Predicting Transitioning Walking Gaits: Hip and Knee Joint Trajectories From the Motion of Walking Canes

In recent years, wearable exoskeletons and powered prosthetics have been considered key elements to remedy mobility loss. One of the main challenges pertaining to this field is the prediction of the wearer's desired motion. In this paper, we perform a human locomotion analysis, and we investiga...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 27; no. 9; pp. 1791 - 1800
Main Authors Mounir Boudali, A., Sinclair, Peter J., Manchester, Ian R.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, wearable exoskeletons and powered prosthetics have been considered key elements to remedy mobility loss. One of the main challenges pertaining to this field is the prediction of the wearer's desired motion. In this paper, we perform a human locomotion analysis, and we investigate the accuracy of predicting the angular position of the lower limb joints from the motion of walking canes. Nine healthy subjects took part of this study and performed a locomotor task that comprised straight walking on flat ground, stair ascent, and upright resting posture. Recurrent Neural Networks and polynomial fitting using Least Squares were used to model dynamic and static non-linear mappings, respectively, between the motion of a cane and its contra-lateral leg joints. A successful prediction of both the hip and knee joints was achieved using information from the cane only, and significant improvement of the prediction error was realized through the addition of data from the arm joints. Overall, Recurrent Neural Networks outperformed Least Squares for both joints' angular position prediction. When using the cane only, the static maps were able to predict steady behaviour but failed in predicting transitioning, as opposed to RNN, which was able to capture both steady behaviour and transitions.
AbstractList In recent years, wearable exoskeletons and powered prosthetics have been considered key elements to remedy mobility loss. One of the main challenges pertaining to this field is the prediction of the wearer's desired motion. In this paper, we perform a human locomotion analysis, and we investigate the accuracy of predicting the angular position of the lower limb joints from the motion of walking canes. Nine healthy subjects took part of this study and performed a locomotor task that comprised straight walking on flat ground, stair ascent, and upright resting posture. Recurrent Neural Networks and polynomial fitting using Least Squares were used to model dynamic and static non-linear mappings, respectively, between the motion of a cane and its contra-lateral leg joints. A successful prediction of both the hip and knee joints was achieved using information from the cane only, and significant improvement of the prediction error was realized through the addition of data from the arm joints. Overall, Recurrent Neural Networks outperformed Least Squares for both joints' angular position prediction. When using the cane only, the static maps were able to predict steady behaviour but failed in predicting transitioning, as opposed to RNN, which was able to capture both steady behaviour and transitions.
Author Sinclair, Peter J.
Manchester, Ian R.
Mounir Boudali, A.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0002-2737-581X
  surname: Mounir Boudali
  fullname: Mounir Boudali, A.
  email: m.boudali@acfr.usyd.edu.au
  organization: Australian Center for Field Robotics, School of Aerospace, Mechanical, and Mechatronic Engineering, The University of Sydney, Sydney, NSW, Australia
– sequence: 2
  givenname: Peter J.
  orcidid: 0000-0002-3957-9561
  surname: Sinclair
  fullname: Sinclair, Peter J.
  organization: Faculty of Health Science, The University of Sydney, Sydney, NSW, Australia
– sequence: 3
  givenname: Ian R.
  orcidid: 0000-0002-7035-3173
  surname: Manchester
  fullname: Manchester, Ian R.
  organization: Australian Center for Field Robotics, School of Aerospace, Mechanical, and Mechatronic Engineering, The University of Sydney, Sydney, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31398125$$D View this record in MEDLINE/PubMed
BookMark eNo9j8tOwzAQRS1URB_wAyAh_0CKx44Tmx2q-gDKQ1DEsnLsKXVpnSgOC_4eokJXd67m6Ei3TzqhDEjIObAhANNXi8fXl_GQM9BDroVQOjsiPZBSJYwD67S3SJNUcNYl_Rg3jEGeyfyEdAUIrYDLHlk_1-i8bXz4oIvahOgbX4a2vZvtZ5tT45t4TWe-oiY4eh8Q6V3pQ9PyG7RNWXuMdFKXO9qskT6UrYGWq4NhZALGU3K8MtuIZ385IG-T8WI0S-ZP09vRzTyxQkKTcHQikzJ1LLWSA3fCILeFUpgaQJ0aKwoLiErp3ClhM72yRtoMC6sydFIMyOXeW30VO3TLqvY7U38v_yf_Ahd7wCPi4a1yzQEy8QNlgGUe
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3104464
crossref_primary_10_1002_aisy_202200361
crossref_primary_10_3390_s24010211
crossref_primary_10_3389_fbioe_2024_1358022
crossref_primary_10_1007_s11517_021_02335_9
crossref_primary_10_1109_TNSRE_2021_3107780
crossref_primary_10_1016_j_bspc_2020_102279
crossref_primary_10_1109_TASE_2022_3185706
crossref_primary_10_3390_act11030073
ContentType Journal Article
DBID 97E
RIA
RIE
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1109/TNSRE.2019.2933896
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1800
ExternalDocumentID 31398125
8792116
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: 10.13039/501100000923
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RIG
RNS
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c351t-2ed36554d04c5212d3ae2cb88e4a1e94ac3bc1ee8897d83c69fca5c6ebc86ed53
IEDL.DBID RIE
ISSN 1534-4320
IngestDate Sat Sep 28 08:26:44 EDT 2024
Mon Nov 04 12:06:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-2ed36554d04c5212d3ae2cb88e4a1e94ac3bc1ee8897d83c69fca5c6ebc86ed53
ORCID 0000-0002-2737-581X
0000-0002-3957-9561
0000-0002-7035-3173
PMID 31398125
PageCount 10
ParticipantIDs ieee_primary_8792116
pubmed_primary_31398125
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0017657
Score 2.404388
Snippet In recent years, wearable exoskeletons and powered prosthetics have been considered key elements to remedy mobility loss. One of the main challenges pertaining...
SourceID pubmed
ieee
SourceType Index Database
Publisher
StartPage 1791
SubjectTerms Adult
Algorithms
Biomechanical Phenomena
Canes
data analysis
Exoskeletons
Female
Gait - physiology
gait trajectory prediction
Hip
Hip - physiology
Humans
Knee Joint - physiology
Least-Squares Analysis
Legged locomotion
Lower Extremity - physiology
lower limb rehabilitation
Male
Neural Networks, Computer
Posture - physiology
Robot sensing systems
system identification
Task analysis
Trajectory
Walking - physiology
Young Adult
Title Predicting Transitioning Walking Gaits: Hip and Knee Joint Trajectories From the Motion of Walking Canes
URI https://ieeexplore.ieee.org/document/8792116
https://www.ncbi.nlm.nih.gov/pubmed/31398125
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB6RnHopLVBeBe2h5VSHJPvwbm8oIkRUiRANghvaXY9FeNgodS78-s6unYiiHrhZttda7axnvp3HNwDfpHN0NpHdJHfSJiIXgvSg6iWkBi0X2kjuYpbvRI2uxPmNvFmDH6taGESMyWfYCZcxlp-VfhFcZcc6NXReUS1opUbVtVqriEGqIqsn_cAiEbzfXRbIdM3xdPL78jRkcZkOGTey0KFvESfoQ8ZNNl1V3qDKaF2G6zBezqtOKnnoLCrX8S9vKBvfO_FP8LGBmeyk3hefYQ2LDfj-mlKYTWs-AXbELv9h696Eu4t5CN-EhGgWbdms8dqya_sYXOvszM6qPz_ZaPbMbJGxXwUiOy9nRRXev4-BADqBs-G8fGKEMNk49gpiZb76wsCSjt2Cq-HpdDBKmo4MieeyVyV9zLgiAJJ1hQ9Fvxm32PdOaxS2h0ZYz53vIWpt0kxzr0zurfQKndcKM8m_QLsoC9wBxgm5uNykxlktvNXWOJflNNpbupnaXdgM63j7XJNu3DZLuAvbtZxWD5aC3Pv_gH34ECRfp4V9hXY1X-AB4YjKHUJrcjE-jNvoL6ddxs8
link.rule.ids 314,780,784,796,27924,27925,54758
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcIALyxuWXfABOJHS1nZi7w0hSnm0QlAEt8p2JqL7SFA3veyvZ-ykFYs47C1K4siyJzOfZ76ZATiQ1tLZRDajzEoTiUwI0oNxKyI1aLhQWnIbWL79uPsgrp7k0xwcz3JhEDGQz7DhL0MsPy3cxLvKTlSi6bwSf4IFKQjnVtlas5hBEoe6nvQLi0jwdnOaItPUJ4P-_d2553HpBpk3stG-cxEn8EPmTdZ9Vd7hymBfOp-hN51ZRSv52ZiUtuH-viva-L9TX4HlGmiy00oyVmEO8zU4fFtUmA2qigLsiN39U697HZ5vxz6A4ynRLFizUe23ZY_ml3euswszKv98Z93RCzN5yq5zRHZVjPLSv_8jhALoDM464-I3I4zJeqFbECuy2RfODGnZDXjonA_OulHdkyFyXLbKqI0pjwmCpE3hfNpvyg22nVUKhWmhFsZx61qISukkVdzFOnNGuhitUzGmkm_CfF7kuA2ME3axmU60NUo4o4y2Ns1otDN0MzE7sO7XcfhSld0Y1ku4A1vVPs0eTDfyy8cD9mGxO-jdDG8u-9e7sOSloCKJfYX5cjzBb4QqSrsXhOkVlHDJFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Transitioning+Walking+Gaits%3A+Hip+and+Knee+Joint+Trajectories+From+the+Motion+of+Walking+Canes&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Mounir+Boudali%2C+A.&rft.au=Sinclair%2C+Peter+J.&rft.au=Manchester%2C+Ian+R.&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=27&rft.issue=9&rft.spage=1791&rft.epage=1800&rft_id=info:doi/10.1109%2FTNSRE.2019.2933896&rft_id=info%3Apmid%2F31398125&rft.externalDocID=8792116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon