TIME PERIODIC SOLUTIONS OF NON-ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM

In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodi...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 35; no. 1; pp. 216 - 234
Main Author 许秋菊 蔡虹 谭忠
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2015
School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(14)60153-3

Cover

Abstract In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.
AbstractList In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in . Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n greater than or equal to 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.
In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in ℝn. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n ≥ 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.
In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.
Author 许秋菊 蔡虹 谭忠
AuthorAffiliation School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
AuthorAffiliation_xml – name: School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
Author_xml – sequence: 1
  fullname: 许秋菊 蔡虹 谭忠
BookMark eNqFkMtOwzAQRS0EEuXxCUgRK1gE_Iobr1BpA0Rq4tKERVeW69gQVJIStzz-HpcCW2ZjaXzv3JlzAHabtjEAnCB4gSBilwXEEQ45g_gM0XMGUURCsgN6KOr7Noz7u6D3J9kHB849Q-_DjPbAfZlmSTBJpqkYpcOgEOOHMhV5EYibIBd5mBZJXk7FxP8NRTaZJkWRXo-TIBvc5kkp7majqRjN8kG2Mc-KMsmOwJ5VC2eOf95D8HCTlMO7cCxu0-FgHGoSoVVIoKHMVhW1vjChLI61ZZob2I8qjOacE8uhsjHRXMVcWQVxXNGK0khhPZ-TQ3C-nfuuGquaR_ncrrvGJ0r38b74mEuDPQnoCfW99myrXXbt69q4lXypnTaLhWpMu3YSMY4J8ytwL422Ut21znXGymVXv6juUyIoN7jlN265YSkRld-4JfG-q63P-JvfatNJp2vTaFPVndErWbX1vxNOf5Kf2ubxtfYn_UYzRmLMcMTJF5kojT8
Cites_doi 10.1016/j.nonrwa.2007.10.001
10.3934/dcds.2006.14.579
10.1016/j.na.2007.10.005
10.1016/j.na.2010.02.019
10.1007/BF03167869
10.1215/kjm/1250522322
10.1017/S0308210509001632
10.1007/s00205-010-0295-9
10.1006/jdeq.2001.4111
10.1016/j.jde.2009.11.031
10.1137/S0036139902409284
10.1007/s00220-004-1062-2
10.3792/pjaa.58.384
10.1142/S0219530506000784
10.1007/s00033-003-1017-z
10.1142/S021820250700208X
10.1007/s00220-008-0497-2
10.1007/s00033-005-4057-8
10.1137/120893355
10.1016/j.na.2012.08.012
10.1007/s00220-007-0366-4
10.1007/BF03167068
ContentType Journal Article
Copyright 2015 Wuhan Institute of Physics and Mathematics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2015 Wuhan Institute of Physics and Mathematics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S0252-9602(14)60153-3
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
DocumentTitleAlternate TIME PERIODIC SOLUTIONS OF NON-ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM
EISSN 1572-9087
EndPage 234
ExternalDocumentID sxwlxb_e201501017
10_1016_S0252_9602_14_60153_3
S0252960214601533
663826259
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11271305
– fundername: National Natural Science Foundation of China
  funderid: (11271305)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABXPI
ABYKQ
ACAOD
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADKNI
ADMDM
ADMUD
ADOXG
ADTPH
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CSCUP
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IKXTQ
IWAJR
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~G-
~L9
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ACSTC
ACVFH
ADCNI
ADNMO
AEFQL
AEIPS
AEMSY
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
ANKPU
ATHPR
AYFIA
CITATION
HG6
SJYHP
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
4A8
PSX
ID FETCH-LOGICAL-c351t-30e46fdd4ffff234688cf6c9e075d21b993f90af83c9a89afa028d4d445a2cbb3
IEDL.DBID AIKHN
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Thu Sep 04 21:53:07 EDT 2025
Tue Jul 01 02:27:32 EDT 2025
Fri Feb 23 02:25:03 EST 2024
Wed Feb 14 10:34:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords optimal time decay rates
energy estimates
non-isentropic compressible magnetohydrodynamic system
35Q35
35B10
time periodic solution
35M10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-30e46fdd4ffff234688cf6c9e075d21b993f90af83c9a89afa028d4d445a2cbb3
Notes In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.
non-isentropic compressible magnetohydrodynamic system; time periodic solution; optimal time decay rates; energy estimates
42-1227/O
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1692366889
PQPubID 23500
PageCount 19
ParticipantIDs wanfang_journals_sxwlxb_e201501017
proquest_miscellaneous_1692366889
crossref_primary_10_1016_S0252_9602_14_60153_3
elsevier_sciencedirect_doi_10_1016_S0252_9602_14_60153_3
chongqing_primary_663826259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015
January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle Acta mathematica scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationTitle_FL Acta Mathematica Scientia
PublicationYear 2015
Publisher Elsevier Ltd
School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
Publisher_xml – name: Elsevier Ltd
– name: School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
References Chen, Wang (bib3) 2003; 54
Hu, Wang (bib10) 2008; 283
Ukai, Yang (bib24) 2006; 4
Tan, Wang (bib20) 2013; 76
Hoff, Tsyganov (bib9) 2005; 56
Ju (bib12) 2004; 251
Kawashima (bib15) 1984; 1
Ukai (bib22) 2006; 14
Chen, Tan (bib1) 2010; 72
Wang (bib26) 2003; 63
Chen, Wang (bib2) 2002; 182
Matsumura, Nishida (bib19) 1980; 20
Chen, Xiao, Zhao (bib4) 2012; arXiv
Fan, Yu (bib7) 2008; 69
Michael (bib21) 1996
Hu, Wang (bib11) 2010; 197
Ma, Ukai, Yang (bib18) 2010; 248
Duan, Ukai, Yang, Zhao (bib6) 2008; 277
Umeda, Kawashiwa, Shizuta (bib23) 1984; 1
Fan, Yu (bib8) 2009; 10
Li, Xu, Zhang (bib16) 2013; 45
Kawashima, Okada (bib13) 1982; 58
Kawashima (bib14) 1983
Li, Yu (bib17) 2011; 141
Volpert, Khudiaev (bib25) 1972; 87
Duan, Ukai, Yang, Zhao (bib5) 2007; 17
Fan (10.1016/S0252-9602(14)60153-3_bib8) 2009; 10
Duan (10.1016/S0252-9602(14)60153-3_bib6) 2008; 277
Umeda (10.1016/S0252-9602(14)60153-3_bib23) 1984; 1
Ukai (10.1016/S0252-9602(14)60153-3_bib22) 2006; 14
Chen (10.1016/S0252-9602(14)60153-3_bib1) 2010; 72
Ukai (10.1016/S0252-9602(14)60153-3_bib24) 2006; 4
Li (10.1016/S0252-9602(14)60153-3_bib16) 2013; 45
Michael (10.1016/S0252-9602(14)60153-3_bib21) 1996
Matsumura (10.1016/S0252-9602(14)60153-3_bib19) 1980; 20
Fan (10.1016/S0252-9602(14)60153-3_bib7) 2008; 69
Chen (10.1016/S0252-9602(14)60153-3_bib3) 2003; 54
Tan (10.1016/S0252-9602(14)60153-3_bib20) 2013; 76
Duan (10.1016/S0252-9602(14)60153-3_bib5) 2007; 17
Chen (10.1016/S0252-9602(14)60153-3_bib2) 2002; 182
Hoff (10.1016/S0252-9602(14)60153-3_bib9) 2005; 56
Volpert (10.1016/S0252-9602(14)60153-3_bib25) 1972; 87
Ma (10.1016/S0252-9602(14)60153-3_bib18) 2010; 248
Chen (10.1016/S0252-9602(14)60153-3_bib4) 2012; arXiv
Li (10.1016/S0252-9602(14)60153-3_bib17) 2011; 141
Ju (10.1016/S0252-9602(14)60153-3_bib12) 2004; 251
Hu (10.1016/S0252-9602(14)60153-3_bib10) 2008; 283
Kawashima (10.1016/S0252-9602(14)60153-3_bib13) 1982; 58
Kawashima (10.1016/S0252-9602(14)60153-3_bib14) 1983
Hu (10.1016/S0252-9602(14)60153-3_bib11) 2010; 197
Kawashima (10.1016/S0252-9602(14)60153-3_bib15) 1984; 1
Wang (10.1016/S0252-9602(14)60153-3_bib26) 2003; 63
References_xml – volume: 45
  start-page: 1356
  year: 2013
  end-page: 1387
  ident: bib16
  article-title: Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum
  publication-title: SIAM J Math Anal
– volume: 4
  start-page: 263
  year: 2006
  end-page: 310
  ident: bib24
  article-title: The Boltzmann equation in the sapce
  publication-title: Anal Appl
– volume: 277
  start-page: 189
  year: 2008
  end-page: 236
  ident: bib6
  article-title: Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications
  publication-title: Comm Math Phys
– volume: 76
  start-page: 153
  year: 2013
  end-page: 164
  ident: bib20
  article-title: Time periodic solutions of compressible magnetohydrodynamic equations
  publication-title: Nonlinear Anal
– volume: 1
  start-page: 435
  year: 1984
  end-page: 457
  ident: bib23
  article-title: On the decay of solutions to the linearized equations of electromagnetofluid dynamics
  publication-title: Japan J Appl Math
– volume: 283
  start-page: 253
  year: 2008
  end-page: 284
  ident: bib10
  article-title: Global solutions to the three-dimensional full compressible magnetohydrodynamics flows
  publication-title: Comm Math Phys
– volume: 58
  start-page: 384
  year: 1982
  end-page: 387
  ident: bib13
  article-title: Smooth global solutions for the one-dimensinal equations in magnetohydrodynamics
  publication-title: Proc Japan Acad Ser A Math Sci
– volume: 10
  start-page: 392
  year: 2009
  end-page: 409
  ident: bib8
  article-title: Strong solution to the compressible magnetohydrodynamic equations with vacuum
  publication-title: Nonlinear Anal
– volume: 56
  start-page: 215
  year: 2005
  end-page: 254
  ident: bib9
  article-title: Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics
  publication-title: Z Angew Math Phys
– volume: 20
  start-page: 67
  year: 1980
  end-page: 104
  ident: bib19
  article-title: The initial value problems for the equations of motion of viscous and heat-conductive gases
  publication-title: J Math Kyoto Univ
– volume: 63
  start-page: 1424
  year: 2003
  end-page: 1441
  ident: bib26
  article-title: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics
  publication-title: SIAM J Appl Math
– volume: 54
  start-page: 608
  year: 2003
  end-page: 632
  ident: bib3
  article-title: Existence and continuous dependence of large solutions for the magnetohydrodynamics equations
  publication-title: Z Angew Math Phys
– year: 1983
  ident: bib14
  publication-title: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics [D]
– volume: 14
  start-page: 579
  year: 2006
  end-page: 596
  ident: bib22
  article-title: Time periodic solutions of Boltzmann equation
  publication-title: Discrete Contin Dynam Systems
– volume: 248
  start-page: 2275
  year: 2010
  end-page: 2293
  ident: bib18
  article-title: Time periodic solutions of compressible Navier-Stokes equations
  publication-title: J Differ Equ
– volume: 69
  start-page: 3637
  year: 2008
  end-page: 3660
  ident: bib7
  article-title: Global variational solutions to the compressible magnetohydrodynamic equations
  publication-title: Nonlinear Anal
– volume: 17
  start-page: 737
  year: 2007
  end-page: 758
  ident: bib5
  article-title: Optimal convergence rate for the compressible Navier-Stokes equations with potential force
  publication-title: Math Models Methods Appl Sci
– volume: 87
  start-page: 504
  year: 1972
  end-page: 528
  ident: bib25
  article-title: On the Cauchy problem for composite systems of non-linear equations
  publication-title: Mat Sb
– volume: arXiv
  start-page: 1203.6529
  year: 2012
  ident: bib4
  article-title: Time periodic solutions of compressible fluid models of Korteweg type
  publication-title: Math Phys
– volume: 72
  start-page: 4438
  year: 2010
  end-page: 4451
  ident: bib1
  article-title: Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations
  publication-title: Nonlinear Anal
– volume: 1
  start-page: 207
  year: 1984
  end-page: 222
  ident: bib15
  article-title: Smooth global solutions for two-dimensinal equations of electromagneto-fluid dynamics
  publication-title: Japan J Appl Math
– volume: 182
  start-page: 344
  year: 2002
  end-page: 376
  ident: bib2
  article-title: Global solutions of nonlinear magnetohydrodynamics with large initial data
  publication-title: J Differ Equ
– volume: 141
  start-page: 109
  year: 2011
  end-page: 126
  ident: bib17
  article-title: Optimal decay rate of solutions to the compressible magnetohydrodynamic equations
  publication-title: Proc Roy Soc Edinburgh Sect A
– volume: 251
  start-page: 365
  year: 2004
  end-page: 376
  ident: bib12
  article-title: Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space
  publication-title: Comm Math Phys
– year: 1996
  ident: bib21
  publication-title: Taylor, Partial Differential Equations III
– volume: 197
  start-page: 203
  year: 2010
  end-page: 238
  ident: bib11
  article-title: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamics flows
  publication-title: Arch Ration Mech Anal
– volume: 10
  start-page: 392
  year: 2009
  ident: 10.1016/S0252-9602(14)60153-3_bib8
  article-title: Strong solution to the compressible magnetohydrodynamic equations with vacuum
  publication-title: Nonlinear Anal
  doi: 10.1016/j.nonrwa.2007.10.001
– volume: 14
  start-page: 579
  year: 2006
  ident: 10.1016/S0252-9602(14)60153-3_bib22
  article-title: Time periodic solutions of Boltzmann equation
  publication-title: Discrete Contin Dynam Systems
  doi: 10.3934/dcds.2006.14.579
– volume: 69
  start-page: 3637
  year: 2008
  ident: 10.1016/S0252-9602(14)60153-3_bib7
  article-title: Global variational solutions to the compressible magnetohydrodynamic equations
  publication-title: Nonlinear Anal
  doi: 10.1016/j.na.2007.10.005
– volume: arXiv
  start-page: 1203.6529
  year: 2012
  ident: 10.1016/S0252-9602(14)60153-3_bib4
  article-title: Time periodic solutions of compressible fluid models of Korteweg type
  publication-title: Math Phys
– volume: 72
  start-page: 4438
  year: 2010
  ident: 10.1016/S0252-9602(14)60153-3_bib1
  article-title: Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations
  publication-title: Nonlinear Anal
  doi: 10.1016/j.na.2010.02.019
– volume: 1
  start-page: 207
  year: 1984
  ident: 10.1016/S0252-9602(14)60153-3_bib15
  article-title: Smooth global solutions for two-dimensinal equations of electromagneto-fluid dynamics
  publication-title: Japan J Appl Math
  doi: 10.1007/BF03167869
– year: 1996
  ident: 10.1016/S0252-9602(14)60153-3_bib21
– volume: 20
  start-page: 67
  year: 1980
  ident: 10.1016/S0252-9602(14)60153-3_bib19
  article-title: The initial value problems for the equations of motion of viscous and heat-conductive gases
  publication-title: J Math Kyoto Univ
  doi: 10.1215/kjm/1250522322
– volume: 141
  start-page: 109
  year: 2011
  ident: 10.1016/S0252-9602(14)60153-3_bib17
  article-title: Optimal decay rate of solutions to the compressible magnetohydrodynamic equations
  publication-title: Proc Roy Soc Edinburgh Sect A
  doi: 10.1017/S0308210509001632
– volume: 87
  start-page: 504
  year: 1972
  ident: 10.1016/S0252-9602(14)60153-3_bib25
  article-title: On the Cauchy problem for composite systems of non-linear equations
  publication-title: Mat Sb
– volume: 197
  start-page: 203
  year: 2010
  ident: 10.1016/S0252-9602(14)60153-3_bib11
  article-title: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamics flows
  publication-title: Arch Ration Mech Anal
  doi: 10.1007/s00205-010-0295-9
– volume: 182
  start-page: 344
  year: 2002
  ident: 10.1016/S0252-9602(14)60153-3_bib2
  article-title: Global solutions of nonlinear magnetohydrodynamics with large initial data
  publication-title: J Differ Equ
  doi: 10.1006/jdeq.2001.4111
– volume: 248
  start-page: 2275
  year: 2010
  ident: 10.1016/S0252-9602(14)60153-3_bib18
  article-title: Time periodic solutions of compressible Navier-Stokes equations
  publication-title: J Differ Equ
  doi: 10.1016/j.jde.2009.11.031
– volume: 63
  start-page: 1424
  year: 2003
  ident: 10.1016/S0252-9602(14)60153-3_bib26
  article-title: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics
  publication-title: SIAM J Appl Math
  doi: 10.1137/S0036139902409284
– volume: 251
  start-page: 365
  year: 2004
  ident: 10.1016/S0252-9602(14)60153-3_bib12
  article-title: Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space
  publication-title: Comm Math Phys
  doi: 10.1007/s00220-004-1062-2
– volume: 58
  start-page: 384
  year: 1982
  ident: 10.1016/S0252-9602(14)60153-3_bib13
  article-title: Smooth global solutions for the one-dimensinal equations in magnetohydrodynamics
  publication-title: Proc Japan Acad Ser A Math Sci
  doi: 10.3792/pjaa.58.384
– volume: 4
  start-page: 263
  issue: 3
  year: 2006
  ident: 10.1016/S0252-9602(14)60153-3_bib24
  article-title: The Boltzmann equation in the sapce L2L2 ∩ L∞β: global and time periodic solution
  publication-title: Anal Appl
  doi: 10.1142/S0219530506000784
– volume: 54
  start-page: 608
  year: 2003
  ident: 10.1016/S0252-9602(14)60153-3_bib3
  article-title: Existence and continuous dependence of large solutions for the magnetohydrodynamics equations
  publication-title: Z Angew Math Phys
  doi: 10.1007/s00033-003-1017-z
– volume: 17
  start-page: 737
  year: 2007
  ident: 10.1016/S0252-9602(14)60153-3_bib5
  article-title: Optimal convergence rate for the compressible Navier-Stokes equations with potential force
  publication-title: Math Models Methods Appl Sci
  doi: 10.1142/S021820250700208X
– volume: 283
  start-page: 253
  year: 2008
  ident: 10.1016/S0252-9602(14)60153-3_bib10
  article-title: Global solutions to the three-dimensional full compressible magnetohydrodynamics flows
  publication-title: Comm Math Phys
  doi: 10.1007/s00220-008-0497-2
– volume: 56
  start-page: 215
  year: 2005
  ident: 10.1016/S0252-9602(14)60153-3_bib9
  article-title: Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics
  publication-title: Z Angew Math Phys
  doi: 10.1007/s00033-005-4057-8
– volume: 45
  start-page: 1356
  issue: 3
  year: 2013
  ident: 10.1016/S0252-9602(14)60153-3_bib16
  article-title: Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum
  publication-title: SIAM J Math Anal
  doi: 10.1137/120893355
– volume: 76
  start-page: 153
  year: 2013
  ident: 10.1016/S0252-9602(14)60153-3_bib20
  article-title: Time periodic solutions of compressible magnetohydrodynamic equations
  publication-title: Nonlinear Anal
  doi: 10.1016/j.na.2012.08.012
– year: 1983
  ident: 10.1016/S0252-9602(14)60153-3_bib14
– volume: 277
  start-page: 189
  issue: 1
  year: 2008
  ident: 10.1016/S0252-9602(14)60153-3_bib6
  article-title: Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications
  publication-title: Comm Math Phys
  doi: 10.1007/s00220-007-0366-4
– volume: 1
  start-page: 435
  year: 1984
  ident: 10.1016/S0252-9602(14)60153-3_bib23
  article-title: On the decay of solutions to the linearized equations of electromagnetofluid dynamics
  publication-title: Japan J Appl Math
  doi: 10.1007/BF03167068
SSID ssj0016264
Score 1.9554245
Snippet In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the...
In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in ℝn. Under the condition that the...
In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in . Under the condition that the...
SourceID wanfang
proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 216
SubjectTerms 35B10
35M10
35Q35
Compressibility
Decay rate
energy estimates
Energy methods
Mathematical analysis
non-isentropic compressible magnetohydrodynamic system
optimal time decay rates
Optimization
Spectra
Stability
time periodic solution
Uniqueness
光谱分析
压缩映射原理
可压缩
时间周期解
最佳时间
次周期性
流体系统
等熵压缩
Title TIME PERIODIC SOLUTIONS OF NON-ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM
URI http://lib.cqvip.com/qk/86464X/201501/663826259.html
https://dx.doi.org/10.1016/S0252-9602(14)60153-3
https://www.proquest.com/docview/1692366889
https://d.wanfangdata.com.cn/periodical/sxwlxb-e201501017
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61W1WCA48CYilUBnGAQ7qJ7WSdY1VRLaBWQlCpN8vxY7tSSZZmq5YLv52ZxJuWA0Iit8SxNfKMZ76xxzMAb9V0alRhQ8KFzdFBqaa00VQmLkO0jGtLVV0tguOTYnYqP53lZxtwuL4LQ2GVUff3Or3T1vHLJM7mZLlYTL6iteaIv6kydUqoZRO2uCiLfARbBx8_z06GwwTE7F0WKfw_oQ63F3n6QbqP7zL5vhsnEZRm4byp5z_QePzNXN2Bo9vXpg6mnt-xS0eP4EEElOygp_kxbPh6Bx5GcMni0m134P7xkKAV37a7yE_bPoEvdAmEUb7jxi0sG0SRNYHVTZ0s6HbSZbPENgo_78JmqwvPvpt57VfN-U-HKrgva8_6tNBP4fTow7fDWRLrLCRW5NkqEamXRXBOBny4kIVSNhS29AgnHM8qhDChTE1QwpZGlSYYBCVOOilzw21ViWcwQoL8c2Bp6lJHKe1LR5tLKAcK_b8gvffceR7GsDtMrV72-TQ0gh50ctAPG8P-erKHxtsoNOSUJk6ht6I7TmkxBrVmif5DajQahH91fb1mocYVRcckpvbNVauzAkFvgZOA9LyJvNVxZbe6vbm-uKm057RVRPrsxf_TsAv3aJh-R-cljFaXV_4VYpxVtQeb-7-yvSjJvwHuuvXC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VoopyKFBadSkPgzjAId0kdrLOsaqoFuhWQrRSb5YT29uV2mRptmq58NuZcbxpOSAkcovtWCPP6xtnPAZ4L0cjLfPKRSmvMgxQyhFtNBWRSRAto27J0t9FMDnOx6fiy1l2tgIHy7MwlFYZbH9n0721Di3DsJrD-Ww2_I7eOkX8TTdTx4RaHsBDkfER5fXt_erzPBJE7L6GFI6OaPjdMZ5uCt_4IREf_SwRpyIL5009_YGu42_O6h4YXbvRtdP19J5XOnwKGwFOsv2O4mewYutNeBKgJQuK227C40lfnhXf1nzeZ9U-h290BIRRtePGzCrWCyJrHKubOprR2aSrZo59lHzuk2bLC8su9bS2i-b8p0ED3F1qz7qi0Ftwevjp5GAchVsWoopnySLisRW5M0Y4fFIucikrl1eFRTBh0qREAOOKWDvJq0LLQjuNkMQII0Sm06os-TasIkF2B1gcm9hQQfvC0NYSSoHE6M8Ja21qbOoGsNsvrZp31TQUQh4McTAKG8DecrH7zrscNOSUIk5hrKI8pxQfgFyyRP0hMwrdwb8-fbtkoUJ9op8kurbNdauSHCFvjouA9LwLvFVBr1vV3t5c3JbKprRRRNbsxf_T8AYejU8mR-ro8_HXXVinKbu9nZewuri6tq8Q7SzK116afwP70faN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TIME+PERIODIC+SOLUTIONS+OF+NON-ISENTROPIC+COMPRESSIBLE+MAGNETOHYDRODYNAMIC+SYSTEM&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%9AB%E8%BE%91%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%AE%B8%E7%A7%8B%E8%8F%8A+%E8%94%A1%E8%99%B9+%E8%B0%AD%E5%BF%A0&rft.date=2015&rft.issn=0252-9602&rft.eissn=1572-9087&rft.issue=1&rft.spage=216&rft.epage=234&rft_id=info:doi/10.1016%2FS0252-9602%2814%2960153-3&rft.externalDocID=663826259
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg