Further Results on Adaptive Stabilization of High-Order Stochastic Nonlinear Systems Subject to Uncertainties
This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay, unknown control gain, and parameter perturbation. The commonly used growth assumptions on system nonlinearities are removed, and the adaptiv...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 1; pp. 225 - 234 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay, unknown control gain, and parameter perturbation. The commonly used growth assumptions on system nonlinearities are removed, and the adaptive control technique is combined with the sign function to deal with the unknown control gain. Then, with the help of the radial basis function neural network approximation approach and Lyapunov-Krasovskii functional, an adaptive state-feedback controller is obtained through the backstepping design procedure. It is verified that the constructed controller can render the closed-loop system semiglobally uniformly ultimately bounded. Finally, both the practical and numerical examples are presented to validate the effectiveness of the proposed scheme. |
---|---|
AbstractList | This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay, unknown control gain, and parameter perturbation. The commonly used growth assumptions on system nonlinearities are removed, and the adaptive control technique is combined with the sign function to deal with the unknown control gain. Then, with the help of the radial basis function neural network approximation approach and Lyapunov-Krasovskii functional, an adaptive state-feedback controller is obtained through the backstepping design procedure. It is verified that the constructed controller can render the closed-loop system semiglobally uniformly ultimately bounded. Finally, both the practical and numerical examples are presented to validate the effectiveness of the proposed scheme. This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay, unknown control gain, and parameter perturbation. The commonly used growth assumptions on system nonlinearities are removed, and the adaptive control technique is combined with the sign function to deal with the unknown control gain. Then, with the help of the radial basis function neural network approximation approach and Lyapunov-Krasovskii functional, an adaptive state-feedback controller is obtained through the backstepping design procedure. It is verified that the constructed controller can render the closed-loop system semiglobally uniformly ultimately bounded. Finally, both the practical and numerical examples are presented to validate the effectiveness of the proposed scheme.This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay, unknown control gain, and parameter perturbation. The commonly used growth assumptions on system nonlinearities are removed, and the adaptive control technique is combined with the sign function to deal with the unknown control gain. Then, with the help of the radial basis function neural network approximation approach and Lyapunov-Krasovskii functional, an adaptive state-feedback controller is obtained through the backstepping design procedure. It is verified that the constructed controller can render the closed-loop system semiglobally uniformly ultimately bounded. Finally, both the practical and numerical examples are presented to validate the effectiveness of the proposed scheme. |
Author | Min, Huifang Xu, Shengyuan Zhang, Zhengqiang Gu, Jason Zhang, Baoyong |
Author_xml | – sequence: 1 givenname: Huifang orcidid: 0000-0002-8015-9649 surname: Min fullname: Min, Huifang email: jiejie1043640772@126.com organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Shengyuan orcidid: 0000-0002-3015-0662 surname: Xu fullname: Xu, Shengyuan email: syxu@njust.edu.cn organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Jason orcidid: 0000-0002-7626-1077 surname: Gu fullname: Gu, Jason email: jason.gu@dal.ca organization: Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Canada – sequence: 4 givenname: Baoyong orcidid: 0000-0001-5271-2462 surname: Zhang fullname: Zhang, Baoyong email: baoyongzhang@njust.edu.cn organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 5 givenname: Zhengqiang orcidid: 0000-0002-7163-7709 surname: Zhang fullname: Zhang, Zhengqiang email: qufuzzq@126.com organization: School of Engineering, Qufu Normal University, Rizhao, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30908242$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9rFDEUxYNUbK39Agoy4Isvs-bPTCZ5LMVaYdmC24JvIZO5cbPMJGuSEeqnN9vd9qEP3pdcLr9zCOe8RSc-eEDoPcELQrD8crdaLdcLiolcUIkxY_IVOqOE05oyIU6e9-7nKbpIaYvLcNzyRr5BpwxLLGhDz9B0Pce8gVj9gDSPOVXBV5eD3mX3B6p11r0b3V-dXTkHW924X5v6Ng6FX-dgNjplZ6pV8KPzoMvxIWWYUrWe-y2YXOVQ3XsDMWvns4P0Dr22ekxwcXzP0f3117urm3p5--371eWyNqwluaaUWWugbwSRcpC6IbKz3AoCWhMmODBspLUtMEaFph1tTDtwTTkGw_u2Zefo88F3F8PvGVJWk0sGxlF7CHNStBjuQ-OioJ9eoNswR19-pyhjrGOk6_bUxyM19xMMahfdpOODegqyAOIAmBhSimCVcfkxtxy1GxXBal-beqxN7WtTx9qKlL6QPrn_V_ThIHIA8CwQvKMtoewfcFejOg |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_procs_2024_11_022 crossref_primary_10_1109_TCSI_2019_2958327 crossref_primary_10_1002_acs_3285 crossref_primary_10_1016_j_amc_2020_125397 crossref_primary_10_1016_j_neucom_2023_126939 crossref_primary_10_1007_s12555_021_0216_8 crossref_primary_10_1007_s11071_022_07573_6 crossref_primary_10_1115_1_4048587 crossref_primary_10_1016_j_neucom_2023_126266 crossref_primary_10_1016_j_ins_2021_04_020 crossref_primary_10_1109_TASE_2023_3269509 crossref_primary_10_1109_TCSI_2019_2933164 crossref_primary_10_1007_s11071_022_07297_7 crossref_primary_10_1093_imamci_dnab019 crossref_primary_10_1007_s00521_023_09123_6 crossref_primary_10_1007_s11071_024_09988_9 crossref_primary_10_1016_j_jfranklin_2020_09_022 crossref_primary_10_1016_j_procs_2024_11_013 crossref_primary_10_1109_TCSII_2019_2933468 crossref_primary_10_1016_j_procs_2024_11_015 crossref_primary_10_1109_TNNLS_2021_3084295 crossref_primary_10_1109_TCSII_2020_3010100 crossref_primary_10_1109_TNNLS_2021_3070623 crossref_primary_10_1109_TSMC_2019_2951727 crossref_primary_10_1109_TNNLS_2021_3105664 crossref_primary_10_1007_s12555_019_0986_4 crossref_primary_10_1177_01423312231200040 crossref_primary_10_1109_TNNLS_2022_3176625 crossref_primary_10_1007_s11432_023_3981_9 crossref_primary_10_1109_ACCESS_2020_2996271 crossref_primary_10_1002_rnc_5555 crossref_primary_10_1080_00207179_2019_1662093 crossref_primary_10_1109_TNNLS_2020_3046865 crossref_primary_10_1109_TFUZZ_2020_2981917 crossref_primary_10_1177_01423312241293250 crossref_primary_10_1109_TFUZZ_2024_3384588 crossref_primary_10_1049_cth2_12566 crossref_primary_10_1109_TSMC_2023_3298923 crossref_primary_10_1002_rnc_4560 crossref_primary_10_1109_TSMC_2023_3234177 |
Cites_doi | 10.1109/TAC.2005.849237 10.1016/j.neucom.2013.09.005 10.1002/rnc.2985 10.1007/978-1-4612-4342-7 10.1109/TFUZZ.2013.2291554 10.1109/TNNLS.2017.2669088 10.1049/iet-cta.2017.0350 10.1109/TSMC.2016.2562511 10.1109/TSMCB.2009.2033808 10.1016/0022-0396(83)90061-X 10.1080/00207721.2017.1316885 10.1016/j.jfranklin.2016.08.014 10.1109/TIE.2017.2784347 10.23919/ACC.1991.4791778 10.1080/00207170701598478 10.1016/j.automatica.2013.01.007 10.1109/TAC.2012.2208297 10.1016/j.automatica.2012.06.061 10.1109/TAC.2002.808481 10.1016/S0167-6911(97)00068-6 10.1049/iet-cta.2016.1139 10.1002/acs.2686 10.1109/TAC.2002.803542 10.1002/rnc.3730 10.1016/j.automatica.2014.11.013 10.1109/TAC.2018.2828084 10.1016/j.automatica.2019.01.004 10.1109/TSMC.2016.2608799 10.1109/TNNLS.2014.2347290 10.1016/j.amc.2017.09.037 10.1109/TNNLS.2014.2334638 10.1007/978-1-4612-0039-0 10.1109/TNN.2007.901274 10.1109/TAC.2010.2043004 10.1007/978-94-009-9121-7 10.1109/9.940927 10.1109/TNB.2018.2887305 10.1080/00207170701418917 10.1016/0167-6911(83)90021-X 10.1016/j.automatica.2011.01.084 10.1016/j.automatica.2011.09.014 10.1109/TAC.2016.2562059 10.1109/TNNLS.2012.2223824 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2019.2900339 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 234 |
ExternalDocumentID | 30908242 10_1109_TNNLS_2019_2900339 8672512 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions funderid: 10.13039/501100012246 – fundername: National Natural Science Foundation of China grantid: 61673215; 61473151; 61374087; 61873330; 61573172; 61503166; 61703132 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Shandong Province grantid: JQ201515 funderid: 10.13039/501100007129 – fundername: Key Laboratory of Jiangsu Province – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20140770 funderid: 10.13039/501100004608 – fundername: Program for Changjiang Scholars and Innovative Research Team in University grantid: IRT13072 – fundername: Taishan Scholar Project of Shandong Province grantid: tsqn20161032 funderid: 10.13039/501100010040 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038 – fundername: 333 Project grantid: BRA2017380 – fundername: Fundamental Research Funds for the Central Universities grantid: 30916015105 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-223ffceb48199d9a4197f6f81eaa1386e30c9ff5e3328a2724c5d6a260ec6b553 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 11:22:16 EDT 2025 Mon Jun 30 06:47:19 EDT 2025 Thu Jan 02 22:59:11 EST 2025 Tue Jul 01 00:27:29 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Wed Aug 27 06:28:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-223ffceb48199d9a4197f6f81eaa1386e30c9ff5e3328a2724c5d6a260ec6b553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7626-1077 0000-0001-5271-2462 0000-0002-3015-0662 0000-0002-8015-9649 0000-0002-7163-7709 |
PMID | 30908242 |
PQID | 2333731778 |
PQPubID | 85436 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2333731778 pubmed_primary_30908242 proquest_miscellaneous_2197900368 crossref_primary_10_1109_TNNLS_2019_2900339 crossref_citationtrail_10_1109_TNNLS_2019_2900339 ieee_primary_8672512 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan. 2020-1-00 2020-Jan 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref45 ref23 ref26 fu (ref14) 2005; 50 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 mao (ref7) 2007 qian (ref31) 2005 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – volume: 50 start-page: 847 year: 2005 ident: ref14 article-title: Output feedback stabilization for a class of stochastic time-delay nonlinear systems publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2005.849237 – ident: ref26 doi: 10.1016/j.neucom.2013.09.005 – ident: ref33 doi: 10.1002/rnc.2985 – ident: ref11 doi: 10.1007/978-1-4612-4342-7 – ident: ref38 doi: 10.1109/TFUZZ.2013.2291554 – ident: ref39 doi: 10.1109/TNNLS.2017.2669088 – ident: ref29 doi: 10.1049/iet-cta.2017.0350 – start-page: 4708 year: 2005 ident: ref31 article-title: A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems publication-title: Proc Amer Control Conf – ident: ref27 doi: 10.1109/TSMC.2016.2562511 – year: 2007 ident: ref7 publication-title: Stochastic Differential Equations and Their Applications – ident: ref25 doi: 10.1109/TSMCB.2009.2033808 – ident: ref12 doi: 10.1016/0022-0396(83)90061-X – ident: ref16 doi: 10.1080/00207721.2017.1316885 – ident: ref5 doi: 10.1016/j.jfranklin.2016.08.014 – ident: ref4 doi: 10.1109/TIE.2017.2784347 – ident: ref21 doi: 10.23919/ACC.1991.4791778 – ident: ref17 doi: 10.1080/00207170701598478 – ident: ref18 doi: 10.1016/j.automatica.2013.01.007 – ident: ref32 doi: 10.1109/TAC.2012.2208297 – ident: ref34 doi: 10.1016/j.automatica.2012.06.061 – ident: ref13 doi: 10.1109/TAC.2002.808481 – ident: ref9 doi: 10.1016/S0167-6911(97)00068-6 – ident: ref36 doi: 10.1049/iet-cta.2016.1139 – ident: ref40 doi: 10.1002/acs.2686 – ident: ref41 doi: 10.1109/TAC.2002.803542 – ident: ref35 doi: 10.1002/rnc.3730 – ident: ref3 doi: 10.1016/j.automatica.2014.11.013 – ident: ref15 doi: 10.1109/TAC.2018.2828084 – ident: ref19 doi: 10.1016/j.automatica.2019.01.004 – ident: ref20 doi: 10.1109/TSMC.2016.2608799 – ident: ref24 doi: 10.1109/TNNLS.2014.2347290 – ident: ref2 doi: 10.1016/j.amc.2017.09.037 – ident: ref23 doi: 10.1109/TNNLS.2014.2334638 – ident: ref1 doi: 10.1007/978-1-4612-0039-0 – ident: ref22 doi: 10.1109/TNN.2007.901274 – ident: ref44 doi: 10.1109/TAC.2010.2043004 – ident: ref8 doi: 10.1007/978-94-009-9121-7 – ident: ref10 doi: 10.1109/9.940927 – ident: ref6 doi: 10.1109/TNB.2018.2887305 – ident: ref43 doi: 10.1080/00207170701418917 – ident: ref37 doi: 10.1016/0167-6911(83)90021-X – ident: ref45 doi: 10.1016/j.automatica.2011.01.084 – ident: ref30 doi: 10.1016/j.automatica.2011.09.014 – ident: ref42 doi: 10.1109/TAC.2016.2562059 – ident: ref28 doi: 10.1109/TNNLS.2012.2223824 |
SSID | ssj0000605649 |
Score | 2.4727266 |
Snippet | This paper concerns the adaptive state-feedback control for a class of high-order stochastic nonlinear systems with uncertainties including time-varying delay,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 225 |
SubjectTerms | Adaptive control Adaptive systems Artificial neural networks Control systems Delays Feedback Feedback control high-order stochastic nonlinear systems Neural networks Nonlinear systems Parameter uncertainty Perturbation Radial basis function radial basis function neural network (RBF NN) Stochastic processes Stochastic systems Stochasticity time delay Uncertainty unknown control gain |
Title | Further Results on Adaptive Stabilization of High-Order Stochastic Nonlinear Systems Subject to Uncertainties |
URI | https://ieeexplore.ieee.org/document/8672512 https://www.ncbi.nlm.nih.gov/pubmed/30908242 https://www.proquest.com/docview/2333731778 https://www.proquest.com/docview/2197900368 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbannqh0PJYKJUrcQNvE9vx41ghVhWiiwRdaW-RYztCok2qbnLh1zPjPCQQIG5R7NhJZmx_Mx5_Q8gbWAO1UYKzrA4Vk9F4BloSmBQu50FIVSc6huu1utrIj9tiu0fezWdhYowp-Cwu8TLt5YfW9-gquzBK43K8T_bBcBvOas3-lAxwuUpol-eKMy70djojk9mLm_X601cM5LJLjr47gWyhIsN835L_siSlHCt_h5tp2VkdkevphYdok-_LvquW_sdvXI7_-0WPyaMRf9LLQWGekL3YHJOjKbcDHYf6Cblb9Q-IDemXuOtvux1tG3oZ3D3OjhQQKsbUDic4aVtTjBZhn5HFE8pa_80h-zNdDzQcDm4OvOgUpin0-9CupRvoJkUjIKPrU7JZfbh5f8XG1AzMiyLvGICKuvaxkgAobLBO5lbXINc8OpcLo6LIvK3rIgrBjeOaS18E5cB4il5VRSGekYOmbeILQq0y3urKSB6jzIx1lc6cAs2JToYgswXJJ-mUfuQtx_QZt2WyXzJbJuGWKNxyFO6CvJ2fuR9YO_5Z-wQlM9cchbIgp5MSlOPA3pVcCKEBc2mzIOdzMQxJ3GdxTWx7qAM_A1tWUOf5oDxz25POvfxzn6_IIUeDPvl4TslB99DH14B6uuosqftPJ5v7tw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqcoALBcpjoYCR4ISyTWzHiQ8cKmC1pdtFgl1pb8FxJkKiJFU3EYLfwl_hvzHjPCQQcKvELUqcl_N55vNk_A1jT9EHJqmWIgjLIg8UpC5AlBSBkjYShVS69HIMp0s9X6s3m3izw76Pa2EAwCefwZQ2_b_8onYthcoOU52QO-5TKE_g6xecoG1fHL_Cr_lMiNnr1ct50NcQCJyMoyZA71eWDnKFns8UxqrIJCU-QATWRjLVIENnyjIGKUVqRSKUiwttkeWD03lMNSHQwF9BnhGLbnXYGMEJcSagPb8WkRaBkMlmWJUTmsPVcrl4T6ljZiooWihJn1SGVGFciV-coK_q8neC6x3dbI_9GLqoy2_5NG2bfOq-_aYe-b_24Q12vWfY_KgbEjfZDlS32N5QvYL3xmyffZ61F8R--TvYtmfNltcVPyrsOdl_jhycsoa7Naq8LjnlwwRvSacUj9XuoyV9a77shEYs7uyU3zkaYops8abma7yNz7cgzdrbbH0pL32H7VZ1BfcYNzp1JslTJQBUmBqbJ6HVODbAqqJQ4YRFAxoy1yuzU4GQs8zP0EKTeTBlBKasB9OEPR_POe90Sf7Zep-QMLbsQTBhBwPost50bTMhpUyQVSbphD0ZD6PRoT9JtoK6xTbYGXRljW3udmAdrz1g_P6f7_mYXZ2vThfZ4nh58oBdExS-8BGtA7bbXLTwEDlekz_yQ42zD5eNy5-BmlkP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Further+Results+on+Adaptive+Stabilization+of+High-Order+Stochastic+Nonlinear+Systems+Subject+to+Uncertainties&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Min%2C+Huifang&rft.au=Xu%2C+Shengyuan&rft.au=Gu%2C+Jason&rft.au=Zhang%2C+Baoyong&rft.date=2020-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=1&rft.spage=225&rft_id=info:doi/10.1109%2FTNNLS.2019.2900339&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |