Further Results on Adaptive Stabilization of High-Order Stochastic Nonlinear Systems Subject to Uncertainties

This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay, unknown control gain, and parameter perturbation. The commonly used growth assumptions on system nonlinearities are removed, and the adaptiv...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 1; pp. 225 - 234
Main Authors Min, Huifang, Xu, Shengyuan, Gu, Jason, Zhang, Baoyong, Zhang, Zhengqiang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay, unknown control gain, and parameter perturbation. The commonly used growth assumptions on system nonlinearities are removed, and the adaptive control technique is combined with the sign function to deal with the unknown control gain. Then, with the help of the radial basis function neural network approximation approach and Lyapunov-Krasovskii functional, an adaptive state-feedback controller is obtained through the backstepping design procedure. It is verified that the constructed controller can render the closed-loop system semiglobally uniformly ultimately bounded. Finally, both the practical and numerical examples are presented to validate the effectiveness of the proposed scheme.
AbstractList This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay, unknown control gain, and parameter perturbation. The commonly used growth assumptions on system nonlinearities are removed, and the adaptive control technique is combined with the sign function to deal with the unknown control gain. Then, with the help of the radial basis function neural network approximation approach and Lyapunov-Krasovskii functional, an adaptive state-feedback controller is obtained through the backstepping design procedure. It is verified that the constructed controller can render the closed-loop system semiglobally uniformly ultimately bounded. Finally, both the practical and numerical examples are presented to validate the effectiveness of the proposed scheme.
This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay, unknown control gain, and parameter perturbation. The commonly used growth assumptions on system nonlinearities are removed, and the adaptive control technique is combined with the sign function to deal with the unknown control gain. Then, with the help of the radial basis function neural network approximation approach and Lyapunov-Krasovskii functional, an adaptive state-feedback controller is obtained through the backstepping design procedure. It is verified that the constructed controller can render the closed-loop system semiglobally uniformly ultimately bounded. Finally, both the practical and numerical examples are presented to validate the effectiveness of the proposed scheme.This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay, unknown control gain, and parameter perturbation. The commonly used growth assumptions on system nonlinearities are removed, and the adaptive control technique is combined with the sign function to deal with the unknown control gain. Then, with the help of the radial basis function neural network approximation approach and Lyapunov-Krasovskii functional, an adaptive state-feedback controller is obtained through the backstepping design procedure. It is verified that the constructed controller can render the closed-loop system semiglobally uniformly ultimately bounded. Finally, both the practical and numerical examples are presented to validate the effectiveness of the proposed scheme.
Author Min, Huifang
Xu, Shengyuan
Zhang, Zhengqiang
Gu, Jason
Zhang, Baoyong
Author_xml – sequence: 1
  givenname: Huifang
  orcidid: 0000-0002-8015-9649
  surname: Min
  fullname: Min, Huifang
  email: jiejie1043640772@126.com
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Shengyuan
  orcidid: 0000-0002-3015-0662
  surname: Xu
  fullname: Xu, Shengyuan
  email: syxu@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Jason
  orcidid: 0000-0002-7626-1077
  surname: Gu
  fullname: Gu, Jason
  email: jason.gu@dal.ca
  organization: Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Canada
– sequence: 4
  givenname: Baoyong
  orcidid: 0000-0001-5271-2462
  surname: Zhang
  fullname: Zhang, Baoyong
  email: baoyongzhang@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 5
  givenname: Zhengqiang
  orcidid: 0000-0002-7163-7709
  surname: Zhang
  fullname: Zhang, Zhengqiang
  email: qufuzzq@126.com
  organization: School of Engineering, Qufu Normal University, Rizhao, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30908242$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNUbK39Agoy4Isvs-bPTCZ5LMVaYdmC24JvIZO5cbPMJGuSEeqnN9vd9qEP3pdcLr9zCOe8RSc-eEDoPcELQrD8crdaLdcLiolcUIkxY_IVOqOE05oyIU6e9-7nKbpIaYvLcNzyRr5BpwxLLGhDz9B0Pce8gVj9gDSPOVXBV5eD3mX3B6p11r0b3V-dXTkHW924X5v6Ng6FX-dgNjplZ6pV8KPzoMvxIWWYUrWe-y2YXOVQ3XsDMWvns4P0Dr22ekxwcXzP0f3117urm3p5--371eWyNqwluaaUWWugbwSRcpC6IbKz3AoCWhMmODBspLUtMEaFph1tTDtwTTkGw_u2Zefo88F3F8PvGVJWk0sGxlF7CHNStBjuQ-OioJ9eoNswR19-pyhjrGOk6_bUxyM19xMMahfdpOODegqyAOIAmBhSimCVcfkxtxy1GxXBal-beqxN7WtTx9qKlL6QPrn_V_ThIHIA8CwQvKMtoewfcFejOg
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_procs_2024_11_022
crossref_primary_10_1109_TCSI_2019_2958327
crossref_primary_10_1002_acs_3285
crossref_primary_10_1016_j_amc_2020_125397
crossref_primary_10_1016_j_neucom_2023_126939
crossref_primary_10_1007_s12555_021_0216_8
crossref_primary_10_1007_s11071_022_07573_6
crossref_primary_10_1115_1_4048587
crossref_primary_10_1016_j_neucom_2023_126266
crossref_primary_10_1016_j_ins_2021_04_020
crossref_primary_10_1109_TASE_2023_3269509
crossref_primary_10_1109_TCSI_2019_2933164
crossref_primary_10_1007_s11071_022_07297_7
crossref_primary_10_1093_imamci_dnab019
crossref_primary_10_1007_s00521_023_09123_6
crossref_primary_10_1007_s11071_024_09988_9
crossref_primary_10_1016_j_jfranklin_2020_09_022
crossref_primary_10_1016_j_procs_2024_11_013
crossref_primary_10_1109_TCSII_2019_2933468
crossref_primary_10_1016_j_procs_2024_11_015
crossref_primary_10_1109_TNNLS_2021_3084295
crossref_primary_10_1109_TCSII_2020_3010100
crossref_primary_10_1109_TNNLS_2021_3070623
crossref_primary_10_1109_TSMC_2019_2951727
crossref_primary_10_1109_TNNLS_2021_3105664
crossref_primary_10_1007_s12555_019_0986_4
crossref_primary_10_1177_01423312231200040
crossref_primary_10_1109_TNNLS_2022_3176625
crossref_primary_10_1007_s11432_023_3981_9
crossref_primary_10_1109_ACCESS_2020_2996271
crossref_primary_10_1002_rnc_5555
crossref_primary_10_1080_00207179_2019_1662093
crossref_primary_10_1109_TNNLS_2020_3046865
crossref_primary_10_1109_TFUZZ_2020_2981917
crossref_primary_10_1177_01423312241293250
crossref_primary_10_1109_TFUZZ_2024_3384588
crossref_primary_10_1049_cth2_12566
crossref_primary_10_1109_TSMC_2023_3298923
crossref_primary_10_1002_rnc_4560
crossref_primary_10_1109_TSMC_2023_3234177
Cites_doi 10.1109/TAC.2005.849237
10.1016/j.neucom.2013.09.005
10.1002/rnc.2985
10.1007/978-1-4612-4342-7
10.1109/TFUZZ.2013.2291554
10.1109/TNNLS.2017.2669088
10.1049/iet-cta.2017.0350
10.1109/TSMC.2016.2562511
10.1109/TSMCB.2009.2033808
10.1016/0022-0396(83)90061-X
10.1080/00207721.2017.1316885
10.1016/j.jfranklin.2016.08.014
10.1109/TIE.2017.2784347
10.23919/ACC.1991.4791778
10.1080/00207170701598478
10.1016/j.automatica.2013.01.007
10.1109/TAC.2012.2208297
10.1016/j.automatica.2012.06.061
10.1109/TAC.2002.808481
10.1016/S0167-6911(97)00068-6
10.1049/iet-cta.2016.1139
10.1002/acs.2686
10.1109/TAC.2002.803542
10.1002/rnc.3730
10.1016/j.automatica.2014.11.013
10.1109/TAC.2018.2828084
10.1016/j.automatica.2019.01.004
10.1109/TSMC.2016.2608799
10.1109/TNNLS.2014.2347290
10.1016/j.amc.2017.09.037
10.1109/TNNLS.2014.2334638
10.1007/978-1-4612-0039-0
10.1109/TNN.2007.901274
10.1109/TAC.2010.2043004
10.1007/978-94-009-9121-7
10.1109/9.940927
10.1109/TNB.2018.2887305
10.1080/00207170701418917
10.1016/0167-6911(83)90021-X
10.1016/j.automatica.2011.01.084
10.1016/j.automatica.2011.09.014
10.1109/TAC.2016.2562059
10.1109/TNNLS.2012.2223824
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2900339
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 234
ExternalDocumentID 30908242
10_1109_TNNLS_2019_2900339
8672512
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
  funderid: 10.13039/501100012246
– fundername: National Natural Science Foundation of China
  grantid: 61673215; 61473151; 61374087; 61873330; 61573172; 61503166; 61703132
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Shandong Province
  grantid: JQ201515
  funderid: 10.13039/501100007129
– fundername: Key Laboratory of Jiangsu Province
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20140770
  funderid: 10.13039/501100004608
– fundername: Program for Changjiang Scholars and Innovative Research Team in University
  grantid: IRT13072
– fundername: Taishan Scholar Project of Shandong Province
  grantid: tsqn20161032
  funderid: 10.13039/501100010040
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
– fundername: 333 Project
  grantid: BRA2017380
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30916015105
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-223ffceb48199d9a4197f6f81eaa1386e30c9ff5e3328a2724c5d6a260ec6b553
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 11:22:16 EDT 2025
Mon Jun 30 06:47:19 EDT 2025
Thu Jan 02 22:59:11 EST 2025
Tue Jul 01 00:27:29 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Wed Aug 27 06:28:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-223ffceb48199d9a4197f6f81eaa1386e30c9ff5e3328a2724c5d6a260ec6b553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7626-1077
0000-0001-5271-2462
0000-0002-3015-0662
0000-0002-8015-9649
0000-0002-7163-7709
PMID 30908242
PQID 2333731778
PQPubID 85436
PageCount 10
ParticipantIDs proquest_journals_2333731778
pubmed_primary_30908242
proquest_miscellaneous_2197900368
crossref_primary_10_1109_TNNLS_2019_2900339
crossref_citationtrail_10_1109_TNNLS_2019_2900339
ieee_primary_8672512
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref45
ref23
ref26
fu (ref14) 2005; 50
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
mao (ref7) 2007
qian (ref31) 2005
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – volume: 50
  start-page: 847
  year: 2005
  ident: ref14
  article-title: Output feedback stabilization for a class of stochastic time-delay nonlinear systems
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2005.849237
– ident: ref26
  doi: 10.1016/j.neucom.2013.09.005
– ident: ref33
  doi: 10.1002/rnc.2985
– ident: ref11
  doi: 10.1007/978-1-4612-4342-7
– ident: ref38
  doi: 10.1109/TFUZZ.2013.2291554
– ident: ref39
  doi: 10.1109/TNNLS.2017.2669088
– ident: ref29
  doi: 10.1049/iet-cta.2017.0350
– start-page: 4708
  year: 2005
  ident: ref31
  article-title: A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems
  publication-title: Proc Amer Control Conf
– ident: ref27
  doi: 10.1109/TSMC.2016.2562511
– year: 2007
  ident: ref7
  publication-title: Stochastic Differential Equations and Their Applications
– ident: ref25
  doi: 10.1109/TSMCB.2009.2033808
– ident: ref12
  doi: 10.1016/0022-0396(83)90061-X
– ident: ref16
  doi: 10.1080/00207721.2017.1316885
– ident: ref5
  doi: 10.1016/j.jfranklin.2016.08.014
– ident: ref4
  doi: 10.1109/TIE.2017.2784347
– ident: ref21
  doi: 10.23919/ACC.1991.4791778
– ident: ref17
  doi: 10.1080/00207170701598478
– ident: ref18
  doi: 10.1016/j.automatica.2013.01.007
– ident: ref32
  doi: 10.1109/TAC.2012.2208297
– ident: ref34
  doi: 10.1016/j.automatica.2012.06.061
– ident: ref13
  doi: 10.1109/TAC.2002.808481
– ident: ref9
  doi: 10.1016/S0167-6911(97)00068-6
– ident: ref36
  doi: 10.1049/iet-cta.2016.1139
– ident: ref40
  doi: 10.1002/acs.2686
– ident: ref41
  doi: 10.1109/TAC.2002.803542
– ident: ref35
  doi: 10.1002/rnc.3730
– ident: ref3
  doi: 10.1016/j.automatica.2014.11.013
– ident: ref15
  doi: 10.1109/TAC.2018.2828084
– ident: ref19
  doi: 10.1016/j.automatica.2019.01.004
– ident: ref20
  doi: 10.1109/TSMC.2016.2608799
– ident: ref24
  doi: 10.1109/TNNLS.2014.2347290
– ident: ref2
  doi: 10.1016/j.amc.2017.09.037
– ident: ref23
  doi: 10.1109/TNNLS.2014.2334638
– ident: ref1
  doi: 10.1007/978-1-4612-0039-0
– ident: ref22
  doi: 10.1109/TNN.2007.901274
– ident: ref44
  doi: 10.1109/TAC.2010.2043004
– ident: ref8
  doi: 10.1007/978-94-009-9121-7
– ident: ref10
  doi: 10.1109/9.940927
– ident: ref6
  doi: 10.1109/TNB.2018.2887305
– ident: ref43
  doi: 10.1080/00207170701418917
– ident: ref37
  doi: 10.1016/0167-6911(83)90021-X
– ident: ref45
  doi: 10.1016/j.automatica.2011.01.084
– ident: ref30
  doi: 10.1016/j.automatica.2011.09.014
– ident: ref42
  doi: 10.1109/TAC.2016.2562059
– ident: ref28
  doi: 10.1109/TNNLS.2012.2223824
SSID ssj0000605649
Score 2.4727266
Snippet This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 225
SubjectTerms Adaptive control
Adaptive systems
Artificial neural networks
Control systems
Delays
Feedback
Feedback control
high-order stochastic nonlinear systems
Neural networks
Nonlinear systems
Parameter uncertainty
Perturbation
Radial basis function
radial basis function neural network (RBF NN)
Stochastic processes
Stochastic systems
Stochasticity
time delay
Uncertainty
unknown control gain
Title Further Results on Adaptive Stabilization of High-Order Stochastic Nonlinear Systems Subject to Uncertainties
URI https://ieeexplore.ieee.org/document/8672512
https://www.ncbi.nlm.nih.gov/pubmed/30908242
https://www.proquest.com/docview/2333731778
https://www.proquest.com/docview/2197900368
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbannqh0PJYKJUrcQNvE9vx41ghVhWiiwRdaW-RYztCok2qbnLh1zPjPCQQIG5R7NhJZmx_Mx5_Q8gbWAO1UYKzrA4Vk9F4BloSmBQu50FIVSc6huu1utrIj9tiu0fezWdhYowp-Cwu8TLt5YfW9-gquzBK43K8T_bBcBvOas3-lAxwuUpol-eKMy70djojk9mLm_X601cM5LJLjr47gWyhIsN835L_siSlHCt_h5tp2VkdkevphYdok-_LvquW_sdvXI7_-0WPyaMRf9LLQWGekL3YHJOjKbcDHYf6Cblb9Q-IDemXuOtvux1tG3oZ3D3OjhQQKsbUDic4aVtTjBZhn5HFE8pa_80h-zNdDzQcDm4OvOgUpin0-9CupRvoJkUjIKPrU7JZfbh5f8XG1AzMiyLvGICKuvaxkgAobLBO5lbXINc8OpcLo6LIvK3rIgrBjeOaS18E5cB4il5VRSGekYOmbeILQq0y3urKSB6jzIx1lc6cAs2JToYgswXJJ-mUfuQtx_QZt2WyXzJbJuGWKNxyFO6CvJ2fuR9YO_5Z-wQlM9cchbIgp5MSlOPA3pVcCKEBc2mzIOdzMQxJ3GdxTWx7qAM_A1tWUOf5oDxz25POvfxzn6_IIUeDPvl4TslB99DH14B6uuosqftPJ5v7tw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqcoALBcpjoYCR4ISyTWzHiQ8cKmC1pdtFgl1pb8FxJkKiJFU3EYLfwl_hvzHjPCQQcKvELUqcl_N55vNk_A1jT9EHJqmWIgjLIg8UpC5AlBSBkjYShVS69HIMp0s9X6s3m3izw76Pa2EAwCefwZQ2_b_8onYthcoOU52QO-5TKE_g6xecoG1fHL_Cr_lMiNnr1ct50NcQCJyMoyZA71eWDnKFns8UxqrIJCU-QATWRjLVIENnyjIGKUVqRSKUiwttkeWD03lMNSHQwF9BnhGLbnXYGMEJcSagPb8WkRaBkMlmWJUTmsPVcrl4T6ljZiooWihJn1SGVGFciV-coK_q8neC6x3dbI_9GLqoy2_5NG2bfOq-_aYe-b_24Q12vWfY_KgbEjfZDlS32N5QvYL3xmyffZ61F8R--TvYtmfNltcVPyrsOdl_jhycsoa7Naq8LjnlwwRvSacUj9XuoyV9a77shEYs7uyU3zkaYops8abma7yNz7cgzdrbbH0pL32H7VZ1BfcYNzp1JslTJQBUmBqbJ6HVODbAqqJQ4YRFAxoy1yuzU4GQs8zP0EKTeTBlBKasB9OEPR_POe90Sf7Zep-QMLbsQTBhBwPost50bTMhpUyQVSbphD0ZD6PRoT9JtoK6xTbYGXRljW3udmAdrz1g_P6f7_mYXZ2vThfZ4nh58oBdExS-8BGtA7bbXLTwEDlekz_yQ42zD5eNy5-BmlkP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Further+Results+on+Adaptive+Stabilization+of+High-Order+Stochastic+Nonlinear+Systems+Subject+to+Uncertainties&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Min%2C+Huifang&rft.au=Xu%2C+Shengyuan&rft.au=Gu%2C+Jason&rft.au=Zhang%2C+Baoyong&rft.date=2020-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=1&rft.spage=225&rft_id=info:doi/10.1109%2FTNNLS.2019.2900339&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon