Online Optimization With Costly and Noisy Measurements Using Random Fourier Expansions

This paper analyzes data-based online nonlinear extremum-seeker (DONE), an online optimization algorithm that iteratively minimizes an unknown function based on costly and noisy measurements. The algorithm maintains a surrogate of the unknown function in the form of a random Fourier expansion. The s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 1; pp. 167 - 182
Main Authors Bliek, Laurens, Verstraete, Hans R. G. W., Verhaegen, Michel, Wahls, Sander
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper analyzes data-based online nonlinear extremum-seeker (DONE), an online optimization algorithm that iteratively minimizes an unknown function based on costly and noisy measurements. The algorithm maintains a surrogate of the unknown function in the form of a random Fourier expansion. The surrogate is updated whenever a new measurement is available, and then used to determine the next measurement point. The algorithm is comparable with Bayesian optimization algorithms, but its computational complexity per iteration does not depend on the number of measurements. We derive several theoretical results that provide insight on how the hyperparameters of the algorithm should be chosen. The algorithm is compared with a Bayesian optimization algorithm for an analytic benchmark problem and three applications, namely, optical coherence tomography, optical beam-forming network tuning, and robot arm control. It is found that the DONE algorithm is significantly faster than Bayesian optimization in the discussed problems while achieving a similar or better performance.
AbstractList This paper analyzes data-based online nonlinear extremum-seeker (DONE), an online optimization algorithm that iteratively minimizes an unknown function based on costly and noisy measurements. The algorithm maintains a surrogate of the unknown function in the form of a random Fourier expansion. The surrogate is updated whenever a new measurement is available, and then used to determine the next measurement point. The algorithm is comparable with Bayesian optimization algorithms, but its computational complexity per iteration does not depend on the number of measurements. We derive several theoretical results that provide insight on how the hyperparameters of the algorithm should be chosen. The algorithm is compared with a Bayesian optimization algorithm for an analytic benchmark problem and three applications, namely, optical coherence tomography, optical beam-forming network tuning, and robot arm control. It is found that the DONE algorithm is significantly faster than Bayesian optimization in the discussed problems while achieving a similar or better performance.
Author Verhaegen, Michel
Wahls, Sander
Bliek, Laurens
Verstraete, Hans R. G. W.
Author_xml – sequence: 1
  givenname: Laurens
  surname: Bliek
  fullname: Bliek, Laurens
  email: l.bliek@tudelft.nl
  organization: Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands
– sequence: 2
  givenname: Hans R. G. W.
  surname: Verstraete
  fullname: Verstraete, Hans R. G. W.
  email: h.r.g.w.verstraete@tudelft.nl
  organization: Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands
– sequence: 3
  givenname: Michel
  surname: Verhaegen
  fullname: Verhaegen, Michel
  organization: Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands
– sequence: 4
  givenname: Sander
  surname: Wahls
  fullname: Wahls, Sander
  organization: Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27831891$$D View this record in MEDLINE/PubMed
BookMark eNpdkMFOGzEQhi0EKpTyAq1UWeqll6Qee-21j1UEFCkkUgstN8vZnQWjXTtd70qkT48hIYf6Mpbmm1-_vvfkMMSAhHwENgVg5tvNYjH_NeUM1JQrkCCKA3LCQfEJF1of7v_l3TE5S-mR5aeYVIV5R455qQVoAyfk9zK0PiBdrgff-X9u8DHQP354oLOYhnZDXajpIvq0odfo0thjh2FI9Db5cE9_5m3s6EUce489PX9au5ByQvpAjhrXJjzbzVNye3F-M_sxmS8vr2bf55NKSBgmIBXTtai1UnWhwTmHRS5ZGd406Bxo0QiBhqtKVhJgxRFLzQxfCcVBOCNOyddt7rqPf0dMg-18qrBtXcA4JpsTDADXXGf0y3_oY64dcjsLRhfSSJAiU3xLVX1MqcfGrnvfuX5jgdkX8fZVvH0Rb3fi89HnXfS46rDen7xpzsCnLeARcb8uS66ZFuIZH9eIHQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_automatica_2024_111656
crossref_primary_10_1109_LSP_2019_2907480
crossref_primary_10_1109_TAES_2022_3208865
crossref_primary_10_1016_j_jfranklin_2019_01_050
crossref_primary_10_1109_ACCESS_2020_2968753
crossref_primary_10_1364_OL_403135
crossref_primary_10_1007_s11424_022_1502_0
crossref_primary_10_1016_j_dsp_2020_102797
crossref_primary_10_1016_j_firesaf_2022_103591
crossref_primary_10_1109_TIM_2022_3173628
crossref_primary_10_1007_s10472_020_09712_4
crossref_primary_10_1016_j_sigpro_2020_107712
crossref_primary_10_1016_j_sigpro_2024_109525
crossref_primary_10_1364_OE_26_027161
crossref_primary_10_1007_s11063_023_11191_7
crossref_primary_10_1109_TCYB_2019_2959834
crossref_primary_10_1109_TCSI_2018_2825241
crossref_primary_10_1016_j_asoc_2023_110744
crossref_primary_10_1109_JLT_2019_2926621
crossref_primary_10_1109_TASLP_2021_3126943
crossref_primary_10_1364_OPTICA_479962
Cites_doi 10.1109/JLT.2009.2029705
10.1364/OL.38.004801
10.1007/s10514-009-9130-2
10.1007/0-387-30065-1_16
10.1007/BF01100691
10.1007/BF00941892
10.1023/A:1008306431147
10.1002/9780470529188
10.2307/2006193
10.1137/050646706
10.1214/aoms/1177697731
10.1007/s10898-012-9951-y
10.1364/AOMS.2015.AOM3F.3
10.1137/0805015
10.1186/2251-7456-6-4
10.1007/s00158-015-1236-x
10.1093/comjnl/7.4.308
10.1109/18.256500
10.1109/MWP.2006.346543
10.1016/j.neucom.2008.08.021
10.1214/aos/1176348546
10.1109/72.788640
10.1364/OE.22.032406
10.1109/ALLERTON.2008.4797607
10.1214/009053607000000677
10.1016/j.ifacol.2015.11.078
10.1109/TNNLS.2013.2258936
10.21236/ADA260100
10.1007/978-3-642-25566-3_40
10.1137/1.9780898718768
10.1109/MLSP.2012.6349811
10.1364/OL.40.005722
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2016.2615134
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 182
ExternalDocumentID 10_1109_TNNLS_2016_2615134
27831891
7728083
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Netherlands Enterprise Agency (RVO) for Innovation in Photonic Devices
  grantid: IPD12020
– fundername: European Research Council Advanced Grant Agreement
  grantid: 339681
  funderid: 10.13039/501100000781
– fundername: Dutch Technology Foundation STW
  grantid: 13336
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RIG
RNS
NPM
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-15608d3d866d481aaae4605c92ffeaa183f33e926c5c511b2ee78092b36213a93
IEDL.DBID RIE
ISSN 2162-237X
IngestDate Fri Aug 16 07:58:18 EDT 2024
Thu Oct 10 20:45:18 EDT 2024
Fri Aug 23 00:57:07 EDT 2024
Sat Sep 28 08:37:30 EDT 2024
Wed Jun 26 19:18:24 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-15608d3d866d481aaae4605c92ffeaa183f33e926c5c511b2ee78092b36213a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3853-4708
PMID 27831891
PQID 1984595153
PQPubID 85436
PageCount 16
ParticipantIDs proquest_miscellaneous_1839112828
crossref_primary_10_1109_TNNLS_2016_2615134
proquest_journals_1984595153
ieee_primary_7728083
pubmed_primary_27831891
PublicationCentury 2000
PublicationDate 2018-Jan.
2018-01-00
2018-1-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref52
ref55
roustant (ref14) 2012
ref17
kbiob (ref10) 1951; 52
ref19
ref18
rahimi (ref20) 2007
ref51
ref50
zhang (ref39) 2015; 367
snoek (ref15) 2012
rahimi (ref33) 2009
achlioptas (ref36) 0; 14
brochu (ref16) 2010
ref45
ref47
ref42
nasiri-avanaki (ref21) 2009
ref41
roeloffzen (ref24) 2005
ref43
zhuang (ref27) 2010
ref49
martinez-cantin (ref13) 2014; 15
ref8
ref7
ref9
ref3
ref6
ref40
powell (ref5) 2009
ref34
nocedal (ref46) 2006
ref30
ref2
sayed (ref44) 1998
ref1
bergstra (ref11) 2011
ref38
powell (ref4) 2006
theodoridis (ref32) 2015
suykens (ref31) 2012
ref23
ref26
ref25
ref22
van der vaart (ref54) 2000; 3
rubinstein (ref48) 2011
ref28
martín (ref29) 2009; 72
golub (ref53) 2012; 3
burges (ref35) 1996
quinonero-candela (ref37) 2005; 6
References_xml – ident: ref25
  doi: 10.1109/JLT.2009.2029705
– start-page: 2546
  year: 2011
  ident: ref11
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: bergstra
– ident: ref22
  doi: 10.1364/OL.38.004801
– ident: ref17
  doi: 10.1007/s10514-009-9130-2
– start-page: 255
  year: 2006
  ident: ref4
  article-title: The NEWUOA software for unconstrained optimization without derivatives
  publication-title: Large-Scale Nonlinear Optimization
  doi: 10.1007/0-387-30065-1_16
  contributor:
    fullname: powell
– ident: ref47
  doi: 10.1007/BF01100691
– ident: ref6
  doi: 10.1007/BF00941892
– ident: ref9
  doi: 10.1023/A:1008306431147
– ident: ref23
  doi: 10.1002/9780470529188
– ident: ref45
  doi: 10.2307/2006193
– year: 2012
  ident: ref14
  publication-title: DiceKriging DiceOp-tim Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization Journal of Statistical Software
  contributor:
    fullname: roustant
– year: 2010
  ident: ref16
  publication-title: A Tutorial on Bayesian Optimization of Expensive Cost Functions with Application to Active User Modeling and Hierarchical Reinforcement Learning
  contributor:
    fullname: brochu
– ident: ref8
  doi: 10.1137/050646706
– ident: ref51
  doi: 10.1214/aoms/1177697731
– year: 2015
  ident: ref32
  publication-title: Machine Learning A Bayesian and Optimization Perspective
  contributor:
    fullname: theodoridis
– ident: ref2
  doi: 10.1007/s10898-012-9951-y
– ident: ref49
  doi: 10.1364/AOMS.2015.AOM3F.3
– ident: ref7
  doi: 10.1137/0805015
– volume: 367
  start-page: 1094
  year: 2015
  ident: ref39
  article-title: A comprehensive evaluation of random vector functional link networks
  publication-title: Inf Sci
  contributor:
    fullname: zhang
– ident: ref55
  doi: 10.1186/2251-7456-6-4
– ident: ref18
  doi: 10.1007/s00158-015-1236-x
– volume: 3
  year: 2012
  ident: ref53
  publication-title: Matrix Computations
  contributor:
    fullname: golub
– ident: ref3
  doi: 10.1093/comjnl/7.4.308
– start-page: 71
  year: 1996
  ident: ref35
  article-title: Simplified support vector decision rules
  publication-title: Proc ICML
  contributor:
    fullname: burges
– ident: ref41
  doi: 10.1109/18.256500
– ident: ref26
  doi: 10.1109/MWP.2006.346543
– volume: 72
  start-page: 2806
  year: 2009
  ident: ref29
  article-title: A method to learn the inverse kinematics of multi-link robots by evolving neuro-controllers
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.08.021
  contributor:
    fullname: martín
– ident: ref43
  doi: 10.1214/aos/1176348546
– ident: ref52
  doi: 10.1109/72.788640
– year: 2011
  ident: ref48
  publication-title: Simulation and the Monte Carlo Metho
  contributor:
    fullname: rubinstein
– start-page: 1313
  year: 2009
  ident: ref33
  article-title: Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: rahimi
– start-page: 1177
  year: 2007
  ident: ref20
  article-title: Random features for large-scale kernel machines
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: rahimi
– year: 2006
  ident: ref46
  publication-title: Numerical Optimization
  contributor:
    fullname: nocedal
– volume: 15
  start-page: 3735
  year: 2014
  ident: ref13
  article-title: BayesOpt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits
  publication-title: J Mach Learn Res
  contributor:
    fullname: martinez-cantin
– year: 2012
  ident: ref31
  publication-title: Nonlinear Modeling Theory and Applications
  contributor:
    fullname: suykens
– ident: ref50
  doi: 10.1364/OE.22.032406
– volume: 52
  start-page: 119
  year: 1951
  ident: ref10
  article-title: A statistical approach to some basic mine valuation problems on the Witwatersrand
  publication-title: J Chem Metallurg Mining Soc South Africa
  contributor:
    fullname: kbiob
– start-page: 669
  year: 2009
  ident: ref21
  article-title: Optical coherence tomography system optimization using simulated annealing algorithm
  publication-title: Proc Math Method Appl Comput (WSEAS)
  contributor:
    fullname: nasiri-avanaki
– ident: ref42
  doi: 10.1109/ALLERTON.2008.4797607
– ident: ref30
  doi: 10.1214/009053607000000677
– ident: ref28
  doi: 10.1016/j.ifacol.2015.11.078
– year: 2010
  ident: ref27
  publication-title: Ring Resonator-Based Broadband Photonic Beam Former for Phased Array Antennas Enschede The Netherlands Univ
  contributor:
    fullname: zhuang
– volume: 3
  year: 2000
  ident: ref54
  publication-title: Asymptotic Statistics
  contributor:
    fullname: van der vaart
– ident: ref38
  doi: 10.1109/TNNLS.2013.2258936
– volume: 6
  start-page: 1939
  year: 2005
  ident: ref37
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: J Mach Learn Res
  contributor:
    fullname: quinonero-candela
– year: 2009
  ident: ref5
  publication-title: The BOBYQA algorithm for bound constrained optimization without derivatives
  contributor:
    fullname: powell
– ident: ref40
  doi: 10.21236/ADA260100
– start-page: 2951
  year: 2012
  ident: ref15
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: snoek
– ident: ref12
  doi: 10.1007/978-3-642-25566-3_40
– year: 2005
  ident: ref24
  publication-title: Ring resonator-based tunable optical delay line in LPCVD waveguide technology
  contributor:
    fullname: roeloffzen
– ident: ref1
  doi: 10.1137/1.9780898718768
– ident: ref34
  doi: 10.1109/MLSP.2012.6349811
– volume: 14
  start-page: 335
  year: 0
  ident: ref36
  article-title: Sampling techniques for kernel methods
  publication-title: Advances in Neural Information Processing System
  contributor:
    fullname: achlioptas
– ident: ref19
  doi: 10.1364/OL.40.005722
– year: 1998
  ident: ref44
  article-title: Recursive least-squares adaptive filters
  publication-title: Digital Signal Processing Handbook
  contributor:
    fullname: sayed
SSID ssj0000605649
Score 2.4665983
Snippet This paper analyzes data-based online nonlinear extremum-seeker (DONE), an online optimization algorithm that iteratively minimizes an unknown function based...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 167
SubjectTerms Adaptive optics
Algorithms
Approximation algorithms
Bayes methods
Bayesian analysis
Bayesian optimization
Computer applications
Cost analysis
Data processing
derivative-free optimization (DFO)
Internet
Iterative methods
Kernel
Learning systems
Linear programming
Nonlinear analysis
Optical Coherence Tomography
Optimization
Optimization algorithms
Radio frequency
Robot arms
surrogate model
Title Online Optimization With Costly and Noisy Measurements Using Random Fourier Expansions
URI https://ieeexplore.ieee.org/document/7728083
https://www.ncbi.nlm.nih.gov/pubmed/27831891
https://www.proquest.com/docview/1984595153
https://search.proquest.com/docview/1839112828
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy7l2XYpRUbqrc0S24kfR4RYoYpdpBbavUWO4wjUkiCSlUp_fcfOo6Jqpd4i2Uocf_bM53l4AN5ZK1mRKBqVsSyjpLQ0yo2gKAxTQ1UpqQuumPlCXNwkH5fpcg0-jLkwzrkQfOam_jH48ovarryp7ET6WkqKr8O61LrL1RrtKTHychHYLqOCRYzL5ZAjE-uT68Xi8rMP5BJT5nU49_V4fJEJqjR9ppJCjZV_082gdmZbMB8G3EWbfJuu2nxqf_5xl-P__tE2vOj5JzntFswOrLlqF7aG2g6k3-p78KW7g5RcoUi573M1yde79pac1U37_YmYqiCL-q55IvPfZsaGhBAE8glb63sy6wrikfMfKHO8Wa7Zh5vZ-fXZRdTXYIgsT2kb-URrVfBCCeEhNcY470m1mpWlMwgnLzl3mgmbWuRuOXNOqlizHBUj5Ubzl7BR1ZV7DUR6F6mhLE81TazWhvECBU5cciWkzeMJvB9gyB66qzaycESJdRbwyzx-WY_fBPb8dI49-5mcwOGAXNbvxiajWiUpUskUm4_HZtxH3jliKlevsA8yReSeeACdwKsO8fHdw0I5-Ps338Amjkx1hplD2GgfV-4tUpU2Pwpr9Bf_LeGw
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gAXSimPpQWMxA2yje3EsY-o6mpbdlOpbGFvkeM4ooImiGQl2l_P2HkgEEjcItlKHH_2zOd5eABeG5OwIpI0KMOkDKLS0CDXgqIwjDWVZUKtd8UsUzG_jM7W8XoL3o65MNZaH3xmp-7R-_KL2mycqewocbWUJL8DO8irpeiytUaLSojMXHi-y6hgAePJesiSCdXRKk0XH1wol5gyp8W5q8jjykxQqehvSslXWfk34fSKZ7YLy2HIXbzJl-mmzafm9o_bHP_3nx7A_Z6BknfdktmDLVs9hN2hugPpN_s-fOxuISXnKFSu-2xN8umq_UyO66b9ekN0VZC0vmpuyPKXobEhPgiBXGBrfU1mXUk8cvIDpY4zzDWP4HJ2sjqeB30VhsDwmLaBS7WWBS-kEA5UrbV1vlSjWFlajYDyknOrmDCxQfaWM2sTGSqWo2qkXCv-GLarurJPgSTOSaopy2NFI6OUZrxAkROWXIrE5OEE3gwwZN-6yzYyf0gJVebxyxx-WY_fBPbddI49-5mcwOGAXNbvxyajSkYxkskYm1-NzbiTnHtEV7beYB_kisg-8Qg6gScd4uO7h4Xy7O_ffAl356vlIlucpu8P4B6OUnZmmkPYbr9v7HMkLm3-wq_Xn_W85Ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Optimization+With+Costly+and+Noisy+Measurements+Using+Random+Fourier+Expansions&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Bliek%2C+Laurens&rft.au=Verstraete%2C+Hans+R.+G.+W.&rft.au=Verhaegen%2C+Michel&rft.au=Wahls%2C+Sander&rft.date=2018-01-01&rft.pub=IEEE&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=1&rft.spage=167&rft.epage=182&rft_id=info:doi/10.1109%2FTNNLS.2016.2615134&rft_id=info%3Apmid%2F27831891&rft.externalDocID=7728083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon