Pairwise Two-Stream ConvNets for Cross-Domain Action Recognition With Small Data
In this work, we target cross-domain action recognition (CDAR) in the video domain and propose a novel end-to-end pairwise two-stream ConvNets ( PTC ) algorithm for real-life conditions, in which only a few labeled samples are available. To cope with the limited training sample problem, we employ pa...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 33; no. 3; pp. 1147 - 1161 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we target cross-domain action recognition (CDAR) in the video domain and propose a novel end-to-end pairwise two-stream ConvNets ( PTC ) algorithm for real-life conditions, in which only a few labeled samples are available. To cope with the limited training sample problem, we employ pairwise network architecture that can leverage training samples from a source domain and, thus, requires only a few labeled samples per category from the target domain. In particular, a frame self-attention mechanism and an adaptive weight scheme are embedded into the PTC network to adaptively combine the RGB and flow features. This design can effectively learn domain-invariant features for both the source and target domains. In addition, we propose a sphere boundary sample-selecting scheme that selects the training samples at the boundary of a class (in the feature space) to train the PTC model. In this way, a well-enhanced generalization capability can be achieved. To validate the effectiveness of our PTC model, we construct two CDAR data sets ( SDAI Action I and SDAI Action II ) that include indoor and outdoor environments; all actions and samples in these data sets were carefully collected from public action data sets. To the best of our knowledge, these are the first data sets specifically designed for the CDAR task. Extensive experiments were conducted on these two data sets. The results show that PTC outperforms state-of-the-art video action recognition methods in terms of both accuracy and training efficiency. It is noteworthy that when only two labeled training samples per category are used in the SDAI Action I data set, PTC achieves 21.9% and 6.8% improvement in accuracy over two-stream and temporal segment networks models, respectively. As an added contribution, the SDAI Action I and SDAI Action II data sets will be released to facilitate future research on the CDAR task. |
---|---|
AbstractList | In this work, we target cross-domain action recognition (CDAR) in the video domain and propose a novel end-to-end pairwise two-stream ConvNets (PTC) algorithm for real-life conditions, in which only a few labeled samples are available. To cope with the limited training sample problem, we employ pairwise network architecture that can leverage training samples from a source domain and, thus, requires only a few labeled samples per category from the target domain. In particular, a frame self-attention mechanism and an adaptive weight scheme are embedded into the PTC network to adaptively combine the RGB and flow features. This design can effectively learn domain-invariant features for both the source and target domains. In addition, we propose a sphere boundary sample-selecting scheme that selects the training samples at the boundary of a class (in the feature space) to train the PTC model. In this way, a well-enhanced generalization capability can be achieved. To validate the effectiveness of our PTC model, we construct two CDAR data sets (SDAI Action I and SDAI Action II) that include indoor and outdoor environments; all actions and samples in these data sets were carefully collected from public action data sets. To the best of our knowledge, these are the first data sets specifically designed for the CDAR task. Extensive experiments were conducted on these two data sets. The results show that PTC outperforms state-of-the-art video action recognition methods in terms of both accuracy and training efficiency. It is noteworthy that when only two labeled training samples per category are used in the SDAI Action I data set, PTC achieves 21.9% and 6.8% improvement in accuracy over two-stream and temporal segment networks models, respectively. As an added contribution, the SDAI Action I and SDAI Action II data sets will be released to facilitate future research on the CDAR task. |
Author | Gao, Zan Guo, Leming Ren, Tongwei Chen, Shengyong Liu, An-An Cheng, Zhi-Yong |
Author_xml | – sequence: 1 givenname: Zan orcidid: 0000-0003-2182-5741 surname: Gao fullname: Gao, Zan organization: Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China – sequence: 2 givenname: Leming orcidid: 0000-0001-7569-6928 surname: Guo fullname: Guo, Leming email: pwallguo@163.com organization: Key Laboratory of Computer Vision and System, Ministry of Education, Tianjin, China – sequence: 3 givenname: Tongwei orcidid: 0000-0003-3092-424X surname: Ren fullname: Ren, Tongwei organization: State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China – sequence: 4 givenname: An-An orcidid: 0000-0001-5755-9145 surname: Liu fullname: Liu, An-An organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 5 givenname: Zhi-Yong orcidid: 0000-0003-1109-5028 surname: Cheng fullname: Cheng, Zhi-Yong email: jason.zy.cheng@gmail.com organization: Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China – sequence: 6 givenname: Shengyong orcidid: 0000-0002-6705-3831 surname: Chen fullname: Chen, Shengyong organization: Key Laboratory of Computer Vision and System, Ministry of Education, Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33296313$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkF1LwzAUhoMofu4PKEjBG286T5ImbS5lfsKYw030LqTdqUbaZiad4r-3c3MX5iI5kOe8nPMckO3GNUjIMYU-paAupqPRcNJnwKDPIaFAsy2yz6hkMeNZtr2p05c90gvhHbojQchE7ZI9zpmSnPJ9Mh4b679swGj65eJJ69HU0cA1nyNsQ1Q6Hw28CyG-crWxTXRZtNY10SMW7rWxv_Wzbd-iSW2qKroyrTkiO6WpAvbW7yF5urmeDu7i4cPt_eByGBdc0DbmAAxLoDOQHClFkXPFhSq7qyhhBmzGhMnAYFLQXKUlqiLNWcIkUEhzqvghOV_lzr37WGBodW1DgVVlGnSLoFkiFaRSMtGhZ__Qd7fwTTedZpILEFkqko5iK6pYLuyx1HNva-O_NQW9VK5_leulcr1W3jWdrqMXeY2zTcuf4A44WQEWETffimVZlnL-A55NhHE |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TII_2022_3220872 crossref_primary_10_1007_s10489_024_05664_y crossref_primary_10_1145_3654671 crossref_primary_10_1109_MMUL_2021_3104911 crossref_primary_10_1007_s00521_022_08190_5 crossref_primary_10_1016_j_petsci_2023_04_016 crossref_primary_10_1109_TIP_2022_3182866 crossref_primary_10_1016_j_neucom_2023_126622 crossref_primary_10_1007_s10489_021_02487_z crossref_primary_10_1016_j_ins_2021_12_088 crossref_primary_10_1016_j_neucom_2024_128087 crossref_primary_10_1007_s11554_023_01374_9 crossref_primary_10_1109_THMS_2023_3266037 crossref_primary_10_1109_TIP_2022_3221292 crossref_primary_10_1109_TNNLS_2022_3202835 crossref_primary_10_1631_FITEE_2200284 crossref_primary_10_1109_TMM_2023_3234362 crossref_primary_10_1145_3656046 crossref_primary_10_1142_S0218001424500058 crossref_primary_10_14801_jkiit_2021_19_3_103 crossref_primary_10_1109_TMM_2023_3295899 crossref_primary_10_1109_ACCESS_2021_3063302 crossref_primary_10_1007_s11276_023_03267_y crossref_primary_10_1109_LSP_2021_3061289 crossref_primary_10_1109_TIP_2023_3341297 crossref_primary_10_1109_TKDE_2022_3187091 crossref_primary_10_1109_TCSS_2022_3187198 |
Cites_doi | 10.1109/ICCV.2005.28 10.1145/2393347.2396381 10.1145/3377876 10.1145/3240508.3240512 10.1109/CVPR.2018.00288 10.1109/ICCV.2019.00642 10.1109/ICCV.2015.510 10.1109/ICCV.2017.609 10.1109/TNNLS.2014.2330900 10.1109/CVPR.2009.5206848 10.1109/CVPR.2016.115 10.1109/TKDE.2017.2669193 10.1109/CVPR.2017.502 10.1016/S0893-6080(98)00116-6 10.7551/mitpress/7503.003.0022 10.1109/TMM.2020.3023784 10.1109/CVPR.2012.6247911 10.1109/CVPR.2018.00392 10.3156/jsoft.29.5_177_2 10.1109/JIOT.2019.2911669 10.1109/ICCV.2011.6126543 10.1109/CVPRW.2012.6239233 10.1109/TKDE.2009.191 10.1609/aaai.v34i07.6854 10.1109/CVPR.2014.183 10.1109/CVPR.2019.00371 10.1109/CVPRW.2012.6239234 10.1016/j.neunet.2020.02.017 10.1093/bioinformatics/btl242 10.1007/978-3-030-01246-5_40 10.1007/s11263-015-0876-z 10.1109/ICPR.2004.1334462 10.1109/TNNLS.2018.2874567 10.1109/CVPR.2011.5995729 10.1109/TNNLS.2017.2740318 10.1109/ICCV.2013.274 10.1109/CVPR.2008.4587756 10.1145/3206025.3206028 10.1109/CVPR.2017.316 10.1109/ICCVW.2019.00349 10.1109/ICCV.2017.590 10.1109/ICCVW.2019.00169 10.1109/TPAMI.2018.2868668 10.1609/aaai.v33i01.33013296 10.1007/s11042-018-5833-8 10.1145/1015330.1015424 10.1109/ACCESS.2018.2878313 10.1109/ICCV.2013.441 10.1109/TPAMI.2011.114 10.1109/CVPR.2019.00132 10.1109/CVPR.2015.7298594 10.1109/TCYB.2016.2582918 10.1145/3123266.3123432 10.1109/TNNLS.2018.2886008 10.1109/CVPR.2019.00035 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2020.3041018 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 1161 |
ExternalDocumentID | 10_1109_TNNLS_2020_3041018 33296313 9288873 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2019YFBB1404700 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61872270; 62020106004; 61572357 funderid: 10.13039/501100001809 – fundername: Young creative team in universities of Shandong Province grantid: 2020KJN012 – fundername: Tianjin New Generation Artificial Intelligence Major Program grantid: 18ZXZNGX00150; 19ZXZNGX00110 – fundername: Jinan 20 projects in universities grantid: 2018GXRC014 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RIG RNS NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-3002ef01d063e11e5b39359f935cf0d02d25a80ae4c1b97fe9c7b24260107b193 |
IEDL.DBID | RIE |
ISSN | 2162-237X |
IngestDate | Thu Jul 25 11:20:33 EDT 2024 Thu Oct 10 14:46:08 EDT 2024 Fri Aug 23 03:38:30 EDT 2024 Sun Jul 28 06:57:14 EDT 2024 Wed Jun 26 19:25:48 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-3002ef01d063e11e5b39359f935cf0d02d25a80ae4c1b97fe9c7b24260107b193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7569-6928 0000-0001-5755-9145 0000-0002-6705-3831 0000-0003-2182-5741 0000-0003-3092-424X 0000-0003-1109-5028 |
PMID | 33296313 |
PQID | 2635058754 |
PQPubID | 85436 |
PageCount | 15 |
ParticipantIDs | ieee_primary_9288873 proquest_journals_2635058754 proquest_miscellaneous_2469076625 pubmed_primary_33296313 crossref_primary_10_1109_TNNLS_2020_3041018 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref12 ref56 ref15 ref59 ref14 Wang (ref19) 2019 ref52 ref11 ref55 ref10 ref54 ref17 ref18 ref51 ref50 Simonyan (ref16) ref46 ref45 ref48 ref47 ref42 ref41 ref44 Iii (ref24) Jamal (ref53) Fang (ref43) 2018 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Kay (ref63) 2017 ref35 ref34 ref36 ref30 ref33 ref32 ref2 ref1 Soomro (ref13) 2012 Long (ref31) Finn (ref38) ref23 ref67 ref26 ref25 ref20 ref64 ref22 ref66 ref21 ref65 Zeiler (ref58) 2012 ref28 Koch (ref37); 2 ref27 ref29 ref60 ref62 ref61 Bishay (ref39) |
References_xml | – ident: ref11 doi: 10.1109/ICCV.2005.28 – start-page: 1640 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref31 article-title: Conditional adversarial domain adaptation contributor: fullname: Long – ident: ref61 doi: 10.1145/2393347.2396381 – ident: ref34 doi: 10.1145/3377876 – ident: ref46 doi: 10.1145/3240508.3240512 – ident: ref44 doi: 10.1109/CVPR.2018.00288 – ident: ref55 doi: 10.1109/ICCV.2019.00642 – ident: ref3 doi: 10.1109/ICCV.2015.510 – ident: ref29 doi: 10.1109/ICCV.2017.609 – ident: ref42 doi: 10.1109/TNNLS.2014.2330900 – ident: ref67 doi: 10.1109/CVPR.2009.5206848 – ident: ref18 doi: 10.1109/CVPR.2016.115 – ident: ref28 doi: 10.1109/TKDE.2017.2669193 – year: 2019 ident: ref19 article-title: Few-shot learning: A survey publication-title: arXiv:1904.05046 contributor: fullname: Wang – ident: ref15 doi: 10.1109/CVPR.2017.502 – start-page: 154 volume-title: Proc. 30th Brit. Mach. Vis. Conf. (BMVC) ident: ref39 article-title: TARN: Temporal attentive relation network for few-shot and zero-shot action recognition contributor: fullname: Bishay – ident: ref57 doi: 10.1016/S0893-6080(98)00116-6 – ident: ref23 doi: 10.7551/mitpress/7503.003.0022 – ident: ref36 doi: 10.1109/TMM.2020.3023784 – ident: ref48 doi: 10.1109/CVPR.2012.6247911 – ident: ref51 doi: 10.1109/CVPR.2018.00392 – start-page: 264 volume-title: Proc. Brit. Mach. Vis. Conf. (BMVC) ident: ref53 article-title: Deep domain adaptation in action space contributor: fullname: Jamal – year: 2012 ident: ref13 article-title: UCF101: A dataset of 101 human actions classes from videos in the wild publication-title: arXiv:1212.0402 contributor: fullname: Soomro – ident: ref50 doi: 10.3156/jsoft.29.5_177_2 – ident: ref4 doi: 10.1109/JIOT.2019.2911669 – start-page: 1126 volume-title: Proc. IEEE Int. Conf. Mach. Learn. ident: ref38 article-title: Model-agnostic meta-learning for fast adaptation of deep networks contributor: fullname: Finn – ident: ref14 doi: 10.1109/ICCV.2011.6126543 – ident: ref32 doi: 10.1109/CVPRW.2012.6239233 – ident: ref22 doi: 10.1109/TKDE.2009.191 – ident: ref65 doi: 10.1609/aaai.v34i07.6854 – ident: ref47 doi: 10.1109/CVPR.2014.183 – ident: ref6 doi: 10.1109/CVPR.2019.00371 – ident: ref64 doi: 10.1109/CVPRW.2012.6239234 – ident: ref35 doi: 10.1016/j.neunet.2020.02.017 – ident: ref59 doi: 10.1093/bioinformatics/btl242 – ident: ref21 doi: 10.1007/978-3-030-01246-5_40 – ident: ref62 doi: 10.1007/s11263-015-0876-z – ident: ref12 doi: 10.1109/ICPR.2004.1334462 – volume: 2 start-page: 1 volume-title: Proc. ICML Deep Learn. Workshop ident: ref37 article-title: Siamese neural networks for one-shot image recognition contributor: fullname: Koch – ident: ref49 doi: 10.1109/TNNLS.2018.2874567 – ident: ref66 doi: 10.1109/CVPR.2011.5995729 – ident: ref10 doi: 10.1109/TNNLS.2017.2740318 – ident: ref27 doi: 10.1109/ICCV.2013.274 – year: 2017 ident: ref63 article-title: The kinetics human action video dataset publication-title: arXiv:1705.06950 contributor: fullname: Kay – start-page: 1 volume-title: Proc. Asian Conf. Lang. (ACL) ident: ref24 article-title: Frustratingly easy domain adaptation contributor: fullname: Iii – year: 2012 ident: ref58 article-title: ADADELTA: An adaptive learning rate method publication-title: arXiv:1212.5701 contributor: fullname: Zeiler – ident: ref1 doi: 10.1109/CVPR.2008.4587756 – ident: ref20 doi: 10.1145/3206025.3206028 – ident: ref30 doi: 10.1109/CVPR.2017.316 – ident: ref54 doi: 10.1109/ICCVW.2019.00349 – ident: ref5 doi: 10.1109/ICCV.2017.590 – ident: ref41 doi: 10.1109/ICCVW.2019.00169 – start-page: 568 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref16 article-title: Two-stream convolutional networks for action recognition in videos contributor: fullname: Simonyan – ident: ref17 doi: 10.1109/TPAMI.2018.2868668 – ident: ref45 doi: 10.1609/aaai.v33i01.33013296 – ident: ref60 doi: 10.1007/s11042-018-5833-8 – ident: ref25 doi: 10.1145/1015330.1015424 – ident: ref52 doi: 10.1109/ACCESS.2018.2878313 – year: 2018 ident: ref43 article-title: DART: Domain-adversarial residual-transfer networks for unsupervised cross-domain image classification publication-title: arXiv:1812.11478 contributor: fullname: Fang – ident: ref2 doi: 10.1109/ICCV.2013.441 – ident: ref26 doi: 10.1109/TPAMI.2011.114 – ident: ref7 doi: 10.1109/CVPR.2019.00132 – ident: ref56 doi: 10.1109/CVPR.2015.7298594 – ident: ref33 doi: 10.1109/TCYB.2016.2582918 – ident: ref40 doi: 10.1145/3123266.3123432 – ident: ref9 doi: 10.1109/TNNLS.2018.2886008 – ident: ref8 doi: 10.1109/CVPR.2019.00035 |
SSID | ssj0000605649 |
Score | 2.5775511 |
Snippet | In this work, we target cross-domain action recognition (CDAR) in the video domain and propose a novel end-to-end pairwise two-stream ConvNets ( PTC )... In this work, we target cross-domain action recognition (CDAR) in the video domain and propose a novel end-to-end pairwise two-stream ConvNets (PTC) algorithm... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1147 |
SubjectTerms | Action recognition Activity recognition adaptive weight Algorithms Computer architecture cross-domain learning Data models Datasets Domains Feature extraction Indoor environments Kernel Learning systems pairwise two-stream ConvNets small data Surveillance Target recognition Task analysis Training |
Title | Pairwise Two-Stream ConvNets for Cross-Domain Action Recognition With Small Data |
URI | https://ieeexplore.ieee.org/document/9288873 https://www.ncbi.nlm.nih.gov/pubmed/33296313 https://www.proquest.com/docview/2635058754 https://search.proquest.com/docview/2469076625 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaBeKFAegYKMxA289SOPzbHaUlWIriq6FXuL7HiirugmqJulEr-esfOQQCBxiSLFcmLPTOb77JkxwDuXpXGlteWpsYrHZZlysiLBkxTJHWjpyhDyfzFPz6_jT8tkuQMfxlwYRAzBZzjxt2Ev3zXl1i-VHeeK-Fqmd2E3y_MuV2tcTxGEy9OAdpVMFVc6Ww45MiI_Xsznn6-IDSoiqSL2Var24YHWitRP6t9cUjhj5d9wM7idswO4GD64izb5Ntm2dlL-_KOW4_-O6BE87PEnO-kU5jHsYP0EDoazHVhv6odweWlWd_erDbLFfcP93rVZs1lT_5hju2GEdNnMD4afNmuzqtlJSI9gX4ZwJLr_umpv2NXa3N6yU9Oap3B99nExO-f96Qu81IlsuaZ_JVZCOgIxKCUmNmTxVnQpK-GEcioxU2EwLqXNswrzMrPe4RPDyyzhwmewVzc1vgCmrUMCGoiVdHFshe9E5MTpk6kTU-MieD8IoPjeFdkoAjkReREkV3jJFb3kIjj0Ezm27OcwgqNBZkVvh5vCl9oRCXGyOIK342OyIL8tYmpsttQmrBCkRAQjeN7Jeux7UJGXf3_nK9hXPh0ixKQdwV57t8XXBFJa-yZo5y_O0999 |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIcFeGDBggQFG4g3cOXY-msepYyrQRhPrRN8if0VUrMm0pkzir-fsfEggkHiJIsVyYt9d7vez784Ab02aRKUQiiZScRppnVC0IkbjxKI7EKHRPuR_nifTy-jTMl7uwPshF8Za64PP7Mjd-r18U-utWyo7zjjytVTcgbuIq8dJm601rKgwROaJx7s8TDjlIl32WTIsO17k-ewC-SBHmsoiV6dqD-4JwVEBQ_GbU_KnrPwbcHrHc7YP8_6T23iT76Nto0b65x_VHP93TA_hQYdAyUmrMo9gx1aPYb8_3YF0xn4A5-dydXO72liyuK2p272WazKpqx-5bTYEsS6ZuMHQ03otVxU58QkS5EsfkIT3X1fNN3KxlldX5FQ28glcnn1YTKa0O3-BahGHDRX4t7QlCw3CGBuGNlY-j7fEiy6ZYdzwWI6ZtJEOVZaWNtOpci4fOV6qEBk-hd2qruwhEKGMRahhbRmaKFLMdcIyZPXx2LCxNAG86wVQXLdlNgpPT1hWeMkVTnJFJ7kADtxEDi27OQzgqJdZ0VnipnDFdliMrCwK4M3wGG3IbYzIytZbbOPXCBKkggE8a2U99N2ryPO_v_M13J8u5rNi9jH__AL2uEuO8BFqR7Db3GztS4QsjXrlNfUXqWDiyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pairwise+Two-Stream+ConvNets+for+Cross-Domain+Action+Recognition+With+Small+Data&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Gao%2C+Zan&rft.au=Guo%2C+Leming&rft.au=Ren%2C+Tongwei&rft.au=Liu%2C+An-An&rft.date=2022-03-01&rft.eissn=2162-2388&rft.volume=33&rft.issue=3&rft.spage=1147&rft.epage=1161&rft_id=info:doi/10.1109%2FTNNLS.2020.3041018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |