Smooth Neuroadaptive PI Tracking Control of Nonlinear Systems With Unknown and Nonsmooth Actuation Characteristics

This paper considers the tracking control problem for a class of multi-input multi-output nonlinear systems subject to unknown actuation characteristics and external disturbances. Neuroadaptive proportional-integral (PI) control with self-tuning gains is proposed, which is structurally simple and co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 28; no. 9; pp. 2183 - 2195
Main Authors Song, Yongduan, Guo, Junxia, Huang, Xiucai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
DOI10.1109/TNNLS.2016.2575078

Cover

Abstract This paper considers the tracking control problem for a class of multi-input multi-output nonlinear systems subject to unknown actuation characteristics and external disturbances. Neuroadaptive proportional-integral (PI) control with self-tuning gains is proposed, which is structurally simple and computationally inexpensive. Different from traditional PI control, the proposed one is able to online adjust its PI gains using stability-guaranteed analytic algorithms without involving manual tuning or trial and error process. It is shown that the proposed neuroadaptive PI control is continuous and smooth everywhere and ensures the uniformly ultimately boundedness of all the signals of the closed-loop system. Furthermore, the crucial compact set precondition for a neural network (NN) to function properly is guaranteed with the barrier Lyapunov function, allowing the NN unit to play its learning/approximating role during the entire system operation. The salient feature also lies in its low complexity in computation and effectiveness in dealing with modeling uncertainties and nonlinearities. Both square and nonsquare nonlinear systems are addressed. The benefits and the feasibility of the developed control are also confirmed by simulations.
AbstractList This paper considers the tracking control problem for a class of multi-input multi-output nonlinear systems subject to unknown actuation characteristics and external disturbances. Neuroadaptive proportional-integral (PI) control with self-tuning gains is proposed, which is structurally simple and computationally inexpensive. Different from traditional PI control, the proposed one is able to online adjust its PI gains using stability-guaranteed analytic algorithms without involving manual tuning or trial and error process. It is shown that the proposed neuroadaptive PI control is continuous and smooth everywhere and ensures the uniformly ultimately boundedness of all the signals of the closed-loop system. Furthermore, the crucial compact set precondition for a neural network (NN) to function properly is guaranteed with the barrier Lyapunov function, allowing the NN unit to play its learning/approximating role during the entire system operation. The salient feature also lies in its low complexity in computation and effectiveness in dealing with modeling uncertainties and nonlinearities. Both square and nonsquare nonlinear systems are addressed. The benefits and the feasibility of the developed control are also confirmed by simulations.
Author Xiucai Huang
Yongduan Song
Junxia Guo
Author_xml – sequence: 1
  givenname: Yongduan
  surname: Song
  fullname: Song, Yongduan
– sequence: 2
  givenname: Junxia
  surname: Guo
  fullname: Guo, Junxia
– sequence: 3
  givenname: Xiucai
  surname: Huang
  fullname: Huang, Xiucai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27352399$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFuEzEURS1UREvpD4CELLFhk2B7PPbMsoqgVIoCUlLBzvLYb6jbGTu1PVT9e5wm7aILvHlenHP19O5bdOSDB4TeUzKnlLRfNqvVcj1nhIo5q2VNZPMKnTAq2IxVTXP0_Je_j9FZSjekPEFqwds36JjJqmZV256guB5DyNd4BVMM2uptdn8B_7zEm6jNrfN_8CL4HMOAQ49XwQ_Og454_ZAyjAn_csW98rc-3Husvd0haZ94bvKkswseL651CcsQXcrOpHfoda-HBGeHeYquvn3dLL7Plj8uLhfny5mpappnTEDZ2GqhBXTSkp53GqxmnSDlANJIK0Rl-r61YDi3hPBKgG1byZrOaBDVKfq8z93GcDdBymp0ycAwaA9hSoo2TEhaPFnQTy_QmzBFX7ZTjErO6114oT4eqKkbwaptdKOOD-rpmgVo9oCJIaUIvTIuP94gR-0GRYnadaceu1O77tShu6KyF-pT-n-lD3vJAcCzIHnbCM6rfzxbphM
CODEN ITNNAL
CitedBy_id crossref_primary_10_1002_rnc_5778
crossref_primary_10_1002_rnc_5556
crossref_primary_10_1109_TIE_2024_3370984
crossref_primary_10_1016_j_neucom_2017_10_058
crossref_primary_10_1109_TETCI_2022_3213708
crossref_primary_10_1109_TFUZZ_2021_3120206
crossref_primary_10_1016_j_neucom_2021_10_065
crossref_primary_10_1109_TNNLS_2020_3041350
crossref_primary_10_1109_TNNLS_2021_3091641
crossref_primary_10_1109_TSMC_2024_3407150
crossref_primary_10_1109_TCSII_2023_3315733
crossref_primary_10_1109_TCYB_2022_3189189
crossref_primary_10_1016_j_neucom_2017_09_020
crossref_primary_10_1109_TAC_2023_3330900
crossref_primary_10_1016_j_dsp_2018_06_007
crossref_primary_10_1109_TNNLS_2016_2598616
crossref_primary_10_1109_TNNLS_2022_3160803
Cites_doi 10.1016/j.sysconle.2013.11.011
10.1109/TNNLS.2013.2276571
10.1016/j.automatica.2015.12.026
10.1109/TIE.2006.874269
10.1016/S0925-2312(99)00128-9
10.1109/TIE.2013.2288200
10.1109/9.847730
10.1109/TNNLS.2013.2258681
10.1016/S0967-0661(02)00303-9
10.1109/TNN.2010.2076370
10.1016/j.automatica.2011.01.025
10.1109/87.799674
10.1109/28.475744
10.1109/TFUZZ.2007.903320
10.1109/TNNLS.2014.2320305
10.1109/TCYB.2015.2411285
10.1109/TNNLS.2014.2302477
10.1109/TAC.1986.1104241
10.1016/0005-1098(87)90074-4
10.1016/0005-1098(93)90110-F
10.1109/TNNLS.2014.2333878
10.1016/S0959-1524(03)00039-8
10.1109/TAC.2011.2122730
10.1109/TAC.1976.1101126
10.1049/ip-cta:19960261
10.1109/TAC.1985.1104078
10.1109/TAC.2003.811250
10.1109/TSMC.2015.2466194
10.1016/0967-0661(93)91394-C
10.1109/TCST.2005.847331
10.1109/TNNLS.2014.2344019
10.1016/S0959-1524(01)00041-5
10.1016/0005-1098(80)90023-0
10.1016/j.chaos.2004.12.013
10.1016/j.apm.2011.05.049
10.1016/j.ins.2010.08.034
10.1177/1077546311400474
10.1016/j.isatra.2011.06.005
10.1109/TNNLS.2015.2469147
10.1109/TIE.2015.2400427
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2016.2575078
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2195
ExternalDocumentID 27352399
10_1109_TNNLS_2016_2575078
7498644
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61134001
  funderid: 10.13039/501100001809
– fundername: Major State Basic Research Development Program 973
  grantid: 2012CB215202; 2014CB249200
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-26e006da6a6eb7d0f4baeda2b601107c7d663cff9dec44d00436ed99728bcae63
IEDL.DBID RIE
ISSN 2162-237X
IngestDate Fri Sep 05 13:21:46 EDT 2025
Mon Jun 30 05:31:48 EDT 2025
Thu Apr 03 06:56:20 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Tue Jul 01 00:27:22 EDT 2025
Tue Aug 26 16:38:28 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-26e006da6a6eb7d0f4baeda2b601107c7d663cff9dec44d00436ed99728bcae63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27352399
PQID 2174450436
PQPubID 85436
PageCount 13
ParticipantIDs proquest_journals_2174450436
crossref_citationtrail_10_1109_TNNLS_2016_2575078
crossref_primary_10_1109_TNNLS_2016_2575078
pubmed_primary_27352399
proquest_miscellaneous_1826710047
ieee_primary_7498644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
gorez (ref17) 1997; 38
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref32
ref10
sontag (ref28) 1998
ref2
ref1
ref39
ref38
ref19
ref18
ang (ref16) 2005; 13
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
li (ref35) 2013; 24
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
slotine (ref31) 1991
References_xml – ident: ref22
  doi: 10.1016/j.sysconle.2013.11.011
– ident: ref8
  doi: 10.1109/TNNLS.2013.2276571
– ident: ref43
  doi: 10.1016/j.automatica.2015.12.026
– year: 1998
  ident: ref28
  publication-title: Mathematical Control Theory Deterministic Finite Dimensional Systems
– ident: ref26
  doi: 10.1109/TIE.2006.874269
– ident: ref29
  doi: 10.1016/S0925-2312(99)00128-9
– ident: ref42
  doi: 10.1109/TIE.2013.2288200
– ident: ref19
  doi: 10.1109/9.847730
– volume: 24
  start-page: 1400
  year: 2013
  ident: ref35
  article-title: Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2258681
– ident: ref18
  doi: 10.1016/S0967-0661(02)00303-9
– ident: ref32
  doi: 10.1109/TNN.2010.2076370
– ident: ref30
  doi: 10.1016/j.automatica.2011.01.025
– ident: ref6
  doi: 10.1109/87.799674
– ident: ref2
  doi: 10.1109/28.475744
– ident: ref25
  doi: 10.1109/TFUZZ.2007.903320
– volume: 38
  start-page: 3
  year: 1997
  ident: ref17
  article-title: A survey of PID auto-tuning methods: Feature issue controller tuning
  publication-title: J Autom Control
– ident: ref39
  doi: 10.1109/TNNLS.2014.2320305
– ident: ref36
  doi: 10.1109/TCYB.2015.2411285
– ident: ref34
  doi: 10.1109/TNNLS.2014.2302477
– ident: ref11
  doi: 10.1109/TAC.1986.1104241
– ident: ref12
  doi: 10.1016/0005-1098(87)90074-4
– ident: ref13
  doi: 10.1016/0005-1098(93)90110-F
– ident: ref38
  doi: 10.1109/TNNLS.2014.2333878
– ident: ref23
  doi: 10.1016/S0959-1524(03)00039-8
– ident: ref5
  doi: 10.1109/TAC.2011.2122730
– ident: ref9
  doi: 10.1109/TAC.1976.1101126
– ident: ref24
  doi: 10.1049/ip-cta:19960261
– ident: ref14
  doi: 10.1109/TAC.1985.1104078
– ident: ref40
  doi: 10.1109/TAC.2003.811250
– ident: ref37
  doi: 10.1109/TSMC.2015.2466194
– ident: ref15
  doi: 10.1016/0967-0661(93)91394-C
– volume: 13
  start-page: 559
  year: 2005
  ident: ref16
  article-title: PID control system analysis, design, and technology
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2005.847331
– ident: ref7
  doi: 10.1109/TNNLS.2014.2344019
– ident: ref20
  doi: 10.1016/S0959-1524(01)00041-5
– ident: ref10
  doi: 10.1016/0005-1098(80)90023-0
– ident: ref21
  doi: 10.1016/j.chaos.2004.12.013
– ident: ref3
  doi: 10.1016/j.apm.2011.05.049
– ident: ref1
  doi: 10.1016/j.ins.2010.08.034
– ident: ref27
  doi: 10.1177/1077546311400474
– year: 1991
  ident: ref31
  publication-title: Applied nonlinear control
– ident: ref4
  doi: 10.1016/j.isatra.2011.06.005
– ident: ref33
  doi: 10.1109/TNNLS.2015.2469147
– ident: ref41
  doi: 10.1109/TIE.2015.2400427
SSID ssj0000605649
Score 2.414572
Snippet This paper considers the tracking control problem for a class of multi-input multi-output nonlinear systems subject to unknown actuation characteristics and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2183
SubjectTerms Actuation
Artificial neural networks
Barrier Lyapunov function (BLF)
Computer simulation
Control design
Feasibility studies
Feedback control
Liapunov functions
MIMO
Neural networks
neuro-adaptive proportional–integral (PI) control
Nonlinear control
Nonlinear systems
PD control
Pi control
Proportional integral
Self tuning
Stability analysis
Tracking control
Tuning
uniformly ultimately boundedness
unknown actuation characteristics
Title Smooth Neuroadaptive PI Tracking Control of Nonlinear Systems With Unknown and Nonsmooth Actuation Characteristics
URI https://ieeexplore.ieee.org/document/7498644
https://www.ncbi.nlm.nih.gov/pubmed/27352399
https://www.proquest.com/docview/2174450436
https://www.proquest.com/docview/1826710047
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4tnLgU6LYlPCoj9dZmycNxNke0AkHVXVVaVt1b5FckBCSI3b3w65mxk0hULeIWJbbzmM_xZ3vmG4Bv41QaLZM05AqnqzxRcTg2Mgl5lUmB52JRULzzdCauFvznMlsO4EcfC2Otdc5ndkSHbi_fNHpDS2VnOScxcb4FWwgzH6vVr6dEyMuFY7tJLJIwSfNlFyMTFWc3s9mvOTlyiRFiFDkQ5enDkTuj0M5XQ5LLsfJ_uumGnctdmHYP7L1N7kabtRrp57-0HN_7RnvwoeWf7NwDZh8Gtv4Iu11uB9Z29SE8zR8aNCJz4h3SyEf6LbLf1wwHN03L62zindxZU7GZ19uQWN8LoLM_t1h3UdOKXc1kbajIyrd4TiErBAc2eS0W_QkWlxc3k6uwzc8Q6jSL12EiLH52I4UUVuUmqriSFg2tBJGKXOcG6YyuqsJYzblxavfWUKTuWGlpRfoZtuumtgfAFNeRNGNjcoMlabeO55UsjMwQTCmPAog7E5W6FS-nHBr3pZvEREXpLFyShcvWwgF87-s8eumON0sPyTx9ydYyARx3SCjb3r0qaRrHSfpNBHDaX8Z-SZstsrbNZlXSvI2Uk3gewBePoL7tDniH_77nEewkRB6cJ9sxbK-fNvYEqc9afXWYfwF9kv7u
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBcojUMBI3CDbPBxnc6xWVFvYjZC6K_Zm-RWpApKqu3vh1zNjJ5GKAHGLEtt5zDjzjT3zDcC7aa6sUVkec43uKs90Gk-tymLeFErguVRUlO-8rMV8zT9tis0BfBhzYZxzPvjMTejQ7-Xbzuxpqey05EQmzu_AXbT7vAjZWuOKSoLIXHi8m6Uii7O83AxZMkl1uqrrxSWFcokJaimiIKrUh7a7oOTOW0bJV1n5O-D0huf8CJbDI4d4k2-T_U5PzM_f2Bz_950ewoMegbKzoDKP4MC1j-FoqO7A-sl-DDeXPzoUI_P0Hcqqa_oxsi8XDM2boQV2Ngth7qxrWB0YNxT2DxTo7OsV9l23tGbXMtVaarINI55R0gopBJvdpot-Auvzj6vZPO4rNMQmL9JdnAmHn90qoYTTpU0arpVDUWtBsKI0pUVAY5qmss5wbj3fvbOUqzvVRjmRP4XDtmvdc2Cam0TZqbWlxZa0X8fLRlVWFahOOU8iSAcRSdPTl1MVje_SuzFJJb2EJUlY9hKO4P3Y5zqQd_yz9TGJZ2zZSyaCk0ETZD-_t5IcOU7kbyKCt-NlnJm03aJa1-23kjw34k7iZQTPggaNYw-K9-LP93wD9-ar5UIuLurPL-F-RlDCx7WdwOHuZu9eIRDa6dde_38B9yICSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smooth+Neuroadaptive+PI+Tracking+Control+of+Nonlinear+Systems+With+Unknown+and+Nonsmooth+Actuation+Characteristics&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Song%2C+Yongduan&rft.au=Guo%2C+Junxia&rft.au=Huang%2C+Xiucai&rft.date=2017-09-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTNNLS.2016.2575078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2016_2575078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon