10.1016/S0252-9602(14)60153-3_bib3) 2003; 54 Tan (10.1016/S0252-9602(14)60153-3_bib20) 2013; 76 Duan (10.1016/S0252-9602(14)60153-3_bib5) 2007; 17 Chen (10.1016/S0252-9602(14)60153-3_bib2) 2002; 182 Hoff (10.1016/S0252-9602(14)60153-3_bib9) 2005; 56 Volpert (10.1016/S0252-9602(14)60153-3_bib25) 1972; 87 Ma (10.1016/S0252-9602(14)60153-3_bib18) 2010; 248 Chen (10.1016/S0252-9602(14)60153-3_bib4) 2012; arXiv Li (10.1016/S0252-9602(14)60153-3_bib17) 2011; 141 Ju (10.1016/S0252-9602(14)60153-3_bib12) 2004; 251 Hu (10.1016/S0252-9602(14)60153-3_bib10) 2008; 283 Kawashima (10.1016/S0252-9602(14)60153-3_bib13) 1982; 58 Kawashima (10.1016/S0252-9602(14)60153-3_bib14) 1983 Hu (10.1016/S0252-9602(14)60153-3_bib11) 2010; 197 Kawashima (10.1016/S0252-9602(14)60153-3_bib15) 1984; 1 Wang (10.1016/S0252-9602(14)60153-3_bib26) 2003; 63 |
References_xml | – volume: 45 start-page: 1356 year: 2013 end-page: 1387 ident: bib16 article-title: Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum publication-title: SIAM J Math Anal – volume: 4 start-page: 263 year: 2006 end-page: 310 ident: bib24 article-title: The Boltzmann equation in the sapce publication-title: Anal Appl – volume: 277 start-page: 189 year: 2008 end-page: 236 ident: bib6 article-title: Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications publication-title: Comm Math Phys – volume: 76 start-page: 153 year: 2013 end-page: 164 ident: bib20 article-title: Time periodic solutions of compressible magnetohydrodynamic equations publication-title: Nonlinear Anal – volume: 1 start-page: 435 year: 1984 end-page: 457 ident: bib23 article-title: On the decay of solutions to the linearized equations of electromagnetofluid dynamics publication-title: Japan J Appl Math – volume: 283 start-page: 253 year: 2008 end-page: 284 ident: bib10 article-title: Global solutions to the three-dimensional full compressible magnetohydrodynamics flows publication-title: Comm Math Phys – volume: 58 start-page: 384 year: 1982 end-page: 387 ident: bib13 article-title: Smooth global solutions for the one-dimensinal equations in magnetohydrodynamics publication-title: Proc Japan Acad Ser A Math Sci – volume: 10 start-page: 392 year: 2009 end-page: 409 ident: bib8 article-title: Strong solution to the compressible magnetohydrodynamic equations with vacuum publication-title: Nonlinear Anal – volume: 56 start-page: 215 year: 2005 end-page: 254 ident: bib9 article-title: Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics publication-title: Z Angew Math Phys – volume: 20 start-page: 67 year: 1980 end-page: 104 ident: bib19 article-title: The initial value problems for the equations of motion of viscous and heat-conductive gases publication-title: J Math Kyoto Univ – volume: 63 start-page: 1424 year: 2003 end-page: 1441 ident: bib26 article-title: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics publication-title: SIAM J Appl Math – volume: 54 start-page: 608 year: 2003 end-page: 632 ident: bib3 article-title: Existence and continuous dependence of large solutions for the magnetohydrodynamics equations publication-title: Z Angew Math Phys – year: 1983 ident: bib14 publication-title: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics [D] – volume: 14 start-page: 579 year: 2006 end-page: 596 ident: bib22 article-title: Time periodic solutions of Boltzmann equation publication-title: Discrete Contin Dynam Systems – volume: 248 start-page: 2275 year: 2010 end-page: 2293 ident: bib18 article-title: Time periodic solutions of compressible Navier-Stokes equations publication-title: J Differ Equ – volume: 69 start-page: 3637 year: 2008 end-page: 3660 ident: bib7 article-title: Global variational solutions to the compressible magnetohydrodynamic equations publication-title: Nonlinear Anal – volume: 17 start-page: 737 year: 2007 end-page: 758 ident: bib5 article-title: Optimal convergence rate for the compressible Navier-Stokes equations with potential force publication-title: Math Models Methods Appl Sci – volume: 87 start-page: 504 year: 1972 end-page: 528 ident: bib25 article-title: On the Cauchy problem for composite systems of non-linear equations publication-title: Mat Sb – volume: arXiv start-page: 1203.6529 year: 2012 ident: bib4 article-title: Time periodic solutions of compressible fluid models of Korteweg type publication-title: Math Phys – volume: 72 start-page: 4438 year: 2010 end-page: 4451 ident: bib1 article-title: Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations publication-title: Nonlinear Anal – volume: 1 start-page: 207 year: 1984 end-page: 222 ident: bib15 article-title: Smooth global solutions for two-dimensinal equations of electromagneto-fluid dynamics publication-title: Japan J Appl Math – volume: 182 start-page: 344 year: 2002 end-page: 376 ident: bib2 article-title: Global solutions of nonlinear magnetohydrodynamics with large initial data publication-title: J Differ Equ – volume: 141 start-page: 109 year: 2011 end-page: 126 ident: bib17 article-title: Optimal decay rate of solutions to the compressible magnetohydrodynamic equations publication-title: Proc Roy Soc Edinburgh Sect A – volume: 251 start-page: 365 year: 2004 end-page: 376 ident: bib12 article-title: Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space publication-title: Comm Math Phys – year: 1996 ident: bib21 publication-title: Taylor, Partial Differential Equations III – volume: 197 start-page: 203 year: 2010 end-page: 238 ident: bib11 article-title: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamics flows publication-title: Arch Ration Mech Anal – volume: 10 start-page: 392 year: 2009 ident: 10.1016/S0252-9602(14)60153-3_bib8 article-title: Strong solution to the compressible magnetohydrodynamic equations with vacuum publication-title: Nonlinear Anal doi: 10.1016/j.nonrwa.2007.10.001 – volume: 14 start-page: 579 year: 2006 ident: 10.1016/S0252-9602(14)60153-3_bib22 article-title: Time periodic solutions of Boltzmann equation publication-title: Discrete Contin Dynam Systems doi: 10.3934/dcds.2006.14.579 – volume: 69 start-page: 3637 year: 2008 ident: 10.1016/S0252-9602(14)60153-3_bib7 article-title: Global variational solutions to the compressible magnetohydrodynamic equations publication-title: Nonlinear Anal doi: 10.1016/j.na.2007.10.005 – volume: arXiv start-page: 1203.6529 year: 2012 ident: 10.1016/S0252-9602(14)60153-3_bib4 article-title: Time periodic solutions of compressible fluid models of Korteweg type publication-title: Math Phys – volume: 72 start-page: 4438 year: 2010 ident: 10.1016/S0252-9602(14)60153-3_bib1 article-title: Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations publication-title: Nonlinear Anal doi: 10.1016/j.na.2010.02.019 – volume: 1 start-page: 207 year: 1984 ident: 10.1016/S0252-9602(14)60153-3_bib15 article-title: Smooth global solutions for two-dimensinal equations of electromagneto-fluid dynamics publication-title: Japan J Appl Math doi: 10.1007/BF03167869 – year: 1996 ident: 10.1016/S0252-9602(14)60153-3_bib21 – volume: 20 start-page: 67 year: 1980 ident: 10.1016/S0252-9602(14)60153-3_bib19 article-title: The initial value problems for the equations of motion of viscous and heat-conductive gases publication-title: J Math Kyoto Univ doi: 10.1215/kjm/1250522322 – volume: 141 start-page: 109 year: 2011 ident: 10.1016/S0252-9602(14)60153-3_bib17 article-title: Optimal decay rate of solutions to the compressible magnetohydrodynamic equations publication-title: Proc Roy Soc Edinburgh Sect A doi: 10.1017/S0308210509001632 – volume: 87 start-page: 504 year: 1972 ident: 10.1016/S0252-9602(14)60153-3_bib25 article-title: On the Cauchy problem for composite systems of non-linear equations publication-title: Mat Sb – volume: 197 start-page: 203 year: 2010 ident: 10.1016/S0252-9602(14)60153-3_bib11 article-title: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamics flows publication-title: Arch Ration Mech Anal doi: 10.1007/s00205-010-0295-9 – volume: 182 start-page: 344 year: 2002 ident: 10.1016/S0252-9602(14)60153-3_bib2 article-title: Global solutions of nonlinear magnetohydrodynamics with large initial data publication-title: J Differ Equ doi: 10.1006/jdeq.2001.4111 – volume: 248 start-page: 2275 year: 2010 ident: 10.1016/S0252-9602(14)60153-3_bib18 article-title: Time periodic solutions of compressible Navier-Stokes equations publication-title: J Differ Equ doi: 10.1016/j.jde.2009.11.031 – volume: 63 start-page: 1424 year: 2003 ident: 10.1016/S0252-9602(14)60153-3_bib26 article-title: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics publication-title: SIAM J Appl Math doi: 10.1137/S0036139902409284 – volume: 251 start-page: 365 year: 2004 ident: 10.1016/S0252-9602(14)60153-3_bib12 article-title: Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space publication-title: Comm Math Phys doi: 10.1007/s00220-004-1062-2 – volume: 58 start-page: 384 year: 1982 ident: 10.1016/S0252-9602(14)60153-3_bib13 article-title: Smooth global solutions for the one-dimensinal equations in magnetohydrodynamics publication-title: Proc Japan Acad Ser A Math Sci doi: 10.3792/pjaa.58.384 – volume: 4 start-page: 263 issue: 3 year: 2006 ident: 10.1016/S0252-9602(14)60153-3_bib24 article-title: The Boltzmann equation in the sapce L2L2 ∩ L∞β: global and time periodic solution publication-title: Anal Appl doi: 10.1142/S0219530506000784 – volume: 54 start-page: 608 year: 2003 ident: 10.1016/S0252-9602(14)60153-3_bib3 article-title: Existence and continuous dependence of large solutions for the magnetohydrodynamics equations publication-title: Z Angew Math Phys doi: 10.1007/s00033-003-1017-z – volume: 17 start-page: 737 year: 2007 ident: 10.1016/S0252-9602(14)60153-3_bib5 article-title: Optimal convergence rate for the compressible Navier-Stokes equations with potential force publication-title: Math Models Methods Appl Sci doi: 10.1142/S021820250700208X – volume: 283 start-page: 253 year: 2008 ident: 10.1016/S0252-9602(14)60153-3_bib10 article-title: Global solutions to the three-dimensional full compressible magnetohydrodynamics flows publication-title: Comm Math Phys doi: 10.1007/s00220-008-0497-2 – volume: 56 start-page: 215 year: 2005 ident: 10.1016/S0252-9602(14)60153-3_bib9 article-title: Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics publication-title: Z Angew Math Phys doi: 10.1007/s00033-005-4057-8 – volume: 45 start-page: 1356 issue: 3 year: 2013 ident: 10.1016/S0252-9602(14)60153-3_bib16 article-title: Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum publication-title: SIAM J Math Anal doi: 10.1137/120893355 – volume: 76 start-page: 153 year: 2013 ident: 10.1016/S0252-9602(14)60153-3_bib20 article-title: Time periodic solutions of compressible magnetohydrodynamic equations publication-title: Nonlinear Anal doi: 10.1016/j.na.2012.08.012 – year: 1983 ident: 10.1016/S0252-9602(14)60153-3_bib14 – volume: 277 start-page: 189 issue: 1 year: 2008 ident: 10.1016/S0252-9602(14)60153-3_bib6 article-title: Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications publication-title: Comm Math Phys doi: 10.1007/s00220-007-0366-4 – volume: 1 start-page: 435 year: 1984 ident: 10.1016/S0252-9602(14)60153-3_bib23 article-title: On the decay of solutions to the linearized equations of electromagnetofluid dynamics publication-title: Japan J Appl Math doi: 10.1007/BF03167068 |
SSID | ssj0016264 |
Score | 1.9554245 |
Snippet | In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the... In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in ℝn. Under the condition that the... In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in . Under the condition that the... |
SourceID | wanfang proquest crossref elsevier chongqing |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 216 |
SubjectTerms | 35B10 35M10 35Q35 Compressibility Decay rate energy estimates Energy methods Mathematical analysis non-isentropic compressible magnetohydrodynamic system optimal time decay rates Optimization Spectra Stability time periodic solution Uniqueness 光谱分析 压缩映射原理 可压缩 时间周期解 最佳时间 次周期性 流体系统 等熵压缩 |
Title | TIME PERIODIC SOLUTIONS OF NON-ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM |
URI | http://lib.cqvip.com/qk/86464X/201501/663826259.html https://dx.doi.org/10.1016/S0252-9602(14)60153-3 https://www.proquest.com/docview/1692366889 https://d.wanfangdata.com.cn/periodical/sxwlxb-e201501017 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61W1WCA48CYilUBnGAQ7qJ7WSdY1VRLaBWQlCpN8vxY7tSSZZmq5YLv52ZxJuWA0Iit8SxNfKMZ76xxzMAb9V0alRhQ8KFzdFBqaa00VQmLkO0jGtLVV0tguOTYnYqP53lZxtwuL4LQ2GVUff3Or3T1vHLJM7mZLlYTL6iteaIv6kydUqoZRO2uCiLfARbBx8_z06GwwTE7F0WKfw_oQ63F3n6QbqP7zL5vhsnEZRm4byp5z_QePzNXN2Bo9vXpg6mnt-xS0eP4EEElOygp_kxbPh6Bx5GcMni0m134P7xkKAV37a7yE_bPoEvdAmEUb7jxi0sG0SRNYHVTZ0s6HbSZbPENgo_78JmqwvPvpt57VfN-U-HKrgva8_6tNBP4fTow7fDWRLrLCRW5NkqEamXRXBOBny4kIVSNhS29AgnHM8qhDChTE1QwpZGlSYYBCVOOilzw21ViWcwQoL8c2Bp6lJHKe1LR5tLKAcK_b8gvffceR7GsDtMrV72-TQ0gh50ctAPG8P-erKHxtsoNOSUJk6ht6I7TmkxBrVmif5DajQahH91fb1mocYVRcckpvbNVauzAkFvgZOA9LyJvNVxZbe6vbm-uKm057RVRPrsxf_TsAv3aJh-R-cljFaXV_4VYpxVtQeb-7-yvSjJvwHuuvXC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VoopyKFBadSkPgzjAId0kdrLOsaqoFuhWQrRSb5YT29uV2mRptmq58NuZcbxpOSAkcovtWCPP6xtnPAZ4L0cjLfPKRSmvMgxQyhFtNBWRSRAto27J0t9FMDnOx6fiy1l2tgIHy7MwlFYZbH9n0721Di3DsJrD-Ww2_I7eOkX8TTdTx4RaHsBDkfER5fXt_erzPBJE7L6GFI6OaPjdMZ5uCt_4IREf_SwRpyIL5009_YGu42_O6h4YXbvRtdP19J5XOnwKGwFOsv2O4mewYutNeBKgJQuK227C40lfnhXf1nzeZ9U-h290BIRRtePGzCrWCyJrHKubOprR2aSrZo59lHzuk2bLC8su9bS2i-b8p0ED3F1qz7qi0Ftwevjp5GAchVsWoopnySLisRW5M0Y4fFIucikrl1eFRTBh0qREAOOKWDvJq0LLQjuNkMQII0Sm06os-TasIkF2B1gcm9hQQfvC0NYSSoHE6M8Ja21qbOoGsNsvrZp31TQUQh4McTAKG8DecrH7zrscNOSUIk5hrKI8pxQfgFyyRP0hMwrdwb8-fbtkoUJ9op8kurbNdauSHCFvjouA9LwLvFVBr1vV3t5c3JbKprRRRNbsxf_T8AYejU8mR-ro8_HXXVinKbu9nZewuri6tq8Q7SzK116afwP70faN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TIME+PERIODIC+SOLUTIONS+OF+NON-ISENTROPIC+COMPRESSIBLE+MAGNETOHYDRODYNAMIC+SYSTEM&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%9AB%E8%BE%91%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%AE%B8%E7%A7%8B%E8%8F%8A+%E8%94%A1%E8%99%B9+%E8%B0%AD%E5%BF%A0&rft.date=2015&rft.issn=0252-9602&rft.eissn=1572-9087&rft.issue=1&rft.spage=216&rft.epage=234&rft_id=info:doi/10.1016%2FS0252-9602%2814%2960153-3&rft.externalDocID=663826259 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg |