Smooth Neuroadaptive PI Tracking Control of Nonlinear Systems With Unknown and Nonsmooth Actuation Characteristics
This paper considers the tracking control problem for a class of multi-input multi-output nonlinear systems subject to unknown actuation characteristics and external disturbances. Neuroadaptive proportional-integral (PI) control with self-tuning gains is proposed, which is structurally simple and co...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 28; no. 9; pp. 2183 - 2195 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 |
DOI | 10.1109/TNNLS.2016.2575078 |
Cover
Abstract | This paper considers the tracking control problem for a class of multi-input multi-output nonlinear systems subject to unknown actuation characteristics and external disturbances. Neuroadaptive proportional-integral (PI) control with self-tuning gains is proposed, which is structurally simple and computationally inexpensive. Different from traditional PI control, the proposed one is able to online adjust its PI gains using stability-guaranteed analytic algorithms without involving manual tuning or trial and error process. It is shown that the proposed neuroadaptive PI control is continuous and smooth everywhere and ensures the uniformly ultimately boundedness of all the signals of the closed-loop system. Furthermore, the crucial compact set precondition for a neural network (NN) to function properly is guaranteed with the barrier Lyapunov function, allowing the NN unit to play its learning/approximating role during the entire system operation. The salient feature also lies in its low complexity in computation and effectiveness in dealing with modeling uncertainties and nonlinearities. Both square and nonsquare nonlinear systems are addressed. The benefits and the feasibility of the developed control are also confirmed by simulations. |
---|---|
AbstractList | This paper considers the tracking control problem for a class of multi-input multi-output nonlinear systems subject to unknown actuation characteristics and external disturbances. Neuroadaptive proportional-integral (PI) control with self-tuning gains is proposed, which is structurally simple and computationally inexpensive. Different from traditional PI control, the proposed one is able to online adjust its PI gains using stability-guaranteed analytic algorithms without involving manual tuning or trial and error process. It is shown that the proposed neuroadaptive PI control is continuous and smooth everywhere and ensures the uniformly ultimately boundedness of all the signals of the closed-loop system. Furthermore, the crucial compact set precondition for a neural network (NN) to function properly is guaranteed with the barrier Lyapunov function, allowing the NN unit to play its learning/approximating role during the entire system operation. The salient feature also lies in its low complexity in computation and effectiveness in dealing with modeling uncertainties and nonlinearities. Both square and nonsquare nonlinear systems are addressed. The benefits and the feasibility of the developed control are also confirmed by simulations. |
Author | Xiucai Huang Yongduan Song Junxia Guo |
Author_xml | – sequence: 1 givenname: Yongduan surname: Song fullname: Song, Yongduan – sequence: 2 givenname: Junxia surname: Guo fullname: Guo, Junxia – sequence: 3 givenname: Xiucai surname: Huang fullname: Huang, Xiucai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27352399$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFuEzEURS1UREvpD4CELLFhk2B7PPbMsoqgVIoCUlLBzvLYb6jbGTu1PVT9e5wm7aILvHlenHP19O5bdOSDB4TeUzKnlLRfNqvVcj1nhIo5q2VNZPMKnTAq2IxVTXP0_Je_j9FZSjekPEFqwds36JjJqmZV256guB5DyNd4BVMM2uptdn8B_7zEm6jNrfN_8CL4HMOAQ49XwQ_Og454_ZAyjAn_csW98rc-3Husvd0haZ94bvKkswseL651CcsQXcrOpHfoda-HBGeHeYquvn3dLL7Plj8uLhfny5mpappnTEDZ2GqhBXTSkp53GqxmnSDlANJIK0Rl-r61YDi3hPBKgG1byZrOaBDVKfq8z93GcDdBymp0ycAwaA9hSoo2TEhaPFnQTy_QmzBFX7ZTjErO6114oT4eqKkbwaptdKOOD-rpmgVo9oCJIaUIvTIuP94gR-0GRYnadaceu1O77tShu6KyF-pT-n-lD3vJAcCzIHnbCM6rfzxbphM |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1002_rnc_5778 crossref_primary_10_1002_rnc_5556 crossref_primary_10_1109_TIE_2024_3370984 crossref_primary_10_1016_j_neucom_2017_10_058 crossref_primary_10_1109_TETCI_2022_3213708 crossref_primary_10_1109_TFUZZ_2021_3120206 crossref_primary_10_1016_j_neucom_2021_10_065 crossref_primary_10_1109_TNNLS_2020_3041350 crossref_primary_10_1109_TNNLS_2021_3091641 crossref_primary_10_1109_TSMC_2024_3407150 crossref_primary_10_1109_TCSII_2023_3315733 crossref_primary_10_1109_TCYB_2022_3189189 crossref_primary_10_1016_j_neucom_2017_09_020 crossref_primary_10_1109_TAC_2023_3330900 crossref_primary_10_1016_j_dsp_2018_06_007 crossref_primary_10_1109_TNNLS_2016_2598616 crossref_primary_10_1109_TNNLS_2022_3160803 |
Cites_doi | 10.1016/j.sysconle.2013.11.011 10.1109/TNNLS.2013.2276571 10.1016/j.automatica.2015.12.026 10.1109/TIE.2006.874269 10.1016/S0925-2312(99)00128-9 10.1109/TIE.2013.2288200 10.1109/9.847730 10.1109/TNNLS.2013.2258681 10.1016/S0967-0661(02)00303-9 10.1109/TNN.2010.2076370 10.1016/j.automatica.2011.01.025 10.1109/87.799674 10.1109/28.475744 10.1109/TFUZZ.2007.903320 10.1109/TNNLS.2014.2320305 10.1109/TCYB.2015.2411285 10.1109/TNNLS.2014.2302477 10.1109/TAC.1986.1104241 10.1016/0005-1098(87)90074-4 10.1016/0005-1098(93)90110-F 10.1109/TNNLS.2014.2333878 10.1016/S0959-1524(03)00039-8 10.1109/TAC.2011.2122730 10.1109/TAC.1976.1101126 10.1049/ip-cta:19960261 10.1109/TAC.1985.1104078 10.1109/TAC.2003.811250 10.1109/TSMC.2015.2466194 10.1016/0967-0661(93)91394-C 10.1109/TCST.2005.847331 10.1109/TNNLS.2014.2344019 10.1016/S0959-1524(01)00041-5 10.1016/0005-1098(80)90023-0 10.1016/j.chaos.2004.12.013 10.1016/j.apm.2011.05.049 10.1016/j.ins.2010.08.034 10.1177/1077546311400474 10.1016/j.isatra.2011.06.005 10.1109/TNNLS.2015.2469147 10.1109/TIE.2015.2400427 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2016.2575078 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 2195 |
ExternalDocumentID | 27352399 10_1109_TNNLS_2016_2575078 7498644 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61134001 funderid: 10.13039/501100001809 – fundername: Major State Basic Research Development Program 973 grantid: 2012CB215202; 2014CB249200 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-26e006da6a6eb7d0f4baeda2b601107c7d663cff9dec44d00436ed99728bcae63 |
IEDL.DBID | RIE |
ISSN | 2162-237X |
IngestDate | Fri Sep 05 13:21:46 EDT 2025 Mon Jun 30 05:31:48 EDT 2025 Thu Apr 03 06:56:20 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Tue Jul 01 00:27:22 EDT 2025 Tue Aug 26 16:38:28 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-26e006da6a6eb7d0f4baeda2b601107c7d663cff9dec44d00436ed99728bcae63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27352399 |
PQID | 2174450436 |
PQPubID | 85436 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2174450436 crossref_citationtrail_10_1109_TNNLS_2016_2575078 crossref_primary_10_1109_TNNLS_2016_2575078 pubmed_primary_27352399 proquest_miscellaneous_1826710047 ieee_primary_7498644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 gorez (ref17) 1997; 38 ref37 ref15 ref36 ref14 ref30 ref33 ref11 ref32 ref10 sontag (ref28) 1998 ref2 ref1 ref39 ref38 ref19 ref18 ang (ref16) 2005; 13 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 li (ref35) 2013; 24 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 slotine (ref31) 1991 |
References_xml | – ident: ref22 doi: 10.1016/j.sysconle.2013.11.011 – ident: ref8 doi: 10.1109/TNNLS.2013.2276571 – ident: ref43 doi: 10.1016/j.automatica.2015.12.026 – year: 1998 ident: ref28 publication-title: Mathematical Control Theory Deterministic Finite Dimensional Systems – ident: ref26 doi: 10.1109/TIE.2006.874269 – ident: ref29 doi: 10.1016/S0925-2312(99)00128-9 – ident: ref42 doi: 10.1109/TIE.2013.2288200 – ident: ref19 doi: 10.1109/9.847730 – volume: 24 start-page: 1400 year: 2013 ident: ref35 article-title: Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2258681 – ident: ref18 doi: 10.1016/S0967-0661(02)00303-9 – ident: ref32 doi: 10.1109/TNN.2010.2076370 – ident: ref30 doi: 10.1016/j.automatica.2011.01.025 – ident: ref6 doi: 10.1109/87.799674 – ident: ref2 doi: 10.1109/28.475744 – ident: ref25 doi: 10.1109/TFUZZ.2007.903320 – volume: 38 start-page: 3 year: 1997 ident: ref17 article-title: A survey of PID auto-tuning methods: Feature issue controller tuning publication-title: J Autom Control – ident: ref39 doi: 10.1109/TNNLS.2014.2320305 – ident: ref36 doi: 10.1109/TCYB.2015.2411285 – ident: ref34 doi: 10.1109/TNNLS.2014.2302477 – ident: ref11 doi: 10.1109/TAC.1986.1104241 – ident: ref12 doi: 10.1016/0005-1098(87)90074-4 – ident: ref13 doi: 10.1016/0005-1098(93)90110-F – ident: ref38 doi: 10.1109/TNNLS.2014.2333878 – ident: ref23 doi: 10.1016/S0959-1524(03)00039-8 – ident: ref5 doi: 10.1109/TAC.2011.2122730 – ident: ref9 doi: 10.1109/TAC.1976.1101126 – ident: ref24 doi: 10.1049/ip-cta:19960261 – ident: ref14 doi: 10.1109/TAC.1985.1104078 – ident: ref40 doi: 10.1109/TAC.2003.811250 – ident: ref37 doi: 10.1109/TSMC.2015.2466194 – ident: ref15 doi: 10.1016/0967-0661(93)91394-C – volume: 13 start-page: 559 year: 2005 ident: ref16 article-title: PID control system analysis, design, and technology publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2005.847331 – ident: ref7 doi: 10.1109/TNNLS.2014.2344019 – ident: ref20 doi: 10.1016/S0959-1524(01)00041-5 – ident: ref10 doi: 10.1016/0005-1098(80)90023-0 – ident: ref21 doi: 10.1016/j.chaos.2004.12.013 – ident: ref3 doi: 10.1016/j.apm.2011.05.049 – ident: ref1 doi: 10.1016/j.ins.2010.08.034 – ident: ref27 doi: 10.1177/1077546311400474 – year: 1991 ident: ref31 publication-title: Applied nonlinear control – ident: ref4 doi: 10.1016/j.isatra.2011.06.005 – ident: ref33 doi: 10.1109/TNNLS.2015.2469147 – ident: ref41 doi: 10.1109/TIE.2015.2400427 |
SSID | ssj0000605649 |
Score | 2.414572 |
Snippet | This paper considers the tracking control problem for a class of multi-input multi-output nonlinear systems subject to unknown actuation characteristics and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2183 |
SubjectTerms | Actuation Artificial neural networks Barrier Lyapunov function (BLF) Computer simulation Control design Feasibility studies Feedback control Liapunov functions MIMO Neural networks neuro-adaptive proportional–integral (PI) control Nonlinear control Nonlinear systems PD control Pi control Proportional integral Self tuning Stability analysis Tracking control Tuning uniformly ultimately boundedness unknown actuation characteristics |
Title | Smooth Neuroadaptive PI Tracking Control of Nonlinear Systems With Unknown and Nonsmooth Actuation Characteristics |
URI | https://ieeexplore.ieee.org/document/7498644 https://www.ncbi.nlm.nih.gov/pubmed/27352399 https://www.proquest.com/docview/2174450436 https://www.proquest.com/docview/1826710047 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnLgU6LYlPCoj9dZmycNxNke0AkHVXVVaVt1b5FckBCSI3b3w65mxk0hULeIWJbbzmM_xZ3vmG4Bv41QaLZM05AqnqzxRcTg2Mgl5lUmB52JRULzzdCauFvznMlsO4EcfC2Otdc5ndkSHbi_fNHpDS2VnOScxcb4FWwgzH6vVr6dEyMuFY7tJLJIwSfNlFyMTFWc3s9mvOTlyiRFiFDkQ5enDkTuj0M5XQ5LLsfJ_uumGnctdmHYP7L1N7kabtRrp57-0HN_7RnvwoeWf7NwDZh8Gtv4Iu11uB9Z29SE8zR8aNCJz4h3SyEf6LbLf1wwHN03L62zindxZU7GZ19uQWN8LoLM_t1h3UdOKXc1kbajIyrd4TiErBAc2eS0W_QkWlxc3k6uwzc8Q6jSL12EiLH52I4UUVuUmqriSFg2tBJGKXOcG6YyuqsJYzblxavfWUKTuWGlpRfoZtuumtgfAFNeRNGNjcoMlabeO55UsjMwQTCmPAog7E5W6FS-nHBr3pZvEREXpLFyShcvWwgF87-s8eumON0sPyTx9ydYyARx3SCjb3r0qaRrHSfpNBHDaX8Z-SZstsrbNZlXSvI2Uk3gewBePoL7tDniH_77nEewkRB6cJ9sxbK-fNvYEqc9afXWYfwF9kv7u |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBcojUMBI3CDbPBxnc6xWVFvYjZC6K_Zm-RWpApKqu3vh1zNjJ5GKAHGLEtt5zDjzjT3zDcC7aa6sUVkec43uKs90Gk-tymLeFErguVRUlO-8rMV8zT9tis0BfBhzYZxzPvjMTejQ7-Xbzuxpqey05EQmzu_AXbT7vAjZWuOKSoLIXHi8m6Uii7O83AxZMkl1uqrrxSWFcokJaimiIKrUh7a7oOTOW0bJV1n5O-D0huf8CJbDI4d4k2-T_U5PzM_f2Bz_950ewoMegbKzoDKP4MC1j-FoqO7A-sl-DDeXPzoUI_P0Hcqqa_oxsi8XDM2boQV2Ngth7qxrWB0YNxT2DxTo7OsV9l23tGbXMtVaarINI55R0gopBJvdpot-Auvzj6vZPO4rNMQmL9JdnAmHn90qoYTTpU0arpVDUWtBsKI0pUVAY5qmss5wbj3fvbOUqzvVRjmRP4XDtmvdc2Cam0TZqbWlxZa0X8fLRlVWFahOOU8iSAcRSdPTl1MVje_SuzFJJb2EJUlY9hKO4P3Y5zqQd_yz9TGJZ2zZSyaCk0ETZD-_t5IcOU7kbyKCt-NlnJm03aJa1-23kjw34k7iZQTPggaNYw-K9-LP93wD9-ar5UIuLurPL-F-RlDCx7WdwOHuZu9eIRDa6dde_38B9yICSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smooth+Neuroadaptive+PI+Tracking+Control+of+Nonlinear+Systems+With+Unknown+and+Nonsmooth+Actuation+Characteristics&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Song%2C+Yongduan&rft.au=Guo%2C+Junxia&rft.au=Huang%2C+Xiucai&rft.date=2017-09-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTNNLS.2016.2575078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2016_2575078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |