Online Optimization With Costly and Noisy Measurements Using Random Fourier Expansions
This paper analyzes data-based online nonlinear extremum-seeker (DONE), an online optimization algorithm that iteratively minimizes an unknown function based on costly and noisy measurements. The algorithm maintains a surrogate of the unknown function in the form of a random Fourier expansion. The s...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 1; pp. 167 - 182 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper analyzes data-based online nonlinear extremum-seeker (DONE), an online optimization algorithm that iteratively minimizes an unknown function based on costly and noisy measurements. The algorithm maintains a surrogate of the unknown function in the form of a random Fourier expansion. The surrogate is updated whenever a new measurement is available, and then used to determine the next measurement point. The algorithm is comparable with Bayesian optimization algorithms, but its computational complexity per iteration does not depend on the number of measurements. We derive several theoretical results that provide insight on how the hyperparameters of the algorithm should be chosen. The algorithm is compared with a Bayesian optimization algorithm for an analytic benchmark problem and three applications, namely, optical coherence tomography, optical beam-forming network tuning, and robot arm control. It is found that the DONE algorithm is significantly faster than Bayesian optimization in the discussed problems while achieving a similar or better performance. |
---|---|
AbstractList | This paper analyzes data-based online nonlinear extremum-seeker (DONE), an online optimization algorithm that iteratively minimizes an unknown function based on costly and noisy measurements. The algorithm maintains a surrogate of the unknown function in the form of a random Fourier expansion. The surrogate is updated whenever a new measurement is available, and then used to determine the next measurement point. The algorithm is comparable with Bayesian optimization algorithms, but its computational complexity per iteration does not depend on the number of measurements. We derive several theoretical results that provide insight on how the hyperparameters of the algorithm should be chosen. The algorithm is compared with a Bayesian optimization algorithm for an analytic benchmark problem and three applications, namely, optical coherence tomography, optical beam-forming network tuning, and robot arm control. It is found that the DONE algorithm is significantly faster than Bayesian optimization in the discussed problems while achieving a similar or better performance. |
Author | Verhaegen, Michel Wahls, Sander Bliek, Laurens Verstraete, Hans R. G. W. |
Author_xml | – sequence: 1 givenname: Laurens surname: Bliek fullname: Bliek, Laurens email: l.bliek@tudelft.nl organization: Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands – sequence: 2 givenname: Hans R. G. W. surname: Verstraete fullname: Verstraete, Hans R. G. W. email: h.r.g.w.verstraete@tudelft.nl organization: Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands – sequence: 3 givenname: Michel surname: Verhaegen fullname: Verhaegen, Michel organization: Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands – sequence: 4 givenname: Sander surname: Wahls fullname: Wahls, Sander organization: Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27831891$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkMFOGzEQhi0EKpTyAq1UWeqll6Qee-21j1UEFCkkUgstN8vZnQWjXTtd70qkT48hIYf6Mpbmm1-_vvfkMMSAhHwENgVg5tvNYjH_NeUM1JQrkCCKA3LCQfEJF1of7v_l3TE5S-mR5aeYVIV5R455qQVoAyfk9zK0PiBdrgff-X9u8DHQP354oLOYhnZDXajpIvq0odfo0thjh2FI9Db5cE9_5m3s6EUce489PX9au5ByQvpAjhrXJjzbzVNye3F-M_sxmS8vr2bf55NKSBgmIBXTtai1UnWhwTmHRS5ZGd406Bxo0QiBhqtKVhJgxRFLzQxfCcVBOCNOyddt7rqPf0dMg-18qrBtXcA4JpsTDADXXGf0y3_oY64dcjsLRhfSSJAiU3xLVX1MqcfGrnvfuX5jgdkX8fZVvH0Rb3fi89HnXfS46rDen7xpzsCnLeARcb8uS66ZFuIZH9eIHQ |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_automatica_2024_111656 crossref_primary_10_1109_LSP_2019_2907480 crossref_primary_10_1109_TAES_2022_3208865 crossref_primary_10_1016_j_jfranklin_2019_01_050 crossref_primary_10_1109_ACCESS_2020_2968753 crossref_primary_10_1364_OL_403135 crossref_primary_10_1007_s11424_022_1502_0 crossref_primary_10_1016_j_dsp_2020_102797 crossref_primary_10_1016_j_firesaf_2022_103591 crossref_primary_10_1109_TIM_2022_3173628 crossref_primary_10_1007_s10472_020_09712_4 crossref_primary_10_1016_j_sigpro_2020_107712 crossref_primary_10_1016_j_sigpro_2024_109525 crossref_primary_10_1364_OE_26_027161 crossref_primary_10_1007_s11063_023_11191_7 crossref_primary_10_1109_TCYB_2019_2959834 crossref_primary_10_1109_TCSI_2018_2825241 crossref_primary_10_1016_j_asoc_2023_110744 crossref_primary_10_1109_JLT_2019_2926621 crossref_primary_10_1109_TASLP_2021_3126943 crossref_primary_10_1364_OPTICA_479962 |
Cites_doi | 10.1109/JLT.2009.2029705 10.1364/OL.38.004801 10.1007/s10514-009-9130-2 10.1007/0-387-30065-1_16 10.1007/BF01100691 10.1007/BF00941892 10.1023/A:1008306431147 10.1002/9780470529188 10.2307/2006193 10.1137/050646706 10.1214/aoms/1177697731 10.1007/s10898-012-9951-y 10.1364/AOMS.2015.AOM3F.3 10.1137/0805015 10.1186/2251-7456-6-4 10.1007/s00158-015-1236-x 10.1093/comjnl/7.4.308 10.1109/18.256500 10.1109/MWP.2006.346543 10.1016/j.neucom.2008.08.021 10.1214/aos/1176348546 10.1109/72.788640 10.1364/OE.22.032406 10.1109/ALLERTON.2008.4797607 10.1214/009053607000000677 10.1016/j.ifacol.2015.11.078 10.1109/TNNLS.2013.2258936 10.21236/ADA260100 10.1007/978-3-642-25566-3_40 10.1137/1.9780898718768 10.1109/MLSP.2012.6349811 10.1364/OL.40.005722 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2016.2615134 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 182 |
ExternalDocumentID | 10_1109_TNNLS_2016_2615134 27831891 7728083 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Netherlands Enterprise Agency (RVO) for Innovation in Photonic Devices grantid: IPD12020 – fundername: European Research Council Advanced Grant Agreement grantid: 339681 funderid: 10.13039/501100000781 – fundername: Dutch Technology Foundation STW grantid: 13336 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RIG RNS NPM AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c351t-15608d3d866d481aaae4605c92ffeaa183f33e926c5c511b2ee78092b36213a93 |
IEDL.DBID | RIE |
ISSN | 2162-237X |
IngestDate | Fri Aug 16 07:58:18 EDT 2024 Thu Oct 10 20:45:18 EDT 2024 Fri Aug 23 00:57:07 EDT 2024 Sat Sep 28 08:37:30 EDT 2024 Wed Jun 26 19:18:24 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-15608d3d866d481aaae4605c92ffeaa183f33e926c5c511b2ee78092b36213a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3853-4708 |
PMID | 27831891 |
PQID | 1984595153 |
PQPubID | 85436 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1839112828 crossref_primary_10_1109_TNNLS_2016_2615134 proquest_journals_1984595153 ieee_primary_7728083 pubmed_primary_27831891 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jan. 2018-01-00 2018-1-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref52 ref55 roustant (ref14) 2012 ref17 kbiob (ref10) 1951; 52 ref19 ref18 rahimi (ref20) 2007 ref51 ref50 zhang (ref39) 2015; 367 snoek (ref15) 2012 rahimi (ref33) 2009 achlioptas (ref36) 0; 14 brochu (ref16) 2010 ref45 ref47 ref42 nasiri-avanaki (ref21) 2009 ref41 roeloffzen (ref24) 2005 ref43 zhuang (ref27) 2010 ref49 martinez-cantin (ref13) 2014; 15 ref8 ref7 ref9 ref3 ref6 ref40 powell (ref5) 2009 ref34 nocedal (ref46) 2006 ref30 ref2 sayed (ref44) 1998 ref1 bergstra (ref11) 2011 ref38 powell (ref4) 2006 theodoridis (ref32) 2015 suykens (ref31) 2012 ref23 ref26 ref25 ref22 van der vaart (ref54) 2000; 3 rubinstein (ref48) 2011 ref28 martín (ref29) 2009; 72 golub (ref53) 2012; 3 burges (ref35) 1996 quinonero-candela (ref37) 2005; 6 |
References_xml | – ident: ref25 doi: 10.1109/JLT.2009.2029705 – start-page: 2546 year: 2011 ident: ref11 article-title: Algorithms for hyper-parameter optimization publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: bergstra – ident: ref22 doi: 10.1364/OL.38.004801 – ident: ref17 doi: 10.1007/s10514-009-9130-2 – start-page: 255 year: 2006 ident: ref4 article-title: The NEWUOA software for unconstrained optimization without derivatives publication-title: Large-Scale Nonlinear Optimization doi: 10.1007/0-387-30065-1_16 contributor: fullname: powell – ident: ref47 doi: 10.1007/BF01100691 – ident: ref6 doi: 10.1007/BF00941892 – ident: ref9 doi: 10.1023/A:1008306431147 – ident: ref23 doi: 10.1002/9780470529188 – ident: ref45 doi: 10.2307/2006193 – year: 2012 ident: ref14 publication-title: DiceKriging DiceOp-tim Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization Journal of Statistical Software contributor: fullname: roustant – year: 2010 ident: ref16 publication-title: A Tutorial on Bayesian Optimization of Expensive Cost Functions with Application to Active User Modeling and Hierarchical Reinforcement Learning contributor: fullname: brochu – ident: ref8 doi: 10.1137/050646706 – ident: ref51 doi: 10.1214/aoms/1177697731 – year: 2015 ident: ref32 publication-title: Machine Learning A Bayesian and Optimization Perspective contributor: fullname: theodoridis – ident: ref2 doi: 10.1007/s10898-012-9951-y – ident: ref49 doi: 10.1364/AOMS.2015.AOM3F.3 – ident: ref7 doi: 10.1137/0805015 – volume: 367 start-page: 1094 year: 2015 ident: ref39 article-title: A comprehensive evaluation of random vector functional link networks publication-title: Inf Sci contributor: fullname: zhang – ident: ref55 doi: 10.1186/2251-7456-6-4 – ident: ref18 doi: 10.1007/s00158-015-1236-x – volume: 3 year: 2012 ident: ref53 publication-title: Matrix Computations contributor: fullname: golub – ident: ref3 doi: 10.1093/comjnl/7.4.308 – start-page: 71 year: 1996 ident: ref35 article-title: Simplified support vector decision rules publication-title: Proc ICML contributor: fullname: burges – ident: ref41 doi: 10.1109/18.256500 – ident: ref26 doi: 10.1109/MWP.2006.346543 – volume: 72 start-page: 2806 year: 2009 ident: ref29 article-title: A method to learn the inverse kinematics of multi-link robots by evolving neuro-controllers publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.08.021 contributor: fullname: martín – ident: ref43 doi: 10.1214/aos/1176348546 – ident: ref52 doi: 10.1109/72.788640 – year: 2011 ident: ref48 publication-title: Simulation and the Monte Carlo Metho contributor: fullname: rubinstein – start-page: 1313 year: 2009 ident: ref33 article-title: Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: rahimi – start-page: 1177 year: 2007 ident: ref20 article-title: Random features for large-scale kernel machines publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: rahimi – year: 2006 ident: ref46 publication-title: Numerical Optimization contributor: fullname: nocedal – volume: 15 start-page: 3735 year: 2014 ident: ref13 article-title: BayesOpt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits publication-title: J Mach Learn Res contributor: fullname: martinez-cantin – year: 2012 ident: ref31 publication-title: Nonlinear Modeling Theory and Applications contributor: fullname: suykens – ident: ref50 doi: 10.1364/OE.22.032406 – volume: 52 start-page: 119 year: 1951 ident: ref10 article-title: A statistical approach to some basic mine valuation problems on the Witwatersrand publication-title: J Chem Metallurg Mining Soc South Africa contributor: fullname: kbiob – start-page: 669 year: 2009 ident: ref21 article-title: Optical coherence tomography system optimization using simulated annealing algorithm publication-title: Proc Math Method Appl Comput (WSEAS) contributor: fullname: nasiri-avanaki – ident: ref42 doi: 10.1109/ALLERTON.2008.4797607 – ident: ref30 doi: 10.1214/009053607000000677 – ident: ref28 doi: 10.1016/j.ifacol.2015.11.078 – year: 2010 ident: ref27 publication-title: Ring Resonator-Based Broadband Photonic Beam Former for Phased Array Antennas Enschede The Netherlands Univ contributor: fullname: zhuang – volume: 3 year: 2000 ident: ref54 publication-title: Asymptotic Statistics contributor: fullname: van der vaart – ident: ref38 doi: 10.1109/TNNLS.2013.2258936 – volume: 6 start-page: 1939 year: 2005 ident: ref37 article-title: A unifying view of sparse approximate Gaussian process regression publication-title: J Mach Learn Res contributor: fullname: quinonero-candela – year: 2009 ident: ref5 publication-title: The BOBYQA algorithm for bound constrained optimization without derivatives contributor: fullname: powell – ident: ref40 doi: 10.21236/ADA260100 – start-page: 2951 year: 2012 ident: ref15 article-title: Practical Bayesian optimization of machine learning algorithms publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: snoek – ident: ref12 doi: 10.1007/978-3-642-25566-3_40 – year: 2005 ident: ref24 publication-title: Ring resonator-based tunable optical delay line in LPCVD waveguide technology contributor: fullname: roeloffzen – ident: ref1 doi: 10.1137/1.9780898718768 – ident: ref34 doi: 10.1109/MLSP.2012.6349811 – volume: 14 start-page: 335 year: 0 ident: ref36 article-title: Sampling techniques for kernel methods publication-title: Advances in Neural Information Processing System contributor: fullname: achlioptas – ident: ref19 doi: 10.1364/OL.40.005722 – year: 1998 ident: ref44 article-title: Recursive least-squares adaptive filters publication-title: Digital Signal Processing Handbook contributor: fullname: sayed |
SSID | ssj0000605649 |
Score | 2.4665983 |
Snippet | This paper analyzes data-based online nonlinear extremum-seeker (DONE), an online optimization algorithm that iteratively minimizes an unknown function based... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 167 |
SubjectTerms | Adaptive optics Algorithms Approximation algorithms Bayes methods Bayesian analysis Bayesian optimization Computer applications Cost analysis Data processing derivative-free optimization (DFO) Internet Iterative methods Kernel Learning systems Linear programming Nonlinear analysis Optical Coherence Tomography Optimization Optimization algorithms Radio frequency Robot arms surrogate model |
Title | Online Optimization With Costly and Noisy Measurements Using Random Fourier Expansions |
URI | https://ieeexplore.ieee.org/document/7728083 https://www.ncbi.nlm.nih.gov/pubmed/27831891 https://www.proquest.com/docview/1984595153 https://search.proquest.com/docview/1839112828 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy7l2XYpRUbqrc0S24kfR4RYoYpdpBbavUWO4wjUkiCSlUp_fcfOo6Jqpd4i2Uocf_bM53l4AN5ZK1mRKBqVsSyjpLQ0yo2gKAxTQ1UpqQuumPlCXNwkH5fpcg0-jLkwzrkQfOam_jH48ovarryp7ET6WkqKr8O61LrL1RrtKTHychHYLqOCRYzL5ZAjE-uT68Xi8rMP5BJT5nU49_V4fJEJqjR9ppJCjZV_082gdmZbMB8G3EWbfJuu2nxqf_5xl-P__tE2vOj5JzntFswOrLlqF7aG2g6k3-p78KW7g5RcoUi573M1yde79pac1U37_YmYqiCL-q55IvPfZsaGhBAE8glb63sy6wrikfMfKHO8Wa7Zh5vZ-fXZRdTXYIgsT2kb-URrVfBCCeEhNcY470m1mpWlMwgnLzl3mgmbWuRuOXNOqlizHBUj5Ubzl7BR1ZV7DUR6F6mhLE81TazWhvECBU5cciWkzeMJvB9gyB66qzaycESJdRbwyzx-WY_fBPb8dI49-5mcwOGAXNbvxiajWiUpUskUm4_HZtxH3jliKlevsA8yReSeeACdwKsO8fHdw0I5-Ps338Amjkx1hplD2GgfV-4tUpU2Pwpr9Bf_LeGw |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gAXSimPpQWMxA2yje3EsY-o6mpbdlOpbGFvkeM4ooImiGQl2l_P2HkgEEjcItlKHH_2zOd5eABeG5OwIpI0KMOkDKLS0CDXgqIwjDWVZUKtd8UsUzG_jM7W8XoL3o65MNZaH3xmp-7R-_KL2mycqewocbWUJL8DO8irpeiytUaLSojMXHi-y6hgAePJesiSCdXRKk0XH1wol5gyp8W5q8jjykxQqehvSslXWfk34fSKZ7YLy2HIXbzJl-mmzafm9o_bHP_3nx7A_Z6BknfdktmDLVs9hN2hugPpN_s-fOxuISXnKFSu-2xN8umq_UyO66b9ekN0VZC0vmpuyPKXobEhPgiBXGBrfU1mXUk8cvIDpY4zzDWP4HJ2sjqeB30VhsDwmLaBS7WWBS-kEA5UrbV1vlSjWFlajYDyknOrmDCxQfaWM2sTGSqWo2qkXCv-GLarurJPgSTOSaopy2NFI6OUZrxAkROWXIrE5OEE3gwwZN-6yzYyf0gJVebxyxx-WY_fBPbddI49-5mcwOGAXNbvxyajSkYxkskYm1-NzbiTnHtEV7beYB_kisg-8Qg6gScd4uO7h4Xy7O_ffAl356vlIlucpu8P4B6OUnZmmkPYbr9v7HMkLm3-wq_Xn_W85Ps |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Optimization+With+Costly+and+Noisy+Measurements+Using+Random+Fourier+Expansions&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Bliek%2C+Laurens&rft.au=Verstraete%2C+Hans+R.+G.+W.&rft.au=Verhaegen%2C+Michel&rft.au=Wahls%2C+Sander&rft.date=2018-01-01&rft.pub=IEEE&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=1&rft.spage=167&rft.epage=182&rft_id=info:doi/10.1109%2FTNNLS.2016.2615134&rft_id=info%3Apmid%2F27831891&rft.externalDocID=7728083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |