Ultrafast, Light, Soft Martensitic Materials
Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however, due to the metal atoms, these materials are inherently very dense and add significant weight and bulkiness to actuating devices. Here, remarka...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 23 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2022
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202112117 |
Cover
Loading…
Abstract | Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however, due to the metal atoms, these materials are inherently very dense and add significant weight and bulkiness to actuating devices. Here, remarkably rapid lattice switching of molecular martensitic materials is reported where the rate of structural transformation exceeds other phase transitions several orders of magnitude. With a determined speed in the range of 0.3–0.6 m s−1, the new phase advances throughout the crystal about ten thousand times faster relative to spin‐crossover transitions, and about hundred to hundred thousand times faster than other common structural phase transitions. Macroscopic crystals of these materials respond by rapid expansion or contraction of about 0.02 m s−1 for unrestrained crystals and 0.02–0.03 m s−1 for clamped crystals. Monte–Carlo simulation of the spatiotemporal profile of the transition and of the local distribution of elastic and kinetic energies induced by domain growth reveals the critical role of the dynamic phase boundary and the lattice edges in the structure switching. Within a broader context, this study indicates that the martensitic organic crystals are prospective lightweight substitutes of metals for ultrafast and clean energy transduction.
Martensitic molecular crystals are shown to undergo ultrafast structure switching with uncompromised integrity of their crystals. These are the fastest reported phase transitions in a molecular solid, and pave the way for the application of martensitic organic crystals and light‐weight rapid actuators for energy transduction. |
---|---|
AbstractList | Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however, due to the metal atoms, these materials are inherently very dense and add significant weight and bulkiness to actuating devices. Here, remarkably rapid lattice switching of molecular martensitic materials is reported where the rate of structural transformation exceeds other phase transitions several orders of magnitude. With a determined speed in the range of 0.3–0.6 m s−1, the new phase advances throughout the crystal about ten thousand times faster relative to spin-crossover transitions, and about hundred to hundred thousand times faster than other common structural phase transitions. Macroscopic crystals of these materials respond by rapid expansion or contraction of about 0.02 m s−1 for unrestrained crystals and 0.02–0.03 m s−1 for clamped crystals. Monte–Carlo simulation of the spatiotemporal profile of the transition and of the local distribution of elastic and kinetic energies induced by domain growth reveals the critical role of the dynamic phase boundary and the lattice edges in the structure switching. Within a broader context, this study indicates that the martensitic organic crystals are prospective lightweight substitutes of metals for ultrafast and clean energy transduction. Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however, due to the metal atoms, these materials are inherently very dense and add significant weight and bulkiness to actuating devices. Here, remarkably rapid lattice switching of molecular martensitic materials is reported where the rate of structural transformation exceeds other phase transitions several orders of magnitude. With a determined speed in the range of 0.3–0.6 m s−1, the new phase advances throughout the crystal about ten thousand times faster relative to spin‐crossover transitions, and about hundred to hundred thousand times faster than other common structural phase transitions. Macroscopic crystals of these materials respond by rapid expansion or contraction of about 0.02 m s−1 for unrestrained crystals and 0.02–0.03 m s−1 for clamped crystals. Monte–Carlo simulation of the spatiotemporal profile of the transition and of the local distribution of elastic and kinetic energies induced by domain growth reveals the critical role of the dynamic phase boundary and the lattice edges in the structure switching. Within a broader context, this study indicates that the martensitic organic crystals are prospective lightweight substitutes of metals for ultrafast and clean energy transduction. Martensitic molecular crystals are shown to undergo ultrafast structure switching with uncompromised integrity of their crystals. These are the fastest reported phase transitions in a molecular solid, and pave the way for the application of martensitic organic crystals and light‐weight rapid actuators for energy transduction. Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however, due to the metal atoms, these materials are inherently very dense and add significant weight and bulkiness to actuating devices. Here, remarkably rapid lattice switching of molecular martensitic materials is reported where the rate of structural transformation exceeds other phase transitions several orders of magnitude. With a determined speed in the range of 0.3–0.6 m s −1 , the new phase advances throughout the crystal about ten thousand times faster relative to spin‐crossover transitions, and about hundred to hundred thousand times faster than other common structural phase transitions. Macroscopic crystals of these materials respond by rapid expansion or contraction of about 0.02 m s −1 for unrestrained crystals and 0.02–0.03 m s −1 for clamped crystals. Monte–Carlo simulation of the spatiotemporal profile of the transition and of the local distribution of elastic and kinetic energies induced by domain growth reveals the critical role of the dynamic phase boundary and the lattice edges in the structure switching. Within a broader context, this study indicates that the martensitic organic crystals are prospective lightweight substitutes of metals for ultrafast and clean energy transduction. |
Author | Mahmoud Halabi, Jad Naumov, Panče Karothu, Durga Prasad Slimani, Ahmed Tahir, Ibrahim Canales, Kevin Quirós Ahmed, Ejaz |
Author_xml | – sequence: 1 givenname: Ejaz surname: Ahmed fullname: Ahmed, Ejaz organization: New York University Abu Dhabi – sequence: 2 givenname: Durga Prasad surname: Karothu fullname: Karothu, Durga Prasad organization: New York University Abu Dhabi – sequence: 3 givenname: Ahmed surname: Slimani fullname: Slimani, Ahmed organization: Sorbonne University Abu Dhabi – sequence: 4 givenname: Jad surname: Mahmoud Halabi fullname: Mahmoud Halabi, Jad organization: New York University Abu Dhabi – sequence: 5 givenname: Ibrahim surname: Tahir fullname: Tahir, Ibrahim organization: New York University Abu Dhabi – sequence: 6 givenname: Kevin Quirós surname: Canales fullname: Canales, Kevin Quirós organization: New York University Abu Dhabi – sequence: 7 givenname: Panče orcidid: 0000-0003-2416-6569 surname: Naumov fullname: Naumov, Panče email: pance.naumov@nyu.edu organization: New York University |
BackLink | https://hal.science/hal-03964586$$DView record in HAL |
BookMark | eNqFUE1LAzEQDVLBtnr1XPAkdGsmyX4dS7VW2OJBC95CNpvYlO1uzaZK_71ZVisIIgy8Yd57w8wboF5VVwqhS8ATwJjciEJvJwQTAF_xCepDBFFAMUl6xx5eztCgaTYYQxxT1kfjVems0KJx41FmXtcenmrtRkthnaoa44z0vVPWiLI5R6fag7r4wiFaze-eZ4sge7x_mE2zQNIQ4kCCzIuUJlILgEgmCaSqyAUjDFheeNITCdGEJoUKYyaikNIQex7yQqeM0iG67vauRcl31myFPfBaGL6YZrydYZpGLEyid_Daq067s_XbXjWOb-q9rfx5nEQxSUKCod3IOpW0ddNYpbk0TjhTV_57U3LAvM2QtxnyY4beNvll-77mT0PaGT5MqQ7_qPn0dr788X4C3kuD9g |
CitedBy_id | crossref_primary_10_1002_anie_202502107 crossref_primary_10_1002_ange_202306198 crossref_primary_10_1002_smo_20230031 crossref_primary_10_1073_pnas_2408366121 crossref_primary_10_1002_anie_202306198 crossref_primary_10_1002_chem_202403293 crossref_primary_10_1016_j_xcrp_2022_101133 crossref_primary_10_1038_s41467_023_41560_8 crossref_primary_10_1073_pnas_2412476121 crossref_primary_10_1002_ange_202502107 crossref_primary_10_1038_s41467_024_53196_3 crossref_primary_10_1039_D4SC02152E crossref_primary_10_1038_s41467_023_41446_9 crossref_primary_10_1021_jacs_4c12670 crossref_primary_10_1021_jacs_4c09222 crossref_primary_10_1002_anie_202403914 crossref_primary_10_1039_D2TC04642C crossref_primary_10_1002_ange_202403914 crossref_primary_10_1039_D3SC06800E |
Cites_doi | 10.1021/cr500249p 10.1109/ACCESS.2018.2868842 10.1073/pnas.2020604118 10.1016/j.cplett.2010.09.027 10.1103/PhysRevB.92.014111 10.1021/acs.chemrev.9b00288 10.1039/C9SC02444A 10.1039/C8TC03504K 10.1126/science.aao6139 10.1177/0954405419855239 10.1021/ja4102634 10.1002/adfm.202011012 10.3390/ma11040522 10.1021/acsnano.1c02356 10.1002/0471744751 10.1021/acs.cgd.9b01522 10.1038/s41566-019-0416-4 10.1016/j.ajodo.2009.11.015 10.1002/anie.201810514 10.1002/anie.201805543 10.1038/s41578-019-0167-3 10.1002/aenm.202100324 10.1039/C8SC03897J 10.1063/1.1699114 10.1103/PhysRevB.87.014111 10.1126/sciadv.abc0251 10.3390/ma10080884 10.1039/D0TA02896G 10.1021/acs.chemrev.5b00398 10.1021/acs.cgd.8b00452 10.1002/adma.201906036 10.1021/jacs.0c05440 10.1039/c3ra46688d 10.1016/j.ssc.2013.08.021 10.1038/ncomms5811 10.1038/s41467-019-12044-5 10.1002/admt.202000769 10.1002/adma.201906216 10.1039/D0ME00133C 10.1002/adfm.202101378 10.1002/smll.202006757 10.1002/anie.201916058 10.21037/jtd.2017.06.30 10.1002/anie.201606003 10.1038/nature08603 10.1002/adma.202008558 10.1021/ja5111927 10.1039/c3ce41313f 10.1063/1.4829462 10.1007/s10965-013-0150-4 10.1021/acs.jpca.9b10365 10.1016/j.mattod.2020.06.005 10.1021/acsanm.1c00689 10.1039/C7CP08609A 10.1039/D0CS00638F 10.1002/adma.202006367 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M 1XC |
DOI | 10.1002/adfm.202112117 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_03964586v1 10_1002_adfm_202112117 ADFM202112117 |
Genre | article |
GrantInformation_xml | – fundername: New York University Abu Dhabi |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 1XC |
ID | FETCH-LOGICAL-c3517-c1cbd938cfa116c8819edba42414bd1cbcfa82f238de574a653350a421bdf9433 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri May 09 12:09:44 EDT 2025 Sun Jul 13 04:07:31 EDT 2025 Tue Jul 01 00:30:26 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Wed Jan 22 16:24:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | phase transitions martensitic transitions crystal structures organic crystals |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3517-c1cbd938cfa116c8819edba42414bd1cbcfa82f238de574a653350a421bdf9433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2416-6569 0000-0002-4303-4169 |
PQID | 2672852013 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_03964586v1 proquest_journals_2672852013 crossref_citationtrail_10_1002_adfm_202112117 crossref_primary_10_1002_adfm_202112117 wiley_primary_10_1002_adfm_202112117_ADFM202112117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2020; 20 2020; 120 2019; 10 2019; 13 2013; 20 2020; 59 2020; 124 2017; 9 2014; 136 2020; 8 2018; 6 2020; 6 2020; 5 2014; 5 2021; 31 2014; 4 2021; 33 2015; 137 2021; 118 2014; 16 2020; 49 1953; 21 2021; 6 2021; 4 2020; 41 2013; 87 2015; 92 2020; 142 2005 2020; 32 2018; 20 2014; 114 2016; 55 2018; 18 2021; 15 2015; 115 2018; 359 2010; 499 2017; 10 2021; 17 2013; 139 2022; 12 2009; 462 2016 2013; 173 2020; 234 2011; 140 2018; 11 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Urban M. W. (e_1_2_8_1_1) 2016 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 120 start-page: 310 year: 2020 publication-title: Chem. Rev. – volume: 15 start-page: 9273 year: 2021 publication-title: ACS Nano – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 124 start-page: 300 year: 2020 publication-title: J. Phys. Chem. A – volume: 18 start-page: 4245 year: 2018 publication-title: Cryst. Growth Des. – year: 2005 – volume: 137 start-page: 1895 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 590 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 9 start-page: S923 year: 2017 publication-title: J. Thorac. Dis. – volume: 6 year: 2018 publication-title: IEEE Access – volume: 41 start-page: 243 year: 2020 publication-title: Mater. Today – volume: 20 start-page: 8523 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 16 start-page: 1850 year: 2014 publication-title: CrystEngComm – volume: 173 start-page: 46 year: 2013 publication-title: Solid State Commun. – volume: 499 start-page: 94 year: 2010 publication-title: Chem. Phys. Lett. – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 4 start-page: 5349 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 20 start-page: 1800 year: 2020 publication-title: Cryst. Growth Des. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 6 start-page: 108 year: 2021 publication-title: Mol. Syst. Des. Eng. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 49 start-page: 8287 year: 2020 publication-title: Chem. Soc. Rev. – volume: 20 start-page: 150 year: 2013 publication-title: J. Polym. Res. – volume: 13 start-page: 547 year: 2019 publication-title: Nat. Photonics – volume: 59 start-page: 7049 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 139 year: 2013 publication-title: J. Chem. Phys. – volume: 10 start-page: 1332 year: 2019 publication-title: Chem. Sci. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 4 start-page: 7640 year: 2014 publication-title: RSC Adv. – volume: 21 start-page: 1087 year: 1953 publication-title: J. Chem. Phys. – volume: 17 year: 2021 publication-title: Small – year: 2016 – volume: 10 start-page: 7327 year: 2019 publication-title: Chem. Sci. – volume: 10 start-page: 4087 year: 2019 publication-title: Nat. Commun. – volume: 234 start-page: 218 year: 2020 publication-title: Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2021 publication-title: Adv. Mater. Technol. – volume: 462 start-page: 442 year: 2009 publication-title: Nature – volume: 5 start-page: 4811 year: 2014 publication-title: Nat. Commun. – volume: 11 start-page: 522 year: 2018 publication-title: Materials – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 884 year: 2017 publication-title: Materials – volume: 5 start-page: 149 year: 2020 publication-title: Nat. Rev. Mater. – volume: 359 start-page: 61 year: 2018 publication-title: Science – volume: 140 start-page: 65 year: 2011 publication-title: Am. J. Orthod. Dentofac. Orthop. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_8_17_1 doi: 10.1021/cr500249p – ident: e_1_2_8_52_1 doi: 10.1109/ACCESS.2018.2868842 – ident: e_1_2_8_41_1 doi: 10.1073/pnas.2020604118 – ident: e_1_2_8_47_1 doi: 10.1016/j.cplett.2010.09.027 – ident: e_1_2_8_55_1 doi: 10.1103/PhysRevB.92.014111 – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemrev.9b00288 – ident: e_1_2_8_40_1 doi: 10.1039/C9SC02444A – ident: e_1_2_8_25_1 doi: 10.1039/C8TC03504K – ident: e_1_2_8_28_1 doi: 10.1126/science.aao6139 – ident: e_1_2_8_36_1 doi: 10.1177/0954405419855239 – ident: e_1_2_8_49_1 doi: 10.1021/ja4102634 – ident: e_1_2_8_15_1 doi: 10.1002/adfm.202011012 – ident: e_1_2_8_34_1 doi: 10.3390/ma11040522 – ident: e_1_2_8_6_1 doi: 10.1021/acsnano.1c02356 – ident: e_1_2_8_27_1 doi: 10.1002/0471744751 – ident: e_1_2_8_51_1 doi: 10.1021/acs.cgd.9b01522 – ident: e_1_2_8_26_1 doi: 10.1038/s41566-019-0416-4 – ident: e_1_2_8_32_1 doi: 10.1016/j.ajodo.2009.11.015 – ident: e_1_2_8_5_1 doi: 10.1002/anie.201810514 – ident: e_1_2_8_19_1 doi: 10.1002/anie.201805543 – ident: e_1_2_8_33_1 doi: 10.1038/s41578-019-0167-3 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.202100324 – ident: e_1_2_8_44_1 doi: 10.1039/C8SC03897J – ident: e_1_2_8_57_1 doi: 10.1063/1.1699114 – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevB.87.014111 – ident: e_1_2_8_3_1 doi: 10.1126/sciadv.abc0251 – ident: e_1_2_8_35_1 doi: 10.3390/ma10080884 – ident: e_1_2_8_7_1 doi: 10.1039/D0TA02896G – ident: e_1_2_8_20_1 doi: 10.1021/acs.chemrev.5b00398 – ident: e_1_2_8_48_1 doi: 10.1021/acs.cgd.8b00452 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201906036 – ident: e_1_2_8_39_1 doi: 10.1021/jacs.0c05440 – ident: e_1_2_8_22_1 doi: 10.1039/c3ra46688d – ident: e_1_2_8_46_1 doi: 10.1016/j.ssc.2013.08.021 – ident: e_1_2_8_42_1 doi: 10.1038/ncomms5811 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-019-12044-5 – ident: e_1_2_8_30_1 doi: 10.1002/admt.202000769 – ident: e_1_2_8_37_1 doi: 10.1002/adma.201906216 – ident: e_1_2_8_10_1 doi: 10.1039/D0ME00133C – ident: e_1_2_8_12_1 doi: 10.1002/adfm.202101378 – ident: e_1_2_8_50_1 doi: 10.1002/smll.202006757 – ident: e_1_2_8_14_1 doi: 10.1002/anie.201916058 – ident: e_1_2_8_31_1 doi: 10.21037/jtd.2017.06.30 – ident: e_1_2_8_8_1 doi: 10.1002/anie.201606003 – ident: e_1_2_8_29_1 doi: 10.1038/nature08603 – ident: e_1_2_8_23_1 doi: 10.1002/adma.202008558 – ident: e_1_2_8_43_1 doi: 10.1021/ja5111927 – ident: e_1_2_8_53_1 doi: 10.1039/c3ce41313f – volume-title: Stimuli‐Responsive Materials: From Molecules to Nature Mimicking Materials Design year: 2016 ident: e_1_2_8_1_1 – ident: e_1_2_8_56_1 doi: 10.1063/1.4829462 – ident: e_1_2_8_24_1 doi: 10.1007/s10965-013-0150-4 – ident: e_1_2_8_9_1 doi: 10.1021/acs.jpca.9b10365 – ident: e_1_2_8_11_1 doi: 10.1016/j.mattod.2020.06.005 – ident: e_1_2_8_16_1 doi: 10.1021/acsanm.1c00689 – ident: e_1_2_8_45_1 doi: 10.1039/C7CP08609A – ident: e_1_2_8_38_1 doi: 10.1039/D0CS00638F – ident: e_1_2_8_13_1 doi: 10.1002/adma.202006367 |
SSID | ssj0017734 |
Score | 2.4902332 |
Snippet | Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however,... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atomic properties Chemical bonds Clean energy Crystal structure crystal structures Crystals Martensitic transformations martensitic transitions Materials science Organic crystals Phase transitions Physics Switching |
Title | Ultrafast, Light, Soft Martensitic Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202112117 https://www.proquest.com/docview/2672852013 https://hal.science/hal-03964586 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60Jz34FqtVgghemrabzW62x6KWItWDWugt7CsIlipt6sFf70ySxlQQQSGHJLO7SfY132xmviXkwkqmIm2YTxPp_NAkwlc2kb6LuHNoABidefnei8EovB3zcSWKP-eHKBfccGRk8zUOcKXn7S_SUCgSI8nBgIEDw8nRYQtR0UPJH0WjKP-tLCg6eNHxkrWxE7RXs69opfVn9ImsAM4qbM30Tn-bqOUb5-4mL61Fqlvm4xuZ438-aYdsFaDU6-W9aJesueke2axQFe6T5miSzlSi5mnTG6JB3_QeYQb3kIYAfeAhJ5yneX8-IKP-zdPVwC92WvAN46CmDDXadpk0iaJUGAkwwVmtQlDvobYgBIEMElDv1vEoVAJAIu-AnGqbdEPGDklt-jp1R8STFkAEGN1cGrTVnE4AQ7iOFbJrDGe8TvxlTcemoCHH3TAmcU6gHMRYC3FZC3VyWaZ_ywk4fkx5Dg1XJkLe7EFvGOO9DuuKkEvxTuuksWzXuBit8zgQUSA5QCFWJ0HWQL88Ku5d9-_Kq-O_ZDohGwFGUmQLOg1SS2cLdwr4JtVnWR_-BEF57nY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6RcKA9lFerpg1gIaRe4iTr9a43x4gQhTbJAYjEbeV9WJWK0gpMD_31nbFjN0FClUDywfY-bO9rvlnPfANw5hRPE2N5yDLlw9hmMkxdpkKfCO9JAbCmsPKdy8ki_norKmtC8oUp-SHqDTeaGcV6TROcNqR7_1hDsU5yJUcNBo-kAdsU1puCGIyuagYpliTlj2XJyMSL3Va8jf2ot1l-Qy41vpNV5BrkXAeuheQZ74Kp3rk0OPnRfcxN1_55Quf4qo_ag3crXBoMy4G0D1t-eQBv19gKD6GzuMvv0yx9yDvBlHT6TnCNi3hATARkBo8l8Twvh_R7WIwvbs4n4SrYQmi5QEllmTVuwJXNUsakVYgUvDNpjBI-Ng4TMUFFGUp450USpxJxouhjOjMuG8Scf4Dm8ufSf4RAOcQRqHcLZUld8yZDGOH7TqqBtYKLFoRVU2u7YiKngBh3uuRQjjS1gq5boQVf6vy_Sg6OZ3OeYs_VmYg6ezKcarrX5wMZCyV_sxa0q47Vqwn7oCOZREogGuItiIoe-s-j9HA0ntVXn15S6AR2JjezqZ5ezr99hjcROVYU-zttaOb3j_4I4U5ujosB_Rc-Y_KQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54AdEH7-K8FhF8Wd3SNGn2ONQxdYqog72F5oagTNmqD_56T9qtTkEEhT60zaVtkpPznfScLwCHRtA0UZqGxAkbxtrxMDVOhDZh1noDQKvcy_eat7vxRY_1JqL4C36IcsHNS0Y-X3sBfzGu9kkailX6SHI0YPBIpmE25igxHhbdlgRSJEmK_8qceA8v0hvTNtaj2tfyX9TS9IN3ipxAnJO4NVc8rSVIx69c-Js8Hr9m6li_f2Nz_M83LcPiCJUGzWIYrcCU7a_CwgRX4RpUu0_ZIHXpMKsGHW_RV4M7nMIDz0PgneCxJJ5nxYBeh27r7P6kHY62Wgg1ZainNNHKNKjQLiWEa4E4wRqVxqjfY2UwERNE5FC_G8uSOOWIElkd04kyrhFTugEz_ee-3YRAGEQRaHUzob2xZpVDEGHrhouG1oyyCoTjlpZ6xEPut8N4kgWDciR9K8iyFSpwVOZ_KRg4fsx5gB1XZvLE2e1mR_p7ddrgMRP8jVRgZ9yvciSuQxnxJBIMsRCtQJR30C-Pks3T1lV5tfWXQvswd3Pakp3z68ttmI98VEW-uLMDM9ng1e4i1snUXj6cPwB8TPFI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast%2C+Light%2C+Soft+Martensitic+Materials&rft.jtitle=Advanced+functional+materials&rft.au=Ahmed%2C+Ejaz&rft.au=Karothu%2C+Durga+Prasad&rft.au=Slimani%2C+Ahmed&rft.au=Mahmoud+Halabi%2C+Jad&rft.date=2022-06-01&rft.pub=Wiley&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=23&rft_id=info:doi/10.1002%2Fadfm.202112117&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03964586v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |