A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction

Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC) 2 TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obt...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 31; pp. 18519 - 18528
Main Authors Li, De-Jing, Li, Qiao-Hong, Gu, Zhi-Gang, Zhang, Jian
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 06.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC) 2 TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obtained on Cu foam by a liquid-phase epitaxial layer-by-layer growth approach. The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrates without the use of binder materials, which provides more accessible active sites for electrocatalytic performance. The OER activity of such surface-mounted MOF nanosheet arrays can be optimized effectively via tuning the thicknesses and Co/Ni ratios. The Co/Ni(BDC) 2 TED grown on Cu foam with 40 cycles at a Co/Ni ratio of 1/1 shows superior OER activity with required overpotentials of 260 and 287 mV to achieve current densities of 10 and 50 mA cm 2 and excellent stability. The experiments and theoretical calculations reveal that the synergistic effect of Co/Ni and rich metal sites dominated by nanosheet interfaces improve the electrocatalytic activity. This work provides more insight into the OER activity of the MOF thin film as an electrode material and presents a new strategy for developing promising highly efficient electrocatalysts in practical applications. We developed an oriented thin film of 3-D Co/Ni MOF nanosheet arrays on Cu foam with strong adhesion on the substrates without the use of binder materials, providing more accessible active sites for electrocatalysis.
AbstractList Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC)2TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obtained on Cu foam by a liquid-phase epitaxial layer-by-layer growth approach. The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrates without the use of binder materials, which provides more accessible active sites for electrocatalytic performance. The OER activity of such surface-mounted MOF nanosheet arrays can be optimized effectively via tuning the thicknesses and Co/Ni ratios. The Co/Ni(BDC)2TED grown on Cu foam with 40 cycles at a Co/Ni ratio of 1/1 shows superior OER activity with required overpotentials of 260 and 287 mV to achieve current densities of 10 and 50 mA cm−2 and excellent stability. The experiments and theoretical calculations reveal that the synergistic effect of Co/Ni and rich metal sites dominated by nanosheet interfaces improve the electrocatalytic activity. This work provides more insight into the OER activity of the MOF thin film as an electrode material and presents a new strategy for developing promising highly efficient electrocatalysts in practical applications.
Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC)₂TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obtained on Cu foam by a liquid-phase epitaxial layer-by-layer growth approach. The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrates without the use of binder materials, which provides more accessible active sites for electrocatalytic performance. The OER activity of such surface-mounted MOF nanosheet arrays can be optimized effectively via tuning the thicknesses and Co/Ni ratios. The Co/Ni(BDC)₂TED grown on Cu foam with 40 cycles at a Co/Ni ratio of 1/1 shows superior OER activity with required overpotentials of 260 and 287 mV to achieve current densities of 10 and 50 mA cm⁻² and excellent stability. The experiments and theoretical calculations reveal that the synergistic effect of Co/Ni and rich metal sites dominated by nanosheet interfaces improve the electrocatalytic activity. This work provides more insight into the OER activity of the MOF thin film as an electrode material and presents a new strategy for developing promising highly efficient electrocatalysts in practical applications.
Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC) 2 TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obtained on Cu foam by a liquid-phase epitaxial layer-by-layer growth approach. The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrates without the use of binder materials, which provides more accessible active sites for electrocatalytic performance. The OER activity of such surface-mounted MOF nanosheet arrays can be optimized effectively via tuning the thicknesses and Co/Ni ratios. The Co/Ni(BDC) 2 TED grown on Cu foam with 40 cycles at a Co/Ni ratio of 1/1 shows superior OER activity with required overpotentials of 260 and 287 mV to achieve current densities of 10 and 50 mA cm 2 and excellent stability. The experiments and theoretical calculations reveal that the synergistic effect of Co/Ni and rich metal sites dominated by nanosheet interfaces improve the electrocatalytic activity. This work provides more insight into the OER activity of the MOF thin film as an electrode material and presents a new strategy for developing promising highly efficient electrocatalysts in practical applications. We developed an oriented thin film of 3-D Co/Ni MOF nanosheet arrays on Cu foam with strong adhesion on the substrates without the use of binder materials, providing more accessible active sites for electrocatalysis.
Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology. Herein, an oriented thin film of 3-D MOF Co/Ni(BDC) 2 TED (BDC = 1,4-benzenedicarboxylate; TED = triethylenediamine) nanosheet arrays is first obtained on Cu foam by a liquid-phase epitaxial layer-by-layer growth approach. The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrates without the use of binder materials, which provides more accessible active sites for electrocatalytic performance. The OER activity of such surface-mounted MOF nanosheet arrays can be optimized effectively via tuning the thicknesses and Co/Ni ratios. The Co/Ni(BDC) 2 TED grown on Cu foam with 40 cycles at a Co/Ni ratio of 1/1 shows superior OER activity with required overpotentials of 260 and 287 mV to achieve current densities of 10 and 50 mA cm −2 and excellent stability. The experiments and theoretical calculations reveal that the synergistic effect of Co/Ni and rich metal sites dominated by nanosheet interfaces improve the electrocatalytic activity. This work provides more insight into the OER activity of the MOF thin film as an electrode material and presents a new strategy for developing promising highly efficient electrocatalysts in practical applications.
Author Li, De-Jing
Li, Qiao-Hong
Gu, Zhi-Gang
Zhang, Jian
AuthorAffiliation State Key Laboratory of Structural Chemistry
Chinese Academy of Sciences
Fujian Institute of Research on the Structure of Matter
University of Chinese Academy of Sciences
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Structural Chemistry
– sequence: 0
  name: Fujian Institute of Research on the Structure of Matter
– sequence: 0
  name: University of Chinese Academy of Sciences
– sequence: 0
  name: Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: De-Jing
  surname: Li
  fullname: Li, De-Jing
– sequence: 2
  givenname: Qiao-Hong
  surname: Li
  fullname: Li, Qiao-Hong
– sequence: 3
  givenname: Zhi-Gang
  surname: Gu
  fullname: Gu, Zhi-Gang
– sequence: 4
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
BookMark eNptkU1rGzEQhkVxoKmTS-4FQS-lsI129eHV0Zi4CST4kpyXiTSKZdZSKmnb-t9nbZcUTOcyA_O8w8w7n8gkxICEXNXse824vja6ABNSCveBnDdMsmomtJq81237kVzmvGFjtIwprc_JZk7zkBwYrLZxCAUtfVgtaVn7QJ3vt_S3L2sak8dDL0CIeY1YKKQEu0xdTBTDGoLx4WWUIY1_di8YKP6K_VB8DDQhmH1xQc4c9Bkv_-YpeVrePC5uq_vVj7vF_L4yXNalauB53NfCrEUttQWohRKcczFTyMEaZ521WqC2z1qi0s4Kp6TgtXMgFVg-JV-Pc19T_DlgLt3WZ4N9DwHjkLuGM1lr0YyeTcmXE3QThxTG7bqmUa3is1qIkfp2pEyKOSd03WvyW0i7rmbd3vluoR_nB-eXI8xOYOML7O8vCXz_f8nnoyRl8z763zP5GwBekr8
CitedBy_id crossref_primary_10_1039_D0NR03115A
crossref_primary_10_1016_j_ccr_2020_213488
crossref_primary_10_1039_D4NJ04418E
crossref_primary_10_1039_D1TA02896K
crossref_primary_10_1016_j_ijhydene_2020_12_192
crossref_primary_10_1016_j_jcis_2023_02_079
crossref_primary_10_1007_s40242_020_0190_3
crossref_primary_10_1039_D1TA10440C
crossref_primary_10_1021_acs_inorgchem_1c00098
crossref_primary_10_1039_D0NR04458J
crossref_primary_10_1002_aenm_202301224
crossref_primary_10_1039_D0CS01191F
crossref_primary_10_1016_j_jallcom_2022_165823
crossref_primary_10_1007_s40242_022_2040_y
crossref_primary_10_1016_j_fuel_2024_132025
crossref_primary_10_1016_j_cej_2024_158572
crossref_primary_10_1016_j_enchem_2021_100065
crossref_primary_10_3390_catal12060625
crossref_primary_10_1039_D3CE00393K
crossref_primary_10_1016_j_surfin_2024_104341
crossref_primary_10_1002_smtd_202200773
crossref_primary_10_1007_s11426_022_1448_8
crossref_primary_10_1039_D3DT00976A
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1007_s42114_024_01016_z
crossref_primary_10_1021_acs_inorgchem_4c04151
crossref_primary_10_1016_j_pmatsci_2023_101123
crossref_primary_10_1039_D3TA01903A
crossref_primary_10_1016_j_inoche_2023_111661
crossref_primary_10_1016_j_seppur_2023_125178
crossref_primary_10_1039_D0TA03138K
crossref_primary_10_1016_j_apcatb_2021_120665
crossref_primary_10_1016_j_ijhydene_2023_09_309
crossref_primary_10_1039_D3NJ01457F
crossref_primary_10_1016_j_cej_2021_128784
crossref_primary_10_1016_j_mtener_2020_100597
crossref_primary_10_1088_1361_6528_ac4f82
crossref_primary_10_1016_j_jcis_2020_06_051
crossref_primary_10_1021_acsanm_3c00234
crossref_primary_10_1039_D3NJ03660J
crossref_primary_10_1039_D2NJ00984F
crossref_primary_10_1002_asia_201901810
crossref_primary_10_1016_j_apcatb_2024_123925
crossref_primary_10_1021_acsnano_2c09396
crossref_primary_10_1039_D3CC03838F
crossref_primary_10_1002_adfm_202411904
crossref_primary_10_1021_acsami_0c03333
crossref_primary_10_1021_acsnano_3c09261
crossref_primary_10_1021_acsanm_4c02915
crossref_primary_10_1016_j_jpowsour_2021_229947
crossref_primary_10_1002_aenm_202003499
crossref_primary_10_1016_j_apsusc_2023_156874
crossref_primary_10_1016_j_cej_2024_154062
crossref_primary_10_1016_j_electacta_2021_139180
crossref_primary_10_1002_cssc_202000376
crossref_primary_10_1007_s12274_023_5576_3
crossref_primary_10_1002_smll_202206070
crossref_primary_10_1039_D0SC02958K
crossref_primary_10_1016_j_jallcom_2021_159218
crossref_primary_10_1021_acs_langmuir_1c00245
crossref_primary_10_1039_C9CC09484A
crossref_primary_10_1039_D0DT03872E
crossref_primary_10_1021_acscatal_1c03260
crossref_primary_10_1016_j_ccr_2023_215117
crossref_primary_10_1039_D0TA01912G
crossref_primary_10_1039_D3DT03049K
crossref_primary_10_1002_cssc_202001230
crossref_primary_10_1039_D0EE03697H
crossref_primary_10_1039_D4GC05339G
crossref_primary_10_1016_j_ccr_2021_214144
crossref_primary_10_1016_j_seppur_2021_119802
crossref_primary_10_1016_j_jssc_2021_122117
crossref_primary_10_1002_adma_202203791
crossref_primary_10_1016_j_inoche_2024_112784
crossref_primary_10_1016_j_jechem_2021_09_009
crossref_primary_10_1115_1_4055462
crossref_primary_10_1016_j_jechem_2021_05_024
crossref_primary_10_1016_j_ijhydene_2023_08_161
crossref_primary_10_1016_j_rechem_2023_101140
crossref_primary_10_1016_j_ccr_2023_215043
crossref_primary_10_1016_j_jcis_2022_03_139
crossref_primary_10_1002_celc_202101252
crossref_primary_10_1002_chem_202401644
crossref_primary_10_26599_NR_2025_94907002
crossref_primary_10_1039_D1DT00302J
crossref_primary_10_1016_j_cis_2023_102967
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1016_j_cattod_2024_115117
crossref_primary_10_1016_j_cej_2024_155934
crossref_primary_10_1016_j_mtnano_2021_100124
crossref_primary_10_1016_j_jelechem_2021_115812
crossref_primary_10_1021_acs_chemrev_1c00978
crossref_primary_10_3390_molecules28114464
crossref_primary_10_1016_j_electacta_2023_143075
crossref_primary_10_1088_1402_4896_ad314a
crossref_primary_10_1016_j_jechem_2021_04_015
crossref_primary_10_1007_s11426_023_1725_8
crossref_primary_10_1016_j_ccr_2022_214467
crossref_primary_10_1149_2754_2734_ad10fa
crossref_primary_10_1016_j_cclet_2021_10_090
crossref_primary_10_1007_s11581_020_03651_0
crossref_primary_10_1016_j_apcatb_2021_120753
crossref_primary_10_1039_D3TC04366E
crossref_primary_10_1039_D4TA00736K
crossref_primary_10_1039_D4TA03929G
Cites_doi 10.1021/ja302991b
10.1002/adfm.201801554
10.1002/adma.201705431
10.1021/acssuschemeng.8b03221
10.1021/acs.nanolett.6b03803
10.1039/C8TA10142F
10.1039/C6CS00051G
10.1016/j.jcat.2018.11.005
10.1021/acsnano.5b06230
10.1002/adma.201705442
10.1038/ncomms11510
10.1039/C7TA07073J
10.1002/smll.201604035
10.1039/C7TA06580A
10.1002/anie.200901090
10.1039/c3cc45343j
10.1002/anie.201806862
10.1021/ja9063298
10.1002/anie.201800269
10.1021/acs.inorgchem.8b01230
10.1039/C5CC07614E
10.1021/ic200381f
10.1002/smll.201604161
10.1039/C6EE03145E
10.1103/PhysRevLett.77.3865
10.1039/C4CP02021A
10.1002/anie.201708385
10.1021/ja2037996
10.1016/j.electacta.2017.11.001
10.1021/jp711929d
10.1016/j.apcatb.2016.03.031
10.1021/jp047349j
10.1016/j.apcatb.2018.05.082
10.1002/aenm.201803799
10.1038/ncomms5562
10.1021/jacs.6b07127
10.1038/srep00921
10.1021/acsami.6b13360
10.1039/C4CS00448E
10.1039/c2cp41465a
10.1021/jacs.6b02964
10.1016/j.apcatb.2017.07.086
10.1021/cr0204294
10.1021/cr100246c
10.1039/C7CC06378D
10.1021/jacs.5b08186
10.1039/C6CC07049C
10.1021/cm301427w
10.1016/j.carbon.2018.05.062
10.1002/adfm.201706008
10.1002/anie.200460712
10.1002/adfm.201101592
10.1002/chem.201403524
10.1039/C4CS00470A
10.1002/adfm.201706120
10.1021/acsami.5b09975
10.1126/science.1258307
10.1002/adma.201605502
10.1021/ja3089923
10.1021/acsami.6b05597
10.1021/ja076210u
10.1039/c9ee00950g
10.1038/ncomms15341
10.1126/science.1083671
10.1021/acsami.6b10160
10.1021/jacs.5b10484
10.1039/c2ee21494f
10.1021/acscatal.6b02911
10.1007/s11144-018-1356-6
10.1038/nenergy.2016.184
10.1021/acsnano.8b01488
10.1016/j.jelechem.2006.11.008
10.1039/C6SC05408K
10.1126/science.aap8004
10.1002/aenm.201800584
10.1021/acsami.6b09196
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/c9ta04554f
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 18528
ExternalDocumentID 10_1039_C9TA04554F
c9ta04554f
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c351t-2ab205da78e959daa1464333476e3adcfdfdd94e9db95e69fd4f65431ffa56ad3
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 02:27:23 EDT 2025
Mon Jun 30 12:06:14 EDT 2025
Thu Apr 24 22:52:39 EDT 2025
Tue Jul 01 03:14:06 EDT 2025
Tue Dec 17 20:59:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-2ab205da78e959daa1464333476e3adcfdfdd94e9db95e69fd4f65431ffa56ad3
Notes 10.1039/c9ta04554f
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9286-3580
0000-0001-6538-2917
0000-0003-3373-9621
PQID 2268637144
PQPubID 2047523
PageCount 1
ParticipantIDs crossref_citationtrail_10_1039_C9TA04554F
proquest_journals_2268637144
proquest_miscellaneous_2305194210
rsc_primary_c9ta04554f
crossref_primary_10_1039_C9TA04554F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190806
PublicationDateYYYYMMDD 2019-08-06
PublicationDate_xml – month: 8
  year: 2019
  text: 20190806
  day: 6
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Nakagawa (C9TA04554F-(cit14)/*[position()=1]) 2009; 131
Tayal (C9TA04554F-(cit68)/*[position()=1]) 2018; 57
Zhao (C9TA04554F-(cit34)/*[position()=1]) 2016; 1
Chi (C9TA04554F-(cit66)/*[position()=1]) 2017; 9
Henke (C9TA04554F-(cit51)/*[position()=1]) 2012; 134
Kim (C9TA04554F-(cit54)/*[position()=1]) 2018; 124
Luo (C9TA04554F-(cit5)/*[position()=1]) 2014; 345
Liang (C9TA04554F-(cit19)/*[position()=1]) 2018; 57
Xu (C9TA04554F-(cit37)/*[position()=1]) 2016; 7
Xu (C9TA04554F-(cit24)/*[position()=1]) 2018; 30
Sun (C9TA04554F-(cit33)/*[position()=1]) 2018; 8
Li (C9TA04554F-(cit64)/*[position()=1]) 2018; 6
Zhu (C9TA04554F-(cit32)/*[position()=1]) 2017; 53
Wang (C9TA04554F-(cit11)/*[position()=1]) 2018; 30
Li (C9TA04554F-(cit63)/*[position()=1]) 2017; 5
Chen (C9TA04554F-(cit20)/*[position()=1]) 2017; 358
Rossmeisl (C9TA04554F-(cit73)/*[position()=1]) 2007; 607
Arslan (C9TA04554F-(cit49)/*[position()=1]) 2011; 133
Li (C9TA04554F-(cit65)/*[position()=1]) 2016; 8
Xiao (C9TA04554F-(cit25)/*[position()=1]) 2018; 12
Li (C9TA04554F-(cit76)/*[position()=1]) 2016; 52
Hong (C9TA04554F-(cit17)/*[position()=1]) 2019; 7
Cao (C9TA04554F-(cit1)/*[position()=1]) 2012; 5
Dong (C9TA04554F-(cit29)/*[position()=1]) 2016; 8
Kuang (C9TA04554F-(cit23)/*[position()=1]) 2018; 137
Maniam (C9TA04554F-(cit53)/*[position()=1]) 2011; 50
Zhang (C9TA04554F-(cit21)/*[position()=1]) 2018; 57
Xiao (C9TA04554F-(cit61)/*[position()=1]) 2017; 10
Valdés (C9TA04554F-(cit74)/*[position()=1]) 2008; 112
Wurster (C9TA04554F-(cit2)/*[position()=1]) 2016; 138
Jiao (C9TA04554F-(cit4)/*[position()=1]) 2015; 44
Mamtani (C9TA04554F-(cit13)/*[position()=1]) 2018; 220
Gu (C9TA04554F-(cit43)/*[position()=1]) 2016; 52
Gu (C9TA04554F-(cit44)/*[position()=1]) 2015; 7
Zhou (C9TA04554F-(cit58)/*[position()=1]) 2018; 259
Liang (C9TA04554F-(cit9)/*[position()=1]) 2013; 135
Bell (C9TA04554F-(cit15)/*[position()=1]) 2003; 299
Duan (C9TA04554F-(cit30)/*[position()=1]) 2017; 8
Jia (C9TA04554F-(cit27)/*[position()=1]) 2017; 56
Han (C9TA04554F-(cit59)/*[position()=1]) 2019; 9
Han (C9TA04554F-(cit70)/*[position()=1]) 2019
Shekhah (C9TA04554F-(cit39)/*[position()=1]) 2007; 129
Li (C9TA04554F-(cit42)/*[position()=1]) 2017; 13
Kim (C9TA04554F-(cit12)/*[position()=1]) 2018; 237
Fischer (C9TA04554F-(cit46)/*[position()=1]) 2009; 48
Shekhah (C9TA04554F-(cit48)/*[position()=1]) 2013; 49
Zhang (C9TA04554F-(cit26)/*[position()=1]) 2018; 30
Heinke (C9TA04554F-(cit40)/*[position()=1]) 2014; 5
Cook (C9TA04554F-(cit10)/*[position()=1]) 2010; 110
Chen (C9TA04554F-(cit45)/*[position()=1]) 2016; 8
Zhang (C9TA04554F-(cit62)/*[position()=1]) 2017; 29
Wirth (C9TA04554F-(cit77)/*[position()=1]) 2014; 16
Feng (C9TA04554F-(cit22)/*[position()=1]) 2019; 369
Tan (C9TA04554F-(cit55)/*[position()=1]) 2012; 24
Tan (C9TA04554F-(cit57)/*[position()=1]) 2012; 14
You (C9TA04554F-(cit36)/*[position()=1]) 2016; 138
Zou (C9TA04554F-(cit3)/*[position()=1]) 2015; 44
Feng (C9TA04554F-(cit35)/*[position()=1]) 2015; 137
Gu (C9TA04554F-(cit52)/*[position()=1]) 2014; 20
Gu (C9TA04554F-(cit18)/*[position()=1]) 2016; 45
Gu (C9TA04554F-(cit41)/*[position()=1]) 2016; 10
Wang (C9TA04554F-(cit67)/*[position()=1]) 2018; 6
Yuan (C9TA04554F-(cit56)/*[position()=1]) 2017; 13
Zhou (C9TA04554F-(cit16)/*[position()=1]) 2016; 7
Rui (C9TA04554F-(cit31)/*[position()=1]) 2018; 28
Arslan (C9TA04554F-(cit38)/*[position()=1]) 2011; 21
Liang (C9TA04554F-(cit69)/*[position()=1]) 2016; 16
Perdew (C9TA04554F-(cit71)/*[position()=1]) 1996; 77
Song (C9TA04554F-(cit7)/*[position()=1]) 2016; 191
McEvoy (C9TA04554F-(cit8)/*[position()=1]) 2006; 106
Liu (C9TA04554F-(cit47)/*[position()=1]) 2012; 2
Qiu (C9TA04554F-(cit60)/*[position()=1]) 2018; 28
Anandhababu (C9TA04554F-(cit28)/*[position()=1]) 2018; 28
Nørskov (C9TA04554F-(cit72)/*[position()=1]) 2004; 108
Zhuo (C9TA04554F-(cit75)/*[position()=1]) 2016; 138
Liu (C9TA04554F-(cit6)/*[position()=1]) 2017; 8
Dybtsev (C9TA04554F-(cit50)/*[position()=1]) 2004; 43
References_xml – volume: 134
  start-page: 9464
  year: 2012
  ident: C9TA04554F-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302991b
– volume: 28
  start-page: 1801554
  year: 2018
  ident: C9TA04554F-(cit31)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801554
– volume: 30
  start-page: 1705431
  year: 2018
  ident: C9TA04554F-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705431
– volume: 6
  start-page: 12511
  year: 2018
  ident: C9TA04554F-(cit67)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03221
– volume: 16
  start-page: 7718
  year: 2016
  ident: C9TA04554F-(cit69)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03803
– volume: 7
  start-page: 3592
  year: 2019
  ident: C9TA04554F-(cit17)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10142F
– volume: 45
  start-page: 3122
  year: 2016
  ident: C9TA04554F-(cit18)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00051G
– volume: 369
  start-page: 168
  year: 2019
  ident: C9TA04554F-(cit22)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.11.005
– volume: 10
  start-page: 977
  year: 2016
  ident: C9TA04554F-(cit41)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06230
– volume: 30
  start-page: 1705442
  year: 2018
  ident: C9TA04554F-(cit24)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705442
– volume: 7
  start-page: 11510
  year: 2016
  ident: C9TA04554F-(cit16)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11510
– volume: 6
  start-page: 3488
  year: 2018
  ident: C9TA04554F-(cit64)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07073J
– volume: 13
  start-page: 1604035
  year: 2017
  ident: C9TA04554F-(cit42)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201604035
– volume: 5
  start-page: 20126
  year: 2017
  ident: C9TA04554F-(cit63)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06580A
– volume: 48
  start-page: 6205
  year: 2009
  ident: C9TA04554F-(cit46)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200901090
– volume: 49
  start-page: 10079
  year: 2013
  ident: C9TA04554F-(cit48)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45343j
– volume: 57
  start-page: 12106
  year: 2018
  ident: C9TA04554F-(cit21)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201806862
– volume: 131
  start-page: 15578
  year: 2009
  ident: C9TA04554F-(cit14)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9063298
– volume: 57
  start-page: 9604
  year: 2018
  ident: C9TA04554F-(cit19)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201800269
– volume: 57
  start-page: 10072
  year: 2018
  ident: C9TA04554F-(cit68)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b01230
– volume: 52
  start-page: 772
  year: 2016
  ident: C9TA04554F-(cit43)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07614E
– volume: 50
  start-page: 5085
  year: 2011
  ident: C9TA04554F-(cit53)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic200381f
– volume: 13
  start-page: 1604161
  year: 2017
  ident: C9TA04554F-(cit56)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201604161
– volume: 10
  start-page: 893
  year: 2017
  ident: C9TA04554F-(cit61)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03145E
– volume: 77
  start-page: 3865
  year: 1996
  ident: C9TA04554F-(cit71)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 16
  start-page: 15917
  year: 2014
  ident: C9TA04554F-(cit77)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02021A
– volume: 56
  start-page: 13781
  year: 2017
  ident: C9TA04554F-(cit27)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708385
– volume: 133
  start-page: 8158
  year: 2011
  ident: C9TA04554F-(cit49)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2037996
– volume: 259
  start-page: 329
  year: 2018
  ident: C9TA04554F-(cit58)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.001
– volume: 112
  start-page: 9872
  year: 2008
  ident: C9TA04554F-(cit74)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp711929d
– volume: 191
  start-page: 202
  year: 2016
  ident: C9TA04554F-(cit7)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.03.031
– volume: 108
  start-page: 17886
  year: 2004
  ident: C9TA04554F-(cit72)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 237
  start-page: 409
  year: 2018
  ident: C9TA04554F-(cit12)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.05.082
– volume: 9
  start-page: 1803799
  year: 2019
  ident: C9TA04554F-(cit59)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803799
– volume: 5
  start-page: 4562
  year: 2014
  ident: C9TA04554F-(cit40)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5562
– volume: 138
  start-page: 13639
  year: 2016
  ident: C9TA04554F-(cit36)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07127
– volume: 2
  start-page: 921
  year: 2012
  ident: C9TA04554F-(cit47)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00921
– volume: 9
  start-page: 464
  year: 2017
  ident: C9TA04554F-(cit66)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13360
– volume: 44
  start-page: 5148
  year: 2015
  ident: C9TA04554F-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 30
  start-page: 18011211
  year: 2018
  ident: C9TA04554F-(cit11)/*[position()=1]
  publication-title: Adv. Mater.
– volume: 14
  start-page: 14217
  year: 2012
  ident: C9TA04554F-(cit57)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp41465a
– volume: 138
  start-page: 7091
  year: 2016
  ident: C9TA04554F-(cit75)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02964
– volume: 220
  start-page: 88
  year: 2018
  ident: C9TA04554F-(cit13)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.07.086
– volume: 106
  start-page: 4455
  year: 2006
  ident: C9TA04554F-(cit8)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr0204294
– volume: 110
  start-page: 6474
  year: 2010
  ident: C9TA04554F-(cit10)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr100246c
– volume: 53
  start-page: 10906
  year: 2017
  ident: C9TA04554F-(cit32)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06378D
– volume: 137
  start-page: 14023
  year: 2015
  ident: C9TA04554F-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08186
– volume: 52
  start-page: 13233
  year: 2016
  ident: C9TA04554F-(cit76)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC07049C
– volume: 24
  start-page: 3153
  year: 2012
  ident: C9TA04554F-(cit55)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm301427w
– volume: 137
  start-page: 433
  year: 2018
  ident: C9TA04554F-(cit23)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.05.062
– volume: 28
  start-page: 1706008
  year: 2018
  ident: C9TA04554F-(cit60)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706008
– volume: 43
  start-page: 5033
  year: 2004
  ident: C9TA04554F-(cit50)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200460712
– volume: 21
  start-page: 4228
  year: 2011
  ident: C9TA04554F-(cit38)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101592
– volume: 20
  start-page: 9879
  year: 2014
  ident: C9TA04554F-(cit52)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201403524
– volume: 44
  start-page: 2060
  year: 2015
  ident: C9TA04554F-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 28
  start-page: 1706120
  year: 2018
  ident: C9TA04554F-(cit28)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706120
– volume: 7
  start-page: 28585
  year: 2015
  ident: C9TA04554F-(cit44)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09975
– volume: 345
  start-page: 1593
  year: 2014
  ident: C9TA04554F-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1258307
– volume: 29
  start-page: 1605502
  year: 2017
  ident: C9TA04554F-(cit62)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605502
– volume: 135
  start-page: 2013
  year: 2013
  ident: C9TA04554F-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3089923
– volume: 8
  start-page: 20057
  year: 2016
  ident: C9TA04554F-(cit65)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05597
– volume: 129
  start-page: 15118
  year: 2007
  ident: C9TA04554F-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076210u
– year: 2019
  ident: C9TA04554F-(cit70)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee00950g
– volume: 8
  start-page: 15341
  year: 2017
  ident: C9TA04554F-(cit30)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15341
– volume: 299
  start-page: 1688
  year: 2003
  ident: C9TA04554F-(cit15)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1083671
– volume: 8
  start-page: 26902
  year: 2016
  ident: C9TA04554F-(cit29)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10160
– volume: 138
  start-page: 3623
  year: 2016
  ident: C9TA04554F-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10484
– volume: 5
  start-page: 8134
  year: 2012
  ident: C9TA04554F-(cit1)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21494f
– volume: 7
  start-page: 986
  year: 2016
  ident: C9TA04554F-(cit37)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02911
– volume: 124
  start-page: 335
  year: 2018
  ident: C9TA04554F-(cit54)/*[position()=1]
  publication-title: React. Kinet., Mech. Catal.
  doi: 10.1007/s11144-018-1356-6
– volume: 1
  start-page: 16184
  year: 2016
  ident: C9TA04554F-(cit34)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.184
– volume: 12
  start-page: 3947
  year: 2018
  ident: C9TA04554F-(cit25)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01488
– volume: 607
  start-page: 83
  year: 2007
  ident: C9TA04554F-(cit73)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 8
  start-page: 3211
  year: 2017
  ident: C9TA04554F-(cit6)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05408K
– volume: 358
  start-page: 304
  year: 2017
  ident: C9TA04554F-(cit20)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aap8004
– volume: 8
  start-page: 1800584
  year: 2018
  ident: C9TA04554F-(cit33)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800584
– volume: 8
  start-page: 27332
  year: 2016
  ident: C9TA04554F-(cit45)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09196
SSID ssj0000800699
Score 2.568044
Snippet Developing efficient and inexpensive oxygen evolution reaction (OER) catalysts is one of the critical issues in energy storage and conversion technology....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18519
SubjectTerms active sites
adhesion
Adhesive strength
Adhesives
Arrays
Bimetals
Catalysts
catalytic activity
cobalt
Copper
copper nanoparticles
Electrocatalysts
electrochemistry
Electrode materials
electrodes
energy
Energy storage
Epitaxial growth
foams
Interfaces
Liquid phases
Metal foams
Metal-organic frameworks
Nanosheets
Nickel
Oxygen
Oxygen evolution reactions
oxygen production
Substrates
synergism
Synergistic effect
Thin films
Title A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction
URI https://www.proquest.com/docview/2268637144
https://www.proquest.com/docview/2305194210
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa67QKHiV8ThYGM4IIqjyRO0vgYTetKtYGQOmm3yo5tWsSSKW0R44_jb-M5jp2y7jC4pK2TOHHf5-fPz37vIfQuzETEo1iQRKWSxCLhhA15RlIaaRoDm9ONTff8Uzq-iCeXyWWv93tj19J6JY6KX3f6lfyPVKEM5Gq8ZP9Bsr5SKIDvIF84goTheC8Z54Pluta8UOTKpHwA7nj-eQRUclGaeEtX1shamUjG5lzJy2o5N2vQvK75zdJG-y7nJuJG6zNV_bz5asL-_2hfewCUsvCi2-awQHdtOweFSxx3NMitD5A7Y5_SeBg2RnrnsWU25Xp7_pn1d1dk4oZSX_hlwSsyrrri03WzojJfkFPelXrL98QBvrVlGPepjARpp_KiIAlMdFOrkdVmmc1763T2cAOa7ShiFTDQj1YFK_fbOp9vDRUBNZFWj9k0B1abxKNuQHSbAG6Nk373YrNuT9msu3cH7UUwTQE9u5efTD-eeSuf4eNpk8TUN83FyKXsQ1fB36yom-rs1C4PTcN3po_QfitknFvUPUY9VT5BDzfCVz5F33J8C38Y8IcN_rDBHzb4ww5_2OMPW_xhQAb2-IPbFLb4wx5_2OHvGboYnUyPx6TN3UEKmoQrEnEBLZZ8mCmWMMk5jMgxpdD9U0W5LLTUUrJYMSkYqAmmZayNm3OoNU9SLukB2i2rUj1HOAKOlWmgpUMg72kw5GEi4CMSkmYiFWEfvXf_3axoA9ub_CrfZ9uC6qO3_tprG87lzqsOnQhmbXdfzmCekqUmvmXcR2_8aehaZoWNl6pawzXUzIjiKAz66ABE559RsBVv6tYv7vUGL9GDrn8cot1VvVavgP2uxOsWYn8AuFiw3g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+surface-mounted+MOF+thin+film+with+oriented+nanosheet+arrays+for+enhancing+the+oxygen+evolution+reaction&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+De-Jing&rft.au=Li%2C+Qiao-Hong&rft.au=Gu%2C+Zhi-Gang&rft.au=Zhang%2C+Jian&rft.date=2019-08-06&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=7&rft.issue=31&rft.spage=18519&rft.epage=18528&rft_id=info:doi/10.1039%2FC9TA04554F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9TA04554F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon