A 3D Feature Descriptor Recovered from a Single 2D Palmprint Image

Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 38; no. 6; pp. 1272 - 1279
Main Authors Qian Zheng, Kumar, Ajay, Gang Pan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance.
AbstractList Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance.
Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance.Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance.
Author Gang Pan
Qian Zheng
Kumar, Ajay
Author_xml – sequence: 1
  surname: Qian Zheng
  fullname: Qian Zheng
  email: csqiazheng@comp.polyu.edu.hk
  organization: Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China
– sequence: 2
  givenname: Ajay
  surname: Kumar
  fullname: Kumar, Ajay
  email: Ajay.Kumar@polyu.edu.hk
  organization: Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China
– sequence: 3
  surname: Gang Pan
  fullname: Gang Pan
  email: gpan@zju.edu.cn
  organization: Dept. of Comput. Sci., Zhejiang Univ., Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27164564$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P4zAQhq0Vq6XA_gGQkCUuXFL8HftYKB-ViqiAPVuOM0FBSVzsBGn__aa0cOCwp7k8z6uZeQ_QXhc6QOiYkimlxFw8r2b3iykjVE6ZJMYo_QNNGFUkM8ywPTQhVLFMa6b30UFKr4RQIQn_hfZZTpWQSkzQ5QzzOb4B1w8R8BySj_W6DxE_gg_vEKHEVQwtdvip7l4awGyOV65p17Huerxo3QscoZ-VaxL83s1D9Ofm-vnqLls-3C6uZsvMc0n7jOnSGVpIX2hPSm1KRcucgFOegOaV4QIMSF5x4hgUhgNomnPmvWAMqCj4ITrf5q5jeBsg9batk4emcR2EIVmaay0Fk1SP6Nk39DUMsRu321C5lopwM1KnO2ooWijteFPr4l_7-Z0R0FvAx5BShMr6und9Hbo-urqxlNhNEfajCLspwu6KGFX2Tf1M_690spVqAPgScqFELjj_By6KkKs
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1007_s11760_024_03104_5
crossref_primary_10_1049_iet_bmt_2018_5012
crossref_primary_10_1049_iet_ipr_2018_6122
crossref_primary_10_1109_TIFS_2018_2837669
crossref_primary_10_1109_TBIOM_2020_2967073
crossref_primary_10_1109_TIFS_2019_2912552
crossref_primary_10_1016_j_patcog_2024_110655
crossref_primary_10_1016_j_patcog_2023_109422
crossref_primary_10_1007_s11042_020_09000_7
crossref_primary_10_1109_TIM_2018_2830858
crossref_primary_10_1109_TSMC_2018_2795609
crossref_primary_10_1371_journal_pone_0178432
crossref_primary_10_1109_TCE_2017_014994
crossref_primary_10_1109_TSMC_2023_3344607
crossref_primary_10_1109_TIM_2020_3038229
crossref_primary_10_1109_TIP_2019_2903307
crossref_primary_10_1109_TIFS_2024_3441945
crossref_primary_10_1117_1_JEI_27_5_053032
crossref_primary_10_1109_JSTSP_2023_3254148
crossref_primary_10_1109_TIFS_2020_3029906
crossref_primary_10_1109_TMM_2020_3019701
crossref_primary_10_1016_j_future_2019_04_013
crossref_primary_10_1109_TIM_2023_3276506
crossref_primary_10_3390_s20154250
crossref_primary_10_1109_TIFS_2019_2913234
crossref_primary_10_3390_s19020235
crossref_primary_10_1007_s00138_020_01103_3
crossref_primary_10_3390_s22010073
crossref_primary_10_1016_j_ins_2021_01_086
crossref_primary_10_1109_ACCESS_2020_2992219
crossref_primary_10_1109_TNNLS_2022_3160597
crossref_primary_10_1109_TSMC_2022_3233392
crossref_primary_10_1016_j_eswa_2021_114687
crossref_primary_10_1117_1_JEI_28_5_053009
crossref_primary_10_1109_TIP_2020_3021294
crossref_primary_10_1016_j_patrec_2019_03_028
crossref_primary_10_1016_j_patrec_2023_05_026
crossref_primary_10_1109_TIP_2017_2705424
crossref_primary_10_1109_TPAMI_2019_2904232
crossref_primary_10_1109_TIFS_2019_2945183
crossref_primary_10_3390_s21144896
crossref_primary_10_1016_j_patcog_2022_108942
crossref_primary_10_1109_TIM_2020_3002463
crossref_primary_10_1109_TIM_2020_2964076
crossref_primary_10_1109_TIP_2019_2894963
Cites_doi 10.1109/TPAMI.2003.1177153
10.1109/TIP.2010.2042645
10.1109/TPAMI.2008.240
10.1109/TIFS.2011.2121062
10.1007/3-540-36181-2_25
10.1109/TSMCC.2010.2089516
10.1007/978-1-84882-254-2
10.1109/TPAMI.2005.92
10.1109/ICPR.2004.1334184
10.1109/TIP.2009.2035882
10.1109/34.677275
10.1016/j.patcog.2007.10.011
10.1109/TPAMI.2003.1227981
10.1016/S0031-3203(02)00030-4
10.1109/TPAMI.2014.2339818
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2015.2509968
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1279
ExternalDocumentID 4050811821
27164564
10_1109_TPAMI_2015_2509968
7464743
Genre orig-research
Journal Article
GrantInformation_xml – fundername: The Hong Kong Polytechnic University
  grantid: PolyU 5169/13E; A-SA79
  funderid: 10.13039/501100004377
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-28da91b5cb8c0d89d61d70ea6c0e83f934e9e53f30a2eb93ee81732cc422e14b3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Jul 10 19:30:35 EDT 2025
Sun Jun 29 16:45:08 EDT 2025
Mon Jul 21 05:53:26 EDT 2025
Tue Jul 01 03:18:22 EDT 2025
Thu Apr 24 22:58:14 EDT 2025
Wed Aug 27 02:47:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords biometrics
Palmprint recognition
ordinal features
contactless palmprint matching
3D feature from a single 2D image
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-28da91b5cb8c0d89d61d70ea6c0e83f934e9e53f30a2eb93ee81732cc422e14b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27164564
PQID 1787856039
PQPubID 85458
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2015_2509968
ieee_primary_7464743
proquest_journals_1787856039
proquest_miscellaneous_1788542518
pubmed_primary_27164564
crossref_primary_10_1109_TPAMI_2015_2509968
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-June-1
2016-6-1
2016-06-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref20
ref11
ref10
zheng (ref21) 0; 11
ref2
(ref15) 0
sun (ref7) 2009; 31
ref19
(ref16) 0
(ref17) 0
ref18
ref8
(ref1) 0
sun (ref6) 0; 1
ref9
ref4
ref3
ref5
References_xml – ident: ref2
  doi: 10.1109/TPAMI.2003.1177153
– volume: 1
  start-page: 279
  year: 0
  ident: ref6
  article-title: Ordinal palmprint represention for personal identification [represention read representation]
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recog
– ident: ref19
  doi: 10.1109/TIP.2010.2042645
– volume: 31
  start-page: 2211
  year: 2009
  ident: ref7
  article-title: Ordinal measures for iris recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.240
– ident: ref11
  doi: 10.1109/TIFS.2011.2121062
– ident: ref5
  doi: 10.1007/3-540-36181-2_25
– ident: ref10
  doi: 10.1109/TSMCC.2010.2089516
– ident: ref4
  doi: 10.1007/978-1-84882-254-2
– ident: ref18
  doi: 10.1109/TPAMI.2005.92
– ident: ref9
  doi: 10.1109/ICPR.2004.1334184
– ident: ref20
  doi: 10.1109/TIP.2009.2035882
– ident: ref14
  doi: 10.1109/34.677275
– ident: ref8
  doi: 10.1016/j.patcog.2007.10.011
– volume: 11
  start-page: 641
  year: 0
  ident: ref21
  article-title: Suspecting less and achieving more: New insights on palmprint identification for faster and more accurate matching
  publication-title: IEEE Trans Inf Forensic Security
– year: 0
  ident: ref15
  article-title: The Hong Kong Polytechnic University Contact-free 3D/2D Hand Images Database (Ver 1.0)
– ident: ref12
  doi: 10.1109/TPAMI.2003.1227981
– ident: ref13
  doi: 10.1016/S0031-3203(02)00030-4
– year: 0
  ident: ref1
– year: 0
  ident: ref16
– year: 0
  ident: ref17
– ident: ref3
  doi: 10.1109/TPAMI.2014.2339818
SSID ssj0014503
Score 2.444011
Snippet Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1272
SubjectTerms Biometrics (access control)
Data mining
Feature extraction
Imaging
Lighting
Three-dimensional displays
Title A 3D Feature Descriptor Recovered from a Single 2D Palmprint Image
URI https://ieeexplore.ieee.org/document/7464743
https://www.ncbi.nlm.nih.gov/pubmed/27164564
https://www.proquest.com/docview/1787856039
https://www.proquest.com/docview/1788542518
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JbtQw1Gp7ggOFlmVoi4zEDTKN19jHoaVqkQYh0Uq9RV5eLpQZNE164Ov77CwCBIhblLw4jt9uv4WQN2UAV9mATo5vdCE5i4WvnCiEMx7NhQimSbnDy0_6_Ep-vFbXW-TdlAsDADn4DObpMp_lx3Xo0lbZcSW1RI23TbbRcetztaYTA6lyF2S0YJDD0Y0YE2RKe3z5ebG8SFFcao4KHw381KSPJ0dBafmLPsoNVv5ua2adc7ZLluNs-1CTr_Ou9fPw47dCjv_7O4_Jo8H4pIueWp6QLVjtkd2xsQMd-HyPPPypSuE-eb-g4pQmW7HbAEVHNQua9YYm1_Uu9fqkKUmFOvoF4W-A8lOa2rKkLcOWXnxDifWUXJ19uDw5L4bWC0UQirUFN9FZ5lXwJpTR2KhZrEpwOpRgRGOFBAtKNKJ0HBCpAIZVgocgOQcmvXhGdlbrFbwgFHgMTnGLg0mpovTaC93oRgW8D9zOCBsRUIehLnlqj3FTZ_-ktHXGX53wVw_4m5G30zvf-6oc_4TeT4s_QQ7rPiOHI57rgXFva4YCzKAVKHBer6fHyHLpHMWtYN1lGKNQ1jEc-XlPH9PYI1m9_PM3D8gDnJnuY80OyU676eAIrZrWv8rkfA9TB-8r
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcFTKAXqg0PJYKGAkbpBt_IxzXCjVLnQrJLZSb1HsTC6U3WpJOPD1jJ2HAAHiFiUTx_G87XkAvEw9llnuyclxtUmU4FXislImsrSOzIUKbR1yh5fnZn6h3l_qyx14PebCIGIMPsNpuIxn-dXGt2Gr7DhTRpHGuwE3Se9r3mVrjWcGSsc-yGTDEI-TIzGkyKT58erjbLkIcVx6SiqfTPzQpk8EV0Eb9YtGii1W_m5tRq1zug_LYb5dsMnnadu4qf_-WynH__2hu3CnNz_ZrKOXe7CD6wPYH1o7sJ7TD2DvpzqFh_BmxuQJC9Ziu0VGrmoUNZstC87rt9Dtk4U0FVayTwR_hUycsNCYJWwaNmzxhWTWfbg4fbd6O0_65guJl5o3ibBVmXOnvbM-rWxeGV5lKZbGp2hlnUuFOWpZy7QUSGhFtDyTwnslBHLl5APYXW_W-AgYisqXWuQ0mFK6Us44aWpTa0_3UeQT4AMCCt9XJg8NMq6K6KGkeRHxVwT8FT3-JvBqfOe6q8vxT-jDsPgjZL_uEzga8Fz0rPu14CTCLNmBkub1YnxMTBdOUso1btoIYzVJO04jP-zoYxx7IKvHf_7mc7g1Xy3PirPF-YcncJtmabrIsyPYbbYtPiUbp3HPImn_APbw8nQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+Feature+Descriptor+Recovered+from+a+Single+2D+Palmprint+Image&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zheng%2C+Qian&rft.au=Kumar%2C+Ajay&rft.au=Pan%2C+Gang&rft.date=2016-06-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=38&rft.issue=6&rft.spage=1272&rft_id=info:doi/10.1109%2FTPAMI.2015.2509968&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon