Development of a Biomimetic Extensor Mechanism for Restoring Normal Kinematics of Finger Movements Post-Stroke

Cable-driven devices for hands allow compact and lightweight design that could provide various functional movements. However, for many patients post-stroke, cable-driven devices produce nonphysiologic movements, such as metacarpophalangeal joint hyperextension, due to their abnormal passive joint im...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 27; no. 10; pp. 2107 - 2117
Main Authors Kim, Dong Hyun, Lee, Sang Wook, Park, Hyung Soon
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cable-driven devices for hands allow compact and lightweight design that could provide various functional movements. However, for many patients post-stroke, cable-driven devices produce nonphysiologic movements, such as metacarpophalangeal joint hyperextension, due to their abnormal passive joint impedance. In this study, we developed a novel bio-inspired device mimicking the anatomy of the extensor mechanism of the human finger, which can be tuned for individuals to provide `subject-specific' assistance to achieve physiological movement patterns. We first evaluated the proposed design via mathematical modeling and computer simulation. Its performance was then tested experimentally with twenty-four subjects, including six healthy and eighteen chronic stroke survivors. We determined the loading condition of the device from the experimental identification of passive joint impedance of each subject before device use. Our results showed that the proposed design could achieve improved spatiotemporal coordination of finger movements compared to conventional cable-driven design by providing `subject-specific' assistance based on identified passive stiffness values of each subject. We also identified a significant (negative) correlation between the metacarpophalangeal joint stiffness and the intrinsic exotendon loading level across subjects. The proposed system can restore normal movement patterns for patients with different types of impairments, which were previously found important in improving rehabilitative outcomes.
AbstractList Cable-driven devices for hands allow compact and lightweight design that could provide various functional movements. However, for many patients post-stroke, cable-driven devices produce nonphysiologic movements, such as metacarpophalangeal joint hyperextension, due to their abnormal passive joint impedance. In this study, we developed a novel bio-inspired device mimicking the anatomy of the extensor mechanism of the human finger, which can be tuned for individuals to provide ‘subject-specific’ assistance to achieve physiological movement patterns. We first evaluated the proposed design via mathematical modeling and computer simulation. Its performance was then tested experimentally with twenty-four subjects, including six healthy and eighteen chronic stroke survivors. We determined the loading condition of the device from the experimental identification of passive joint impedance of each subject before device use. Our results showed that the proposed design could achieve improved spatiotemporal coordination of finger movements compared to conventional cable-driven design by providing ‘subject-specific’ assistance based on identified passive stiffness values of each subject. We also identified a significant (negative) correlation between the metacarpophalangeal joint stiffness and the intrinsic exotendon loading level across subjects. The proposed system can restore normal movement patterns for patients with different types of impairments, which were previously found important in improving rehabilitative outcomes.
Cable-driven devices for hands allow compact and lightweight design that could provide various functional movements. However, for many patients post-stroke, cable-driven devices produce nonphysiologic movements, such as metacarpophalangeal joint hyperextension, due to their abnormal passive joint impedance. In this study, we developed a novel bio-inspired device mimicking the anatomy of the extensor mechanism of the human finger, which can be tuned for individuals to provide 'subject-specific' assistance to achieve physiological movement patterns. We first evaluated the proposed design via mathematical modeling and computer simulation. Its performance was then tested experimentally with twenty-four subjects, including six healthy and eighteen chronic stroke survivors. We determined the loading condition of the device from the experimental identification of passive joint impedance of each subject before device use. Our results showed that the proposed design could achieve improved spatiotemporal coordination of finger movements compared to conventional cable-driven design by providing 'subject-specific' assistance based on identified passive stiffness values of each subject. We also identified a significant (negative) correlation between the metacarpophalangeal joint stiffness and the intrinsic exotendon loading level across subjects. The proposed system can restore normal movement patterns for patients with different types of impairments, which were previously found important in improving rehabilitative outcomes.Cable-driven devices for hands allow compact and lightweight design that could provide various functional movements. However, for many patients post-stroke, cable-driven devices produce nonphysiologic movements, such as metacarpophalangeal joint hyperextension, due to their abnormal passive joint impedance. In this study, we developed a novel bio-inspired device mimicking the anatomy of the extensor mechanism of the human finger, which can be tuned for individuals to provide 'subject-specific' assistance to achieve physiological movement patterns. We first evaluated the proposed design via mathematical modeling and computer simulation. Its performance was then tested experimentally with twenty-four subjects, including six healthy and eighteen chronic stroke survivors. We determined the loading condition of the device from the experimental identification of passive joint impedance of each subject before device use. Our results showed that the proposed design could achieve improved spatiotemporal coordination of finger movements compared to conventional cable-driven design by providing 'subject-specific' assistance based on identified passive stiffness values of each subject. We also identified a significant (negative) correlation between the metacarpophalangeal joint stiffness and the intrinsic exotendon loading level across subjects. The proposed system can restore normal movement patterns for patients with different types of impairments, which were previously found important in improving rehabilitative outcomes.
Author Kim, Dong Hyun
Lee, Sang Wook
Park, Hyung Soon
Author_xml – sequence: 1
  givenname: Dong Hyun
  orcidid: 0000-0001-5954-5548
  surname: Kim
  fullname: Kim, Dong Hyun
  email: bomdon@kaist.ac.kr
  organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
– sequence: 2
  givenname: Sang Wook
  orcidid: 0000-0002-9732-0427
  surname: Lee
  fullname: Lee, Sang Wook
  email: leesw@cua.edu
  organization: Department of Biomedical Engineering, Catholic University of America, Washington, DC, USA
– sequence: 3
  givenname: Hyung Soon
  orcidid: 0000-0003-4274-7420
  surname: Park
  fullname: Park, Hyung Soon
  email: hyungspark@kaist.ac.kr
  organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31484125$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URH_gBUBCltiwyeDfxF5CmQKiFNSWteUk1-AS24OdqeDtcZgpiy5Y2Za_7-jqnmN0EFMEhJ5SsqKU6FfXF1eX6xUjVK-Y5qql7QN0RKVUDWGUHCx3LhrBGTlEx6XcEEK7VnaP0CGnQgnK5BGKb-EWprQJEGecHLb4jU_BB5j9gNe_ZoglZfwJhu82-hKwq69LKHPKPn7DFykHO-GPPkKw1ShLxFn9geqkW1hSC_6SytxczTn9gMfoobNTgSf78wR9PVtfn75vzj-_-3D6-rwZuKRzwwhzUnHNZd-OrSK81b1STvdd28MoByaltZRw4TpmRydaPTrei5Fw1TshRn6CXu5yNzn93NZ5TfBlgGmyEdK2GMaUpES2nFb0xT30Jm1zrNMZxknHWKcVq9TzPbXtA4xmk32w-be522QF1A4YciolgzODn-tOUpyz9ZOhxCylmb-lmaU0sy-tquyeepf-X-nZTvIA8E9QilGuFf8Dn0iiSA
CODEN ITNSB3
CitedBy_id crossref_primary_10_3390_biomimetics9110706
crossref_primary_10_1109_LRA_2024_3362593
crossref_primary_10_1109_TMRB_2024_3407374
crossref_primary_10_1109_TBME_2022_3191690
crossref_primary_10_1109_TMRB_2024_3387334
crossref_primary_10_1115_1_4051528
crossref_primary_10_3390_s23042272
crossref_primary_10_1186_s12984_022_00988_7
crossref_primary_10_3389_fbioe_2023_895745
crossref_primary_10_1186_s10033_023_00882_w
crossref_primary_10_1109_TII_2022_3210255
crossref_primary_10_1089_soro_2020_0167
Cites_doi 10.1016/0363-5023(92)90446-V
10.1016/j.apmr.2007.01.003
10.1109/MRA.2014.2362863
10.1097/WCO.0b013e32833e99a4
10.1016/j.mechmachtheory.2013.08.001
10.1109/TNSRE.2015.2513675
10.1109/ICORR.2017.8009432
10.1016/j.jhsa.2003.10.025
10.1016/j.joca.2012.09.012
10.1007/s00221-010-2193-7
10.1109/ICORR.2011.5975340
10.1007/s10514-016-9589-6
10.1016/0021-9290(94)00054-8
10.1109/TNSRE.2018.2800052
10.5435/00124635-200509000-00007
10.1109/TBME.2006.889200
10.1161/01.STR.0000143153.76460.7d
10.3389/fneur.2010.00149
10.1109/TNSRE.2019.2924208
10.1148/rg.233025079
10.1016/0021-9290(83)90074-X
10.1007/BF00241969
10.1109/TNSRE.2014.2298362
10.1016/0021-9290(88)90238-2
10.1109/IECBES.2012.6498090
10.1115/1.4033831
10.1201/9781315136370
10.1302/0301-620X.68B2.3958008
10.1186/1743-0003-7-36
10.1177/1545968317732662
10.1310/tsr1401-1
10.1007/s00221-002-1177-7
10.2106/00004623-196446080-00005
10.1115/1.2978983
10.1109/TBME.2009.2019119
10.1007/s10439-005-3320-7
10.1093/brain/awm311
10.1177/1545968308328727
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2019.2938616
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2117
ExternalDocumentID 31484125
10_1109_TNSRE_2019_2938616
8821398
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: National Research Foundation of Korea
  grantid: NRF-2016R1A5A1938472; NRF-2017R1A2B4011961
  funderid: 10.13039/501100003725
– fundername: National Research Foundation of Korea
  grantid: NRF-2015M3C1B2052817
  funderid: 10.13039/501100003725
– fundername: Convergence Technology Development Program for Bionic Arm through the National Research Foundation of Korea (NRF)
– fundername: National Science Foundation
  grantid: CBET-1452763
  funderid: 10.13039/100000001
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c351t-202f583935b6d680369b88f9b76bed5c255aa1034f72adf469df3b4d038bf44d3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 06:27:29 EDT 2025
Mon Jul 14 08:21:59 EDT 2025
Wed Feb 19 02:32:16 EST 2025
Tue Jul 01 00:43:19 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-202f583935b6d680369b88f9b76bed5c255aa1034f72adf469df3b4d038bf44d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5954-5548
0000-0003-4274-7420
0000-0002-9732-0427
PMID 31484125
PQID 2307227982
PQPubID 85423
PageCount 11
ParticipantIDs proquest_miscellaneous_2285105631
pubmed_primary_31484125
crossref_citationtrail_10_1109_TNSRE_2019_2938616
ieee_primary_8821398
proquest_journals_2307227982
crossref_primary_10_1109_TNSRE_2019_2938616
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
xu (ref20) 2016
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref39
ref38
ref16
ref19
ref18
lee (ref10) 2009; 56
ref24
ref23
houglum (ref26) 2011
ref25
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
gillen (ref17) 2015
ref4
ref3
ref6
ref5
ref40
lee (ref9) 2014; 22
References_xml – ident: ref30
  doi: 10.1016/0363-5023(92)90446-V
– ident: ref18
  doi: 10.1016/j.apmr.2007.01.003
– ident: ref8
  doi: 10.1109/MRA.2014.2362863
– ident: ref1
  doi: 10.1097/WCO.0b013e32833e99a4
– ident: ref22
  doi: 10.1016/j.mechmachtheory.2013.08.001
– ident: ref12
  doi: 10.1109/TNSRE.2015.2513675
– start-page: 254
  year: 2011
  ident: ref26
  publication-title: Brunnstrom's Clinical Kinesiology
– ident: ref21
  doi: 10.1109/ICORR.2017.8009432
– ident: ref35
  doi: 10.1016/j.jhsa.2003.10.025
– ident: ref15
  doi: 10.1016/j.joca.2012.09.012
– ident: ref38
  doi: 10.1007/s00221-010-2193-7
– ident: ref4
  doi: 10.1109/ICORR.2011.5975340
– ident: ref40
  doi: 10.1007/s10514-016-9589-6
– ident: ref16
  doi: 10.1016/0021-9290(94)00054-8
– start-page: 3485
  year: 2016
  ident: ref20
  article-title: Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration
  publication-title: Proc IEEE Int Conf Robot Autom (ICRA)
– ident: ref39
  doi: 10.1109/TNSRE.2018.2800052
– ident: ref36
  doi: 10.5435/00124635-200509000-00007
– ident: ref32
  doi: 10.1109/TBME.2006.889200
– ident: ref41
  doi: 10.1161/01.STR.0000143153.76460.7d
– ident: ref11
  doi: 10.3389/fneur.2010.00149
– ident: ref37
  doi: 10.1109/TNSRE.2019.2924208
– start-page: 538
  year: 2015
  ident: ref17
  publication-title: Stroke Rehabilitation A Function-Based Approach
– ident: ref19
  doi: 10.1148/rg.233025079
– ident: ref25
  doi: 10.1016/0021-9290(83)90074-X
– ident: ref28
  doi: 10.1007/BF00241969
– volume: 22
  start-page: 886
  year: 2014
  ident: ref9
  article-title: Development of a biomimetic hand exotendon device (BiomHED) for restoration of functional hand movement post-stroke
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2014.2298362
– ident: ref23
  doi: 10.1016/0021-9290(88)90238-2
– ident: ref6
  doi: 10.1109/IECBES.2012.6498090
– ident: ref7
  doi: 10.1115/1.4033831
– ident: ref24
  doi: 10.1201/9781315136370
– ident: ref34
  doi: 10.1302/0301-620X.68B2.3958008
– ident: ref3
  doi: 10.1186/1743-0003-7-36
– ident: ref14
  doi: 10.1177/1545968317732662
– ident: ref5
  doi: 10.1310/tsr1401-1
– ident: ref29
  doi: 10.1007/s00221-002-1177-7
– ident: ref31
  doi: 10.2106/00004623-196446080-00005
– ident: ref33
  doi: 10.1115/1.2978983
– volume: 56
  start-page: 2253
  year: 2009
  ident: ref10
  article-title: Modeling of multiarticular muscles: Importance of inclusion of tendon-pulley interactions in the finger
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2019119
– ident: ref27
  doi: 10.1007/s10439-005-3320-7
– ident: ref2
  doi: 10.1093/brain/awm311
– ident: ref13
  doi: 10.1177/1545968308328727
SSID ssj0017657
Score 2.3571434
Snippet Cable-driven devices for hands allow compact and lightweight design that could provide various functional movements. However, for many patients post-stroke,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2107
SubjectTerms biomimetic
Biomimetics
Computer simulation
Design
Electronics packaging
exoskeleton
extensor mechanism
Finger
Force
Hand
Hand (anatomy)
Impedance
Kinematics
Knee
Mathematical model
Mathematical models
Mimicry
Robot kinematics
robotics
Stiffness
Stroke
subject-specific
Title Development of a Biomimetic Extensor Mechanism for Restoring Normal Kinematics of Finger Movements Post-Stroke
URI https://ieeexplore.ieee.org/document/8821398
https://www.ncbi.nlm.nih.gov/pubmed/31484125
https://www.proquest.com/docview/2307227982
https://www.proquest.com/docview/2285105631
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbannbZo93DW1dowLbL5tS2ZFk-tkWCYkNyaFOgN8OypSJoYw-xc9mvHyk_kA1bsYMBA5blB0nwo0R-BPiITi0xKrA-QmHrizTnfm6i2Dc6TkqujYysy7ZYyMsb8e02vt2Dr2MtjDHGJZ-ZCZ26vfyyLra0VHaKaBABi9qHfQzculqtcccgkY7VEw1Y-IJHwVAgE6Sny8X11ZSyuNIJOjclQ-pbxDEOECF1yN7xR67Byr-xpvM5s2cwH962SzW5n2xbPSl-_kHk-L-f8xye9uCTnXXa8gL2THUIn3aJhtmyYxlgn9nVbxzeR1Dt5Bex2rKcna_q9WpNVZBsSmvpTb1hc0OlxKtmzRAN4xyOhKS6YwvCxg_sO4JaRxLb0BQzt6bI5rUjLW8bRq2D_et2U9-bl3Azmy4vLv2-W4Nf8Dhs0dwiGyuq9NWylAo9Y6qVsqlOpDZlXGDskudhwIVNory0GJaXlmtRBlxpK0TJX8FBVVfmDTCjRCFTiUeYisgWCqcNlQ1zbotAlsqDcJBZVvS_gTpqPGQupAnSzIk8I5Fnvcg9-DLe86Mj8nh09BHJaxzZi8qD40E1st7Wm4xS6YmHUUUefBgvo5XS1ktemXqLYyJFSFby0IPXnUqNcw-a-Pbvz3wHT-jNugTCYzhoN1vzHoFQq0-cBfwC9C0Cvw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoBLeRRKoICRgAtkm8SO4xwB7Wqh3T20W6m3KE5stGo3qTbZC7-eGScbLQgQh0iR4jiPmdF8Y898A_AWnVpiVGB9hMLWF2nO_dxEsW90nJRcGxlZl20xl9NL8e0qvtqDj0MtjDHGJZ-ZEZ26vfyyLja0VHaCaBABi7oDd9Hvx2FXrTXsGSTS8XqiCQtf8CjYlsgE6clifnE-pjyudITuTcmQOhdxjARESD2ydzySa7Hyd7TpvM7kAcy279slm1yPNq0eFT9-o3L83w96CAc9_GSfOn15BHumegzvdqmG2aLjGWDv2fkvLN6HUO1kGLHaspx9Xtar5YrqINmYVtObes1mhoqJl82KIR7GORwNSfWdzQkd37BThLWOJrahKSZuVZHNakdb3jaMmgf7F-26vjZP4HIyXnyZ-n2_Br_gcdiiwUU2VlTrq2UpFfrGVCtlU51Ibcq4wOglz8OAC5tEeWkxMC8t16IMuNJWiJI_hf2qrswzYEaJQqYSjzAVkS0UThsqG-bcFoEslQfhVmZZ0f8G6qlxk7mgJkgzJ_KMRJ71Ivfgw3DPbUfl8c_RhySvYWQvKg-Ot6qR9dbeZJRMT0yMKvLgzXAZ7ZQ2X_LK1BscEynCspKHHhx1KjXMvdXE539-5mu4N13MzrKzr_PTF3Cf3rJLJzyG_Xa9MS8RFrX6lbOGn5SBBgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Biomimetic+Extensor+Mechanism+for+Restoring+Normal+Kinematics+of+Finger+Movements+Post-Stroke&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Kim%2C+Dong+Hyun&rft.au=Lee%2C+Sang+Wook&rft.au=Park%2C+Hyung+Soon&rft.date=2019-10-01&rft.eissn=1558-0210&rft.volume=27&rft.issue=10&rft.spage=2107&rft_id=info:doi/10.1109%2FTNSRE.2019.2938616&rft_id=info%3Apmid%2F31484125&rft.externalDocID=31484125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon