A 3D Feature Descriptor Recovered from a Single 2D Palmprint Image
Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is b...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 38; no. 6; pp. 1272 - 1279 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance. |
---|---|
AbstractList | Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance. Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance.Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance. |
Author | Gang Pan Qian Zheng Kumar, Ajay |
Author_xml | – sequence: 1 surname: Qian Zheng fullname: Qian Zheng email: csqiazheng@comp.polyu.edu.hk organization: Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China – sequence: 2 givenname: Ajay surname: Kumar fullname: Kumar, Ajay email: Ajay.Kumar@polyu.edu.hk organization: Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China – sequence: 3 surname: Gang Pan fullname: Gang Pan email: gpan@zju.edu.cn organization: Dept. of Comput. Sci., Zhejiang Univ., Hangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27164564$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1P4zAQhq0Vq6XA_gGQkCUuXFL8HftYKB-ViqiAPVuOM0FBSVzsBGn__aa0cOCwp7k8z6uZeQ_QXhc6QOiYkimlxFw8r2b3iykjVE6ZJMYo_QNNGFUkM8ywPTQhVLFMa6b30UFKr4RQIQn_hfZZTpWQSkzQ5QzzOb4B1w8R8BySj_W6DxE_gg_vEKHEVQwtdvip7l4awGyOV65p17Huerxo3QscoZ-VaxL83s1D9Ofm-vnqLls-3C6uZsvMc0n7jOnSGVpIX2hPSm1KRcucgFOegOaV4QIMSF5x4hgUhgNomnPmvWAMqCj4ITrf5q5jeBsg9batk4emcR2EIVmaay0Fk1SP6Nk39DUMsRu321C5lopwM1KnO2ooWijteFPr4l_7-Z0R0FvAx5BShMr6und9Hbo-urqxlNhNEfajCLspwu6KGFX2Tf1M_690spVqAPgScqFELjj_By6KkKs |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1007_s11760_024_03104_5 crossref_primary_10_1049_iet_bmt_2018_5012 crossref_primary_10_1049_iet_ipr_2018_6122 crossref_primary_10_1109_TIFS_2018_2837669 crossref_primary_10_1109_TBIOM_2020_2967073 crossref_primary_10_1109_TIFS_2019_2912552 crossref_primary_10_1016_j_patcog_2024_110655 crossref_primary_10_1016_j_patcog_2023_109422 crossref_primary_10_1007_s11042_020_09000_7 crossref_primary_10_1109_TIM_2018_2830858 crossref_primary_10_1109_TSMC_2018_2795609 crossref_primary_10_1371_journal_pone_0178432 crossref_primary_10_1109_TCE_2017_014994 crossref_primary_10_1109_TSMC_2023_3344607 crossref_primary_10_1109_TIM_2020_3038229 crossref_primary_10_1109_TIP_2019_2903307 crossref_primary_10_1109_TIFS_2024_3441945 crossref_primary_10_1117_1_JEI_27_5_053032 crossref_primary_10_1109_JSTSP_2023_3254148 crossref_primary_10_1109_TIFS_2020_3029906 crossref_primary_10_1109_TMM_2020_3019701 crossref_primary_10_1016_j_future_2019_04_013 crossref_primary_10_1109_TIM_2023_3276506 crossref_primary_10_3390_s20154250 crossref_primary_10_1109_TIFS_2019_2913234 crossref_primary_10_3390_s19020235 crossref_primary_10_1007_s00138_020_01103_3 crossref_primary_10_3390_s22010073 crossref_primary_10_1016_j_ins_2021_01_086 crossref_primary_10_1109_ACCESS_2020_2992219 crossref_primary_10_1109_TNNLS_2022_3160597 crossref_primary_10_1109_TSMC_2022_3233392 crossref_primary_10_1016_j_eswa_2021_114687 crossref_primary_10_1117_1_JEI_28_5_053009 crossref_primary_10_1109_TIP_2020_3021294 crossref_primary_10_1016_j_patrec_2019_03_028 crossref_primary_10_1016_j_patrec_2023_05_026 crossref_primary_10_1109_TIP_2017_2705424 crossref_primary_10_1109_TPAMI_2019_2904232 crossref_primary_10_1109_TIFS_2019_2945183 crossref_primary_10_3390_s21144896 crossref_primary_10_1016_j_patcog_2022_108942 crossref_primary_10_1109_TIM_2020_3002463 crossref_primary_10_1109_TIM_2020_2964076 crossref_primary_10_1109_TIP_2019_2894963 |
Cites_doi | 10.1109/TPAMI.2003.1177153 10.1109/TIP.2010.2042645 10.1109/TPAMI.2008.240 10.1109/TIFS.2011.2121062 10.1007/3-540-36181-2_25 10.1109/TSMCC.2010.2089516 10.1007/978-1-84882-254-2 10.1109/TPAMI.2005.92 10.1109/ICPR.2004.1334184 10.1109/TIP.2009.2035882 10.1109/34.677275 10.1016/j.patcog.2007.10.011 10.1109/TPAMI.2003.1227981 10.1016/S0031-3203(02)00030-4 10.1109/TPAMI.2014.2339818 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2015.2509968 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 1279 |
ExternalDocumentID | 4050811821 27164564 10_1109_TPAMI_2015_2509968 7464743 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: The Hong Kong Polytechnic University grantid: PolyU 5169/13E; A-SA79 funderid: 10.13039/501100004377 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION RIG 5VS 9M8 ABFSI ADRHT AETEA AETIX AI. AIBXA AKJIK ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c351t-28da91b5cb8c0d89d61d70ea6c0e83f934e9e53f30a2eb93ee81732cc422e14b3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Thu Jul 10 19:30:35 EDT 2025 Sun Jun 29 16:45:08 EDT 2025 Mon Jul 21 05:53:26 EDT 2025 Tue Jul 01 03:18:22 EDT 2025 Thu Apr 24 22:58:14 EDT 2025 Wed Aug 27 02:47:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | biometrics Palmprint recognition ordinal features contactless palmprint matching 3D feature from a single 2D image |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-28da91b5cb8c0d89d61d70ea6c0e83f934e9e53f30a2eb93ee81732cc422e14b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27164564 |
PQID | 1787856039 |
PQPubID | 85458 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_TPAMI_2015_2509968 ieee_primary_7464743 proquest_journals_1787856039 proquest_miscellaneous_1788542518 pubmed_primary_27164564 crossref_primary_10_1109_TPAMI_2015_2509968 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-June-1 2016-6-1 2016-06-00 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref20 ref11 ref10 zheng (ref21) 0; 11 ref2 (ref15) 0 sun (ref7) 2009; 31 ref19 (ref16) 0 (ref17) 0 ref18 ref8 (ref1) 0 sun (ref6) 0; 1 ref9 ref4 ref3 ref5 |
References_xml | – ident: ref2 doi: 10.1109/TPAMI.2003.1177153 – volume: 1 start-page: 279 year: 0 ident: ref6 article-title: Ordinal palmprint represention for personal identification [represention read representation] publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recog – ident: ref19 doi: 10.1109/TIP.2010.2042645 – volume: 31 start-page: 2211 year: 2009 ident: ref7 article-title: Ordinal measures for iris recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.240 – ident: ref11 doi: 10.1109/TIFS.2011.2121062 – ident: ref5 doi: 10.1007/3-540-36181-2_25 – ident: ref10 doi: 10.1109/TSMCC.2010.2089516 – ident: ref4 doi: 10.1007/978-1-84882-254-2 – ident: ref18 doi: 10.1109/TPAMI.2005.92 – ident: ref9 doi: 10.1109/ICPR.2004.1334184 – ident: ref20 doi: 10.1109/TIP.2009.2035882 – ident: ref14 doi: 10.1109/34.677275 – ident: ref8 doi: 10.1016/j.patcog.2007.10.011 – volume: 11 start-page: 641 year: 0 ident: ref21 article-title: Suspecting less and achieving more: New insights on palmprint identification for faster and more accurate matching publication-title: IEEE Trans Inf Forensic Security – year: 0 ident: ref15 article-title: The Hong Kong Polytechnic University Contact-free 3D/2D Hand Images Database (Ver 1.0) – ident: ref12 doi: 10.1109/TPAMI.2003.1227981 – ident: ref13 doi: 10.1016/S0031-3203(02)00030-4 – year: 0 ident: ref1 – year: 0 ident: ref16 – year: 0 ident: ref17 – ident: ref3 doi: 10.1109/TPAMI.2014.2339818 |
SSID | ssj0014503 |
Score | 2.444011 |
Snippet | Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1272 |
SubjectTerms | Biometrics (access control) Data mining Feature extraction Imaging Lighting Three-dimensional displays |
Title | A 3D Feature Descriptor Recovered from a Single 2D Palmprint Image |
URI | https://ieeexplore.ieee.org/document/7464743 https://www.ncbi.nlm.nih.gov/pubmed/27164564 https://www.proquest.com/docview/1787856039 https://www.proquest.com/docview/1788542518 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JbtQw1Gp7ggOFlmVoi4zEDTKN19jHoaVqkQYh0Uq9RV5eLpQZNE164Ov77CwCBIhblLw4jt9uv4WQN2UAV9mATo5vdCE5i4WvnCiEMx7NhQimSbnDy0_6_Ep-vFbXW-TdlAsDADn4DObpMp_lx3Xo0lbZcSW1RI23TbbRcetztaYTA6lyF2S0YJDD0Y0YE2RKe3z5ebG8SFFcao4KHw381KSPJ0dBafmLPsoNVv5ua2adc7ZLluNs-1CTr_Ou9fPw47dCjv_7O4_Jo8H4pIueWp6QLVjtkd2xsQMd-HyPPPypSuE-eb-g4pQmW7HbAEVHNQua9YYm1_Uu9fqkKUmFOvoF4W-A8lOa2rKkLcOWXnxDifWUXJ19uDw5L4bWC0UQirUFN9FZ5lXwJpTR2KhZrEpwOpRgRGOFBAtKNKJ0HBCpAIZVgocgOQcmvXhGdlbrFbwgFHgMTnGLg0mpovTaC93oRgW8D9zOCBsRUIehLnlqj3FTZ_-ktHXGX53wVw_4m5G30zvf-6oc_4TeT4s_QQ7rPiOHI57rgXFva4YCzKAVKHBer6fHyHLpHMWtYN1lGKNQ1jEc-XlPH9PYI1m9_PM3D8gDnJnuY80OyU676eAIrZrWv8rkfA9TB-8r |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFTKAXqg0PJYKGAkbpBt_IxzXCjVLnQrJLZSb1HsTC6U3WpJOPD1jJ2HAAHiFiUTx_G87XkAvEw9llnuyclxtUmU4FXislImsrSOzIUKbR1yh5fnZn6h3l_qyx14PebCIGIMPsNpuIxn-dXGt2Gr7DhTRpHGuwE3Se9r3mVrjWcGSsc-yGTDEI-TIzGkyKT58erjbLkIcVx6SiqfTPzQpk8EV0Eb9YtGii1W_m5tRq1zug_LYb5dsMnnadu4qf_-WynH__2hu3CnNz_ZrKOXe7CD6wPYH1o7sJ7TD2DvpzqFh_BmxuQJC9Ziu0VGrmoUNZstC87rt9Dtk4U0FVayTwR_hUycsNCYJWwaNmzxhWTWfbg4fbd6O0_65guJl5o3ibBVmXOnvbM-rWxeGV5lKZbGp2hlnUuFOWpZy7QUSGhFtDyTwnslBHLl5APYXW_W-AgYisqXWuQ0mFK6Us44aWpTa0_3UeQT4AMCCt9XJg8NMq6K6KGkeRHxVwT8FT3-JvBqfOe6q8vxT-jDsPgjZL_uEzga8Fz0rPu14CTCLNmBkub1YnxMTBdOUso1btoIYzVJO04jP-zoYxx7IKvHf_7mc7g1Xy3PirPF-YcncJtmabrIsyPYbbYtPiUbp3HPImn_APbw8nQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+Feature+Descriptor+Recovered+from+a+Single+2D+Palmprint+Image&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zheng%2C+Qian&rft.au=Kumar%2C+Ajay&rft.au=Pan%2C+Gang&rft.date=2016-06-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=38&rft.issue=6&rft.spage=1272&rft_id=info:doi/10.1109%2FTPAMI.2015.2509968&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |