A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction
Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC) 2 TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obt...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 31; pp. 18519 - 18528 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
06.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC)
2
TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obtained on Cu foam by a liquid-phase epitaxial layer-by-layer growth approach. The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrates without the use of binder materials, which provides more accessible active sites for electrocatalytic performance. The OER activity of such surface-mounted MOF nanosheet arrays can be optimized effectively
via
tuning the thicknesses and Co/Ni ratios. The Co/Ni(BDC)
2
TED grown on Cu foam with 40 cycles at a Co/Ni ratio of 1/1 shows superior OER activity with required overpotentials of 260 and 287 mV to achieve current densities of 10 and 50 mA cm
2
and excellent stability. The experiments and theoretical calculations reveal that the synergistic effect of Co/Ni and rich metal sites dominated by nanosheet interfaces improve the electrocatalytic activity. This work provides more insight into the OER activity of the MOF thin film as an electrode material and presents a new strategy for developing promising highly efficient electrocatalysts in practical applications.
We developed an oriented thin film of 3-D Co/Ni MOF nanosheet arrays on Cu foam with strong adhesion on the substrates without the use of binder materials, providing more accessible active sites for electrocatalysis. |
---|---|
AbstractList | Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC)2TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obtained on Cu foam by a liquid-phase epitaxial layer-by-layer growth approach. The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrates without the use of binder materials, which provides more accessible active sites for electrocatalytic performance. The OER activity of such surface-mounted MOF nanosheet arrays can be optimized effectively via tuning the thicknesses and Co/Ni ratios. The Co/Ni(BDC)2TED grown on Cu foam with 40 cycles at a Co/Ni ratio of 1/1 shows superior OER activity with required overpotentials of 260 and 287 mV to achieve current densities of 10 and 50 mA cm−2 and excellent stability. The experiments and theoretical calculations reveal that the synergistic effect of Co/Ni and rich metal sites dominated by nanosheet interfaces improve the electrocatalytic activity. This work provides more insight into the OER activity of the MOF thin film as an electrode material and presents a new strategy for developing promising highly efficient electrocatalysts in practical applications. Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC)₂TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obtained on Cu foam by a liquid-phase epitaxial layer-by-layer growth approach. The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrates without the use of binder materials, which provides more accessible active sites for electrocatalytic performance. The OER activity of such surface-mounted MOF nanosheet arrays can be optimized effectively via tuning the thicknesses and Co/Ni ratios. The Co/Ni(BDC)₂TED grown on Cu foam with 40 cycles at a Co/Ni ratio of 1/1 shows superior OER activity with required overpotentials of 260 and 287 mV to achieve current densities of 10 and 50 mA cm⁻² and excellent stability. The experiments and theoretical calculations reveal that the synergistic effect of Co/Ni and rich metal sites dominated by nanosheet interfaces improve the electrocatalytic activity. This work provides more insight into the OER activity of the MOF thin film as an electrode material and presents a new strategy for developing promising highly efficient electrocatalysts in practical applications. Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC) 2 TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obtained on Cu foam by a liquid-phase epitaxial layer-by-layer growth approach. The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrates without the use of binder materials, which provides more accessible active sites for electrocatalytic performance. The OER activity of such surface-mounted MOF nanosheet arrays can be optimized effectively via tuning the thicknesses and Co/Ni ratios. The Co/Ni(BDC) 2 TED grown on Cu foam with 40 cycles at a Co/Ni ratio of 1/1 shows superior OER activity with required overpotentials of 260 and 287 mV to achieve current densities of 10 and 50 mA cm 2 and excellent stability. The experiments and theoretical calculations reveal that the synergistic effect of Co/Ni and rich metal sites dominated by nanosheet interfaces improve the electrocatalytic activity. This work provides more insight into the OER activity of the MOF thin film as an electrode material and presents a new strategy for developing promising highly efficient electrocatalysts in practical applications. We developed an oriented thin film of 3-D Co/Ni MOF nanosheet arrays on Cu foam with strong adhesion on the substrates without the use of binder materials, providing more accessible active sites for electrocatalysis. Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC) 2 TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obtained on Cu foam by a liquid-phase epitaxial layer-by-layer growth approach. The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrates without the use of binder materials, which provides more accessible active sites for electrocatalytic performance. The OER activity of such surface-mounted MOF nanosheet arrays can be optimized effectively via tuning the thicknesses and Co/Ni ratios. The Co/Ni(BDC) 2 TED grown on Cu foam with 40 cycles at a Co/Ni ratio of 1/1 shows superior OER activity with required overpotentials of 260 and 287 mV to achieve current densities of 10 and 50 mA cm −2 and excellent stability. The experiments and theoretical calculations reveal that the synergistic effect of Co/Ni and rich metal sites dominated by nanosheet interfaces improve the electrocatalytic activity. This work provides more insight into the OER activity of the MOF thin film as an electrode material and presents a new strategy for developing promising highly efficient electrocatalysts in practical applications. |
Author | Li, De-Jing Li, Qiao-Hong Gu, Zhi-Gang Zhang, Jian |
AuthorAffiliation | State Key Laboratory of Structural Chemistry Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Structural Chemistry – sequence: 0 name: Fujian Institute of Research on the Structure of Matter – sequence: 0 name: University of Chinese Academy of Sciences – sequence: 0 name: Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: De-Jing surname: Li fullname: Li, De-Jing – sequence: 2 givenname: Qiao-Hong surname: Li fullname: Li, Qiao-Hong – sequence: 3 givenname: Zhi-Gang surname: Gu fullname: Gu, Zhi-Gang – sequence: 4 givenname: Jian surname: Zhang fullname: Zhang, Jian |
BookMark | eNptkU1rGzEQhkVxoKmTS-4FQS-lsI129eHV0Zi4CST4kpyXiTSKZdZSKmnb-t9nbZcUTOcyA_O8w8w7n8gkxICEXNXse824vja6ABNSCveBnDdMsmomtJq81237kVzmvGFjtIwprc_JZk7zkBwYrLZxCAUtfVgtaVn7QJ3vt_S3L2sak8dDL0CIeY1YKKQEu0xdTBTDGoLx4WWUIY1_di8YKP6K_VB8DDQhmH1xQc4c9Bkv_-YpeVrePC5uq_vVj7vF_L4yXNalauB53NfCrEUttQWohRKcczFTyMEaZ521WqC2z1qi0s4Kp6TgtXMgFVg-JV-Pc19T_DlgLt3WZ4N9DwHjkLuGM1lr0YyeTcmXE3QThxTG7bqmUa3is1qIkfp2pEyKOSd03WvyW0i7rmbd3vluoR_nB-eXI8xOYOML7O8vCXz_f8nnoyRl8z763zP5GwBekr8 |
CitedBy_id | crossref_primary_10_1039_D0NR03115A crossref_primary_10_1016_j_ccr_2020_213488 crossref_primary_10_1039_D4NJ04418E crossref_primary_10_1039_D1TA02896K crossref_primary_10_1016_j_ijhydene_2020_12_192 crossref_primary_10_1016_j_jcis_2023_02_079 crossref_primary_10_1007_s40242_020_0190_3 crossref_primary_10_1039_D1TA10440C crossref_primary_10_1021_acs_inorgchem_1c00098 crossref_primary_10_1039_D0NR04458J crossref_primary_10_1002_aenm_202301224 crossref_primary_10_1039_D0CS01191F crossref_primary_10_1016_j_jallcom_2022_165823 crossref_primary_10_1007_s40242_022_2040_y crossref_primary_10_1016_j_fuel_2024_132025 crossref_primary_10_1016_j_cej_2024_158572 crossref_primary_10_1016_j_enchem_2021_100065 crossref_primary_10_3390_catal12060625 crossref_primary_10_1039_D3CE00393K crossref_primary_10_1016_j_surfin_2024_104341 crossref_primary_10_1002_smtd_202200773 crossref_primary_10_1007_s11426_022_1448_8 crossref_primary_10_1039_D3DT00976A crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1007_s42114_024_01016_z crossref_primary_10_1021_acs_inorgchem_4c04151 crossref_primary_10_1016_j_pmatsci_2023_101123 crossref_primary_10_1039_D3TA01903A crossref_primary_10_1016_j_inoche_2023_111661 crossref_primary_10_1016_j_seppur_2023_125178 crossref_primary_10_1039_D0TA03138K crossref_primary_10_1016_j_apcatb_2021_120665 crossref_primary_10_1016_j_ijhydene_2023_09_309 crossref_primary_10_1039_D3NJ01457F crossref_primary_10_1016_j_cej_2021_128784 crossref_primary_10_1016_j_mtener_2020_100597 crossref_primary_10_1088_1361_6528_ac4f82 crossref_primary_10_1016_j_jcis_2020_06_051 crossref_primary_10_1021_acsanm_3c00234 crossref_primary_10_1039_D3NJ03660J crossref_primary_10_1039_D2NJ00984F crossref_primary_10_1002_asia_201901810 crossref_primary_10_1016_j_apcatb_2024_123925 crossref_primary_10_1021_acsnano_2c09396 crossref_primary_10_1039_D3CC03838F crossref_primary_10_1002_adfm_202411904 crossref_primary_10_1021_acsami_0c03333 crossref_primary_10_1021_acsnano_3c09261 crossref_primary_10_1021_acsanm_4c02915 crossref_primary_10_1016_j_jpowsour_2021_229947 crossref_primary_10_1002_aenm_202003499 crossref_primary_10_1016_j_apsusc_2023_156874 crossref_primary_10_1016_j_cej_2024_154062 crossref_primary_10_1016_j_electacta_2021_139180 crossref_primary_10_1002_cssc_202000376 crossref_primary_10_1007_s12274_023_5576_3 crossref_primary_10_1002_smll_202206070 crossref_primary_10_1039_D0SC02958K crossref_primary_10_1016_j_jallcom_2021_159218 crossref_primary_10_1021_acs_langmuir_1c00245 crossref_primary_10_1039_C9CC09484A crossref_primary_10_1039_D0DT03872E crossref_primary_10_1021_acscatal_1c03260 crossref_primary_10_1016_j_ccr_2023_215117 crossref_primary_10_1039_D0TA01912G crossref_primary_10_1039_D3DT03049K crossref_primary_10_1002_cssc_202001230 crossref_primary_10_1039_D0EE03697H crossref_primary_10_1039_D4GC05339G crossref_primary_10_1016_j_ccr_2021_214144 crossref_primary_10_1016_j_seppur_2021_119802 crossref_primary_10_1016_j_jssc_2021_122117 crossref_primary_10_1002_adma_202203791 crossref_primary_10_1016_j_inoche_2024_112784 crossref_primary_10_1016_j_jechem_2021_09_009 crossref_primary_10_1115_1_4055462 crossref_primary_10_1016_j_jechem_2021_05_024 crossref_primary_10_1016_j_ijhydene_2023_08_161 crossref_primary_10_1016_j_rechem_2023_101140 crossref_primary_10_1016_j_ccr_2023_215043 crossref_primary_10_1016_j_jcis_2022_03_139 crossref_primary_10_1002_celc_202101252 crossref_primary_10_1002_chem_202401644 crossref_primary_10_26599_NR_2025_94907002 crossref_primary_10_1039_D1DT00302J crossref_primary_10_1016_j_cis_2023_102967 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1016_j_cattod_2024_115117 crossref_primary_10_1016_j_cej_2024_155934 crossref_primary_10_1016_j_mtnano_2021_100124 crossref_primary_10_1016_j_jelechem_2021_115812 crossref_primary_10_1021_acs_chemrev_1c00978 crossref_primary_10_3390_molecules28114464 crossref_primary_10_1016_j_electacta_2023_143075 crossref_primary_10_1088_1402_4896_ad314a crossref_primary_10_1016_j_jechem_2021_04_015 crossref_primary_10_1007_s11426_023_1725_8 crossref_primary_10_1016_j_ccr_2022_214467 crossref_primary_10_1149_2754_2734_ad10fa crossref_primary_10_1016_j_cclet_2021_10_090 crossref_primary_10_1007_s11581_020_03651_0 crossref_primary_10_1016_j_apcatb_2021_120753 crossref_primary_10_1039_D3TC04366E crossref_primary_10_1039_D4TA00736K crossref_primary_10_1039_D4TA03929G |
Cites_doi | 10.1021/ja302991b 10.1002/adfm.201801554 10.1002/adma.201705431 10.1021/acssuschemeng.8b03221 10.1021/acs.nanolett.6b03803 10.1039/C8TA10142F 10.1039/C6CS00051G 10.1016/j.jcat.2018.11.005 10.1021/acsnano.5b06230 10.1002/adma.201705442 10.1038/ncomms11510 10.1039/C7TA07073J 10.1002/smll.201604035 10.1039/C7TA06580A 10.1002/anie.200901090 10.1039/c3cc45343j 10.1002/anie.201806862 10.1021/ja9063298 10.1002/anie.201800269 10.1021/acs.inorgchem.8b01230 10.1039/C5CC07614E 10.1021/ic200381f 10.1002/smll.201604161 10.1039/C6EE03145E 10.1103/PhysRevLett.77.3865 10.1039/C4CP02021A 10.1002/anie.201708385 10.1021/ja2037996 10.1016/j.electacta.2017.11.001 10.1021/jp711929d 10.1016/j.apcatb.2016.03.031 10.1021/jp047349j 10.1016/j.apcatb.2018.05.082 10.1002/aenm.201803799 10.1038/ncomms5562 10.1021/jacs.6b07127 10.1038/srep00921 10.1021/acsami.6b13360 10.1039/C4CS00448E 10.1039/c2cp41465a 10.1021/jacs.6b02964 10.1016/j.apcatb.2017.07.086 10.1021/cr0204294 10.1021/cr100246c 10.1039/C7CC06378D 10.1021/jacs.5b08186 10.1039/C6CC07049C 10.1021/cm301427w 10.1016/j.carbon.2018.05.062 10.1002/adfm.201706008 10.1002/anie.200460712 10.1002/adfm.201101592 10.1002/chem.201403524 10.1039/C4CS00470A 10.1002/adfm.201706120 10.1021/acsami.5b09975 10.1126/science.1258307 10.1002/adma.201605502 10.1021/ja3089923 10.1021/acsami.6b05597 10.1021/ja076210u 10.1039/c9ee00950g 10.1038/ncomms15341 10.1126/science.1083671 10.1021/acsami.6b10160 10.1021/jacs.5b10484 10.1039/c2ee21494f 10.1021/acscatal.6b02911 10.1007/s11144-018-1356-6 10.1038/nenergy.2016.184 10.1021/acsnano.8b01488 10.1016/j.jelechem.2006.11.008 10.1039/C6SC05408K 10.1126/science.aap8004 10.1002/aenm.201800584 10.1021/acsami.6b09196 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/c9ta04554f |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 18528 |
ExternalDocumentID | 10_1039_C9TA04554F c9ta04554f |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c351t-2ab205da78e959daa1464333476e3adcfdfdd94e9db95e69fd4f65431ffa56ad3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 02:27:23 EDT 2025 Mon Jun 30 12:06:14 EDT 2025 Thu Apr 24 22:52:39 EDT 2025 Tue Jul 01 03:14:06 EDT 2025 Tue Dec 17 20:59:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-2ab205da78e959daa1464333476e3adcfdfdd94e9db95e69fd4f65431ffa56ad3 |
Notes | 10.1039/c9ta04554f Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9286-3580 0000-0001-6538-2917 0000-0003-3373-9621 |
PQID | 2268637144 |
PQPubID | 2047523 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1039_C9TA04554F proquest_journals_2268637144 proquest_miscellaneous_2305194210 rsc_primary_c9ta04554f crossref_primary_10_1039_C9TA04554F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190806 |
PublicationDateYYYYMMDD | 2019-08-06 |
PublicationDate_xml | – month: 8 year: 2019 text: 20190806 day: 6 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Nakagawa (C9TA04554F-(cit14)/*[position()=1]) 2009; 131 Tayal (C9TA04554F-(cit68)/*[position()=1]) 2018; 57 Zhao (C9TA04554F-(cit34)/*[position()=1]) 2016; 1 Chi (C9TA04554F-(cit66)/*[position()=1]) 2017; 9 Henke (C9TA04554F-(cit51)/*[position()=1]) 2012; 134 Kim (C9TA04554F-(cit54)/*[position()=1]) 2018; 124 Luo (C9TA04554F-(cit5)/*[position()=1]) 2014; 345 Liang (C9TA04554F-(cit19)/*[position()=1]) 2018; 57 Xu (C9TA04554F-(cit37)/*[position()=1]) 2016; 7 Xu (C9TA04554F-(cit24)/*[position()=1]) 2018; 30 Sun (C9TA04554F-(cit33)/*[position()=1]) 2018; 8 Li (C9TA04554F-(cit64)/*[position()=1]) 2018; 6 Zhu (C9TA04554F-(cit32)/*[position()=1]) 2017; 53 Wang (C9TA04554F-(cit11)/*[position()=1]) 2018; 30 Li (C9TA04554F-(cit63)/*[position()=1]) 2017; 5 Chen (C9TA04554F-(cit20)/*[position()=1]) 2017; 358 Rossmeisl (C9TA04554F-(cit73)/*[position()=1]) 2007; 607 Arslan (C9TA04554F-(cit49)/*[position()=1]) 2011; 133 Li (C9TA04554F-(cit65)/*[position()=1]) 2016; 8 Xiao (C9TA04554F-(cit25)/*[position()=1]) 2018; 12 Li (C9TA04554F-(cit76)/*[position()=1]) 2016; 52 Hong (C9TA04554F-(cit17)/*[position()=1]) 2019; 7 Cao (C9TA04554F-(cit1)/*[position()=1]) 2012; 5 Dong (C9TA04554F-(cit29)/*[position()=1]) 2016; 8 Kuang (C9TA04554F-(cit23)/*[position()=1]) 2018; 137 Maniam (C9TA04554F-(cit53)/*[position()=1]) 2011; 50 Zhang (C9TA04554F-(cit21)/*[position()=1]) 2018; 57 Xiao (C9TA04554F-(cit61)/*[position()=1]) 2017; 10 Valdés (C9TA04554F-(cit74)/*[position()=1]) 2008; 112 Wurster (C9TA04554F-(cit2)/*[position()=1]) 2016; 138 Jiao (C9TA04554F-(cit4)/*[position()=1]) 2015; 44 Mamtani (C9TA04554F-(cit13)/*[position()=1]) 2018; 220 Gu (C9TA04554F-(cit43)/*[position()=1]) 2016; 52 Gu (C9TA04554F-(cit44)/*[position()=1]) 2015; 7 Zhou (C9TA04554F-(cit58)/*[position()=1]) 2018; 259 Liang (C9TA04554F-(cit9)/*[position()=1]) 2013; 135 Bell (C9TA04554F-(cit15)/*[position()=1]) 2003; 299 Duan (C9TA04554F-(cit30)/*[position()=1]) 2017; 8 Jia (C9TA04554F-(cit27)/*[position()=1]) 2017; 56 Han (C9TA04554F-(cit59)/*[position()=1]) 2019; 9 Han (C9TA04554F-(cit70)/*[position()=1]) 2019 Shekhah (C9TA04554F-(cit39)/*[position()=1]) 2007; 129 Li (C9TA04554F-(cit42)/*[position()=1]) 2017; 13 Kim (C9TA04554F-(cit12)/*[position()=1]) 2018; 237 Fischer (C9TA04554F-(cit46)/*[position()=1]) 2009; 48 Shekhah (C9TA04554F-(cit48)/*[position()=1]) 2013; 49 Zhang (C9TA04554F-(cit26)/*[position()=1]) 2018; 30 Heinke (C9TA04554F-(cit40)/*[position()=1]) 2014; 5 Cook (C9TA04554F-(cit10)/*[position()=1]) 2010; 110 Chen (C9TA04554F-(cit45)/*[position()=1]) 2016; 8 Zhang (C9TA04554F-(cit62)/*[position()=1]) 2017; 29 Wirth (C9TA04554F-(cit77)/*[position()=1]) 2014; 16 Feng (C9TA04554F-(cit22)/*[position()=1]) 2019; 369 Tan (C9TA04554F-(cit55)/*[position()=1]) 2012; 24 Tan (C9TA04554F-(cit57)/*[position()=1]) 2012; 14 You (C9TA04554F-(cit36)/*[position()=1]) 2016; 138 Zou (C9TA04554F-(cit3)/*[position()=1]) 2015; 44 Feng (C9TA04554F-(cit35)/*[position()=1]) 2015; 137 Gu (C9TA04554F-(cit52)/*[position()=1]) 2014; 20 Gu (C9TA04554F-(cit18)/*[position()=1]) 2016; 45 Gu (C9TA04554F-(cit41)/*[position()=1]) 2016; 10 Wang (C9TA04554F-(cit67)/*[position()=1]) 2018; 6 Yuan (C9TA04554F-(cit56)/*[position()=1]) 2017; 13 Zhou (C9TA04554F-(cit16)/*[position()=1]) 2016; 7 Rui (C9TA04554F-(cit31)/*[position()=1]) 2018; 28 Arslan (C9TA04554F-(cit38)/*[position()=1]) 2011; 21 Liang (C9TA04554F-(cit69)/*[position()=1]) 2016; 16 Perdew (C9TA04554F-(cit71)/*[position()=1]) 1996; 77 Song (C9TA04554F-(cit7)/*[position()=1]) 2016; 191 McEvoy (C9TA04554F-(cit8)/*[position()=1]) 2006; 106 Liu (C9TA04554F-(cit47)/*[position()=1]) 2012; 2 Qiu (C9TA04554F-(cit60)/*[position()=1]) 2018; 28 Anandhababu (C9TA04554F-(cit28)/*[position()=1]) 2018; 28 Nørskov (C9TA04554F-(cit72)/*[position()=1]) 2004; 108 Zhuo (C9TA04554F-(cit75)/*[position()=1]) 2016; 138 Liu (C9TA04554F-(cit6)/*[position()=1]) 2017; 8 Dybtsev (C9TA04554F-(cit50)/*[position()=1]) 2004; 43 |
References_xml | – volume: 134 start-page: 9464 year: 2012 ident: C9TA04554F-(cit51)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302991b – volume: 28 start-page: 1801554 year: 2018 ident: C9TA04554F-(cit31)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801554 – volume: 30 start-page: 1705431 year: 2018 ident: C9TA04554F-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705431 – volume: 6 start-page: 12511 year: 2018 ident: C9TA04554F-(cit67)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b03221 – volume: 16 start-page: 7718 year: 2016 ident: C9TA04554F-(cit69)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03803 – volume: 7 start-page: 3592 year: 2019 ident: C9TA04554F-(cit17)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10142F – volume: 45 start-page: 3122 year: 2016 ident: C9TA04554F-(cit18)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00051G – volume: 369 start-page: 168 year: 2019 ident: C9TA04554F-(cit22)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2018.11.005 – volume: 10 start-page: 977 year: 2016 ident: C9TA04554F-(cit41)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b06230 – volume: 30 start-page: 1705442 year: 2018 ident: C9TA04554F-(cit24)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705442 – volume: 7 start-page: 11510 year: 2016 ident: C9TA04554F-(cit16)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms11510 – volume: 6 start-page: 3488 year: 2018 ident: C9TA04554F-(cit64)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07073J – volume: 13 start-page: 1604035 year: 2017 ident: C9TA04554F-(cit42)/*[position()=1] publication-title: Small doi: 10.1002/smll.201604035 – volume: 5 start-page: 20126 year: 2017 ident: C9TA04554F-(cit63)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06580A – volume: 48 start-page: 6205 year: 2009 ident: C9TA04554F-(cit46)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200901090 – volume: 49 start-page: 10079 year: 2013 ident: C9TA04554F-(cit48)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc45343j – volume: 57 start-page: 12106 year: 2018 ident: C9TA04554F-(cit21)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806862 – volume: 131 start-page: 15578 year: 2009 ident: C9TA04554F-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9063298 – volume: 57 start-page: 9604 year: 2018 ident: C9TA04554F-(cit19)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800269 – volume: 57 start-page: 10072 year: 2018 ident: C9TA04554F-(cit68)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b01230 – volume: 52 start-page: 772 year: 2016 ident: C9TA04554F-(cit43)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC07614E – volume: 50 start-page: 5085 year: 2011 ident: C9TA04554F-(cit53)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic200381f – volume: 13 start-page: 1604161 year: 2017 ident: C9TA04554F-(cit56)/*[position()=1] publication-title: Small doi: 10.1002/smll.201604161 – volume: 10 start-page: 893 year: 2017 ident: C9TA04554F-(cit61)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03145E – volume: 77 start-page: 3865 year: 1996 ident: C9TA04554F-(cit71)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 16 start-page: 15917 year: 2014 ident: C9TA04554F-(cit77)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02021A – volume: 56 start-page: 13781 year: 2017 ident: C9TA04554F-(cit27)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708385 – volume: 133 start-page: 8158 year: 2011 ident: C9TA04554F-(cit49)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2037996 – volume: 259 start-page: 329 year: 2018 ident: C9TA04554F-(cit58)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.001 – volume: 112 start-page: 9872 year: 2008 ident: C9TA04554F-(cit74)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp711929d – volume: 191 start-page: 202 year: 2016 ident: C9TA04554F-(cit7)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.03.031 – volume: 108 start-page: 17886 year: 2004 ident: C9TA04554F-(cit72)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 237 start-page: 409 year: 2018 ident: C9TA04554F-(cit12)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.05.082 – volume: 9 start-page: 1803799 year: 2019 ident: C9TA04554F-(cit59)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803799 – volume: 5 start-page: 4562 year: 2014 ident: C9TA04554F-(cit40)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5562 – volume: 138 start-page: 13639 year: 2016 ident: C9TA04554F-(cit36)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07127 – volume: 2 start-page: 921 year: 2012 ident: C9TA04554F-(cit47)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00921 – volume: 9 start-page: 464 year: 2017 ident: C9TA04554F-(cit66)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13360 – volume: 44 start-page: 5148 year: 2015 ident: C9TA04554F-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 30 start-page: 18011211 year: 2018 ident: C9TA04554F-(cit11)/*[position()=1] publication-title: Adv. Mater. – volume: 14 start-page: 14217 year: 2012 ident: C9TA04554F-(cit57)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp41465a – volume: 138 start-page: 7091 year: 2016 ident: C9TA04554F-(cit75)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02964 – volume: 220 start-page: 88 year: 2018 ident: C9TA04554F-(cit13)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.07.086 – volume: 106 start-page: 4455 year: 2006 ident: C9TA04554F-(cit8)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr0204294 – volume: 110 start-page: 6474 year: 2010 ident: C9TA04554F-(cit10)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr100246c – volume: 53 start-page: 10906 year: 2017 ident: C9TA04554F-(cit32)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC06378D – volume: 137 start-page: 14023 year: 2015 ident: C9TA04554F-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08186 – volume: 52 start-page: 13233 year: 2016 ident: C9TA04554F-(cit76)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC07049C – volume: 24 start-page: 3153 year: 2012 ident: C9TA04554F-(cit55)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm301427w – volume: 137 start-page: 433 year: 2018 ident: C9TA04554F-(cit23)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2018.05.062 – volume: 28 start-page: 1706008 year: 2018 ident: C9TA04554F-(cit60)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706008 – volume: 43 start-page: 5033 year: 2004 ident: C9TA04554F-(cit50)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200460712 – volume: 21 start-page: 4228 year: 2011 ident: C9TA04554F-(cit38)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101592 – volume: 20 start-page: 9879 year: 2014 ident: C9TA04554F-(cit52)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201403524 – volume: 44 start-page: 2060 year: 2015 ident: C9TA04554F-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 28 start-page: 1706120 year: 2018 ident: C9TA04554F-(cit28)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706120 – volume: 7 start-page: 28585 year: 2015 ident: C9TA04554F-(cit44)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09975 – volume: 345 start-page: 1593 year: 2014 ident: C9TA04554F-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.1258307 – volume: 29 start-page: 1605502 year: 2017 ident: C9TA04554F-(cit62)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605502 – volume: 135 start-page: 2013 year: 2013 ident: C9TA04554F-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3089923 – volume: 8 start-page: 20057 year: 2016 ident: C9TA04554F-(cit65)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05597 – volume: 129 start-page: 15118 year: 2007 ident: C9TA04554F-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076210u – year: 2019 ident: C9TA04554F-(cit70)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c9ee00950g – volume: 8 start-page: 15341 year: 2017 ident: C9TA04554F-(cit30)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15341 – volume: 299 start-page: 1688 year: 2003 ident: C9TA04554F-(cit15)/*[position()=1] publication-title: Science doi: 10.1126/science.1083671 – volume: 8 start-page: 26902 year: 2016 ident: C9TA04554F-(cit29)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10160 – volume: 138 start-page: 3623 year: 2016 ident: C9TA04554F-(cit2)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10484 – volume: 5 start-page: 8134 year: 2012 ident: C9TA04554F-(cit1)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21494f – volume: 7 start-page: 986 year: 2016 ident: C9TA04554F-(cit37)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b02911 – volume: 124 start-page: 335 year: 2018 ident: C9TA04554F-(cit54)/*[position()=1] publication-title: React. Kinet., Mech. Catal. doi: 10.1007/s11144-018-1356-6 – volume: 1 start-page: 16184 year: 2016 ident: C9TA04554F-(cit34)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.184 – volume: 12 start-page: 3947 year: 2018 ident: C9TA04554F-(cit25)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b01488 – volume: 607 start-page: 83 year: 2007 ident: C9TA04554F-(cit73)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 8 start-page: 3211 year: 2017 ident: C9TA04554F-(cit6)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC05408K – volume: 358 start-page: 304 year: 2017 ident: C9TA04554F-(cit20)/*[position()=1] publication-title: Science doi: 10.1126/science.aap8004 – volume: 8 start-page: 1800584 year: 2018 ident: C9TA04554F-(cit33)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800584 – volume: 8 start-page: 27332 year: 2016 ident: C9TA04554F-(cit45)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09196 |
SSID | ssj0000800699 |
Score | 2.568044 |
Snippet | Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology.... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18519 |
SubjectTerms | active sites adhesion Adhesive strength Adhesives Arrays Bimetals Catalysts catalytic activity cobalt Copper copper nanoparticles Electrocatalysts electrochemistry Electrode materials electrodes energy Energy storage Epitaxial growth foams Interfaces Liquid phases Metal foams Metal-organic frameworks Nanosheets Nickel Oxygen Oxygen evolution reactions oxygen production Substrates synergism Synergistic effect Thin films |
Title | A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction |
URI | https://www.proquest.com/docview/2268637144 https://www.proquest.com/docview/2305194210 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67QKHiV8ThYGM4IIqjyRO0vgYTetKtYGQOmm3yo5tWsSSKW0R44_jb-M5jp2y7jC4pK2TOHHf5-fPz37vIfQuzETEo1iQRKWSxCLhhA15RlIaaRoDm9ONTff8Uzq-iCeXyWWv93tj19J6JY6KX3f6lfyPVKEM5Gq8ZP9Bsr5SKIDvIF84goTheC8Z54Pluta8UOTKpHwA7nj-eQRUclGaeEtX1shamUjG5lzJy2o5N2vQvK75zdJG-y7nJuJG6zNV_bz5asL-_2hfewCUsvCi2-awQHdtOweFSxx3NMitD5A7Y5_SeBg2RnrnsWU25Xp7_pn1d1dk4oZSX_hlwSsyrrri03WzojJfkFPelXrL98QBvrVlGPepjARpp_KiIAlMdFOrkdVmmc1763T2cAOa7ShiFTDQj1YFK_fbOp9vDRUBNZFWj9k0B1abxKNuQHSbAG6Nk373YrNuT9msu3cH7UUwTQE9u5efTD-eeSuf4eNpk8TUN83FyKXsQ1fB36yom-rs1C4PTcN3po_QfitknFvUPUY9VT5BDzfCVz5F33J8C38Y8IcN_rDBHzb4ww5_2OMPW_xhQAb2-IPbFLb4wx5_2OHvGboYnUyPx6TN3UEKmoQrEnEBLZZ8mCmWMMk5jMgxpdD9U0W5LLTUUrJYMSkYqAmmZayNm3OoNU9SLukB2i2rUj1HOAKOlWmgpUMg72kw5GEi4CMSkmYiFWEfvXf_3axoA9ub_CrfZ9uC6qO3_tprG87lzqsOnQhmbXdfzmCekqUmvmXcR2_8aehaZoWNl6pawzXUzIjiKAz66ABE559RsBVv6tYv7vUGL9GDrn8cot1VvVavgP2uxOsWYn8AuFiw3g |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+surface-mounted+MOF+thin+film+with+oriented+nanosheet+arrays+for+enhancing+the+oxygen+evolution+reaction&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+De-Jing&rft.au=Li%2C+Qiao-Hong&rft.au=Gu%2C+Zhi-Gang&rft.au=Zhang%2C+Jian&rft.date=2019-08-06&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=7&rft.issue=31&rft.spage=18519&rft.epage=18528&rft_id=info:doi/10.1039%2FC9TA04554F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9TA04554F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |