Ultrafast, Light, Soft Martensitic Materials

Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however, due to the metal atoms, these materials are inherently very dense and add significant weight and bulkiness to actuating devices. Here, remarka...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 23
Main Authors Ahmed, Ejaz, Karothu, Durga Prasad, Slimani, Ahmed, Mahmoud Halabi, Jad, Tahir, Ibrahim, Canales, Kevin Quirós, Naumov, Panče
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2022
Wiley
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202112117

Cover

Loading…
Abstract Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however, due to the metal atoms, these materials are inherently very dense and add significant weight and bulkiness to actuating devices. Here, remarkably rapid lattice switching of molecular martensitic materials is reported where the rate of structural transformation exceeds other phase transitions several orders of magnitude. With a determined speed in the range of 0.3–0.6 m s−1, the new phase advances throughout the crystal about ten thousand times faster relative to spin‐crossover transitions, and about hundred to hundred thousand times faster than other common structural phase transitions. Macroscopic crystals of these materials respond by rapid expansion or contraction of about 0.02 m s−1 for unrestrained crystals and 0.02–0.03 m s−1 for clamped crystals. Monte–Carlo simulation of the spatiotemporal profile of the transition and of the local distribution of elastic and kinetic energies induced by domain growth reveals the critical role of the dynamic phase boundary and the lattice edges in the structure switching. Within a broader context, this study indicates that the martensitic organic crystals are prospective lightweight substitutes of metals for ultrafast and clean energy transduction. Martensitic molecular crystals are shown to undergo ultrafast structure switching with uncompromised integrity of their crystals. These are the fastest reported phase transitions in a molecular solid, and pave the way for the application of martensitic organic crystals and light‐weight rapid actuators for energy transduction.
AbstractList Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however, due to the metal atoms, these materials are inherently very dense and add significant weight and bulkiness to actuating devices. Here, remarkably rapid lattice switching of molecular martensitic materials is reported where the rate of structural transformation exceeds other phase transitions several orders of magnitude. With a determined speed in the range of 0.3–0.6 m s−1, the new phase advances throughout the crystal about ten thousand times faster relative to spin-crossover transitions, and about hundred to hundred thousand times faster than other common structural phase transitions. Macroscopic crystals of these materials respond by rapid expansion or contraction of about 0.02 m s−1 for unrestrained crystals and 0.02–0.03 m s−1 for clamped crystals. Monte–Carlo simulation of the spatiotemporal profile of the transition and of the local distribution of elastic and kinetic energies induced by domain growth reveals the critical role of the dynamic phase boundary and the lattice edges in the structure switching. Within a broader context, this study indicates that the martensitic organic crystals are prospective lightweight substitutes of metals for ultrafast and clean energy transduction.
Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however, due to the metal atoms, these materials are inherently very dense and add significant weight and bulkiness to actuating devices. Here, remarkably rapid lattice switching of molecular martensitic materials is reported where the rate of structural transformation exceeds other phase transitions several orders of magnitude. With a determined speed in the range of 0.3–0.6 m s−1, the new phase advances throughout the crystal about ten thousand times faster relative to spin‐crossover transitions, and about hundred to hundred thousand times faster than other common structural phase transitions. Macroscopic crystals of these materials respond by rapid expansion or contraction of about 0.02 m s−1 for unrestrained crystals and 0.02–0.03 m s−1 for clamped crystals. Monte–Carlo simulation of the spatiotemporal profile of the transition and of the local distribution of elastic and kinetic energies induced by domain growth reveals the critical role of the dynamic phase boundary and the lattice edges in the structure switching. Within a broader context, this study indicates that the martensitic organic crystals are prospective lightweight substitutes of metals for ultrafast and clean energy transduction. Martensitic molecular crystals are shown to undergo ultrafast structure switching with uncompromised integrity of their crystals. These are the fastest reported phase transitions in a molecular solid, and pave the way for the application of martensitic organic crystals and light‐weight rapid actuators for energy transduction.
Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however, due to the metal atoms, these materials are inherently very dense and add significant weight and bulkiness to actuating devices. Here, remarkably rapid lattice switching of molecular martensitic materials is reported where the rate of structural transformation exceeds other phase transitions several orders of magnitude. With a determined speed in the range of 0.3–0.6 m s −1 , the new phase advances throughout the crystal about ten thousand times faster relative to spin‐crossover transitions, and about hundred to hundred thousand times faster than other common structural phase transitions. Macroscopic crystals of these materials respond by rapid expansion or contraction of about 0.02 m s −1 for unrestrained crystals and 0.02–0.03 m s −1 for clamped crystals. Monte–Carlo simulation of the spatiotemporal profile of the transition and of the local distribution of elastic and kinetic energies induced by domain growth reveals the critical role of the dynamic phase boundary and the lattice edges in the structure switching. Within a broader context, this study indicates that the martensitic organic crystals are prospective lightweight substitutes of metals for ultrafast and clean energy transduction.
Author Mahmoud Halabi, Jad
Naumov, Panče
Karothu, Durga Prasad
Slimani, Ahmed
Tahir, Ibrahim
Canales, Kevin Quirós
Ahmed, Ejaz
Author_xml – sequence: 1
  givenname: Ejaz
  surname: Ahmed
  fullname: Ahmed, Ejaz
  organization: New York University Abu Dhabi
– sequence: 2
  givenname: Durga Prasad
  surname: Karothu
  fullname: Karothu, Durga Prasad
  organization: New York University Abu Dhabi
– sequence: 3
  givenname: Ahmed
  surname: Slimani
  fullname: Slimani, Ahmed
  organization: Sorbonne University Abu Dhabi
– sequence: 4
  givenname: Jad
  surname: Mahmoud Halabi
  fullname: Mahmoud Halabi, Jad
  organization: New York University Abu Dhabi
– sequence: 5
  givenname: Ibrahim
  surname: Tahir
  fullname: Tahir, Ibrahim
  organization: New York University Abu Dhabi
– sequence: 6
  givenname: Kevin Quirós
  surname: Canales
  fullname: Canales, Kevin Quirós
  organization: New York University Abu Dhabi
– sequence: 7
  givenname: Panče
  orcidid: 0000-0003-2416-6569
  surname: Naumov
  fullname: Naumov, Panče
  email: pance.naumov@nyu.edu
  organization: New York University
BackLink https://hal.science/hal-03964586$$DView record in HAL
BookMark eNqFUE1LAzEQDVLBtnr1XPAkdGsmyX4dS7VW2OJBC95CNpvYlO1uzaZK_71ZVisIIgy8Yd57w8wboF5VVwqhS8ATwJjciEJvJwQTAF_xCepDBFFAMUl6xx5eztCgaTYYQxxT1kfjVems0KJx41FmXtcenmrtRkthnaoa44z0vVPWiLI5R6fag7r4wiFaze-eZ4sge7x_mE2zQNIQ4kCCzIuUJlILgEgmCaSqyAUjDFheeNITCdGEJoUKYyaikNIQex7yQqeM0iG67vauRcl31myFPfBaGL6YZrydYZpGLEyid_Daq067s_XbXjWOb-q9rfx5nEQxSUKCod3IOpW0ddNYpbk0TjhTV_57U3LAvM2QtxnyY4beNvll-77mT0PaGT5MqQ7_qPn0dr788X4C3kuD9g
CitedBy_id crossref_primary_10_1002_anie_202502107
crossref_primary_10_1002_ange_202306198
crossref_primary_10_1002_smo_20230031
crossref_primary_10_1073_pnas_2408366121
crossref_primary_10_1002_anie_202306198
crossref_primary_10_1002_chem_202403293
crossref_primary_10_1016_j_xcrp_2022_101133
crossref_primary_10_1038_s41467_023_41560_8
crossref_primary_10_1073_pnas_2412476121
crossref_primary_10_1002_ange_202502107
crossref_primary_10_1038_s41467_024_53196_3
crossref_primary_10_1039_D4SC02152E
crossref_primary_10_1038_s41467_023_41446_9
crossref_primary_10_1021_jacs_4c12670
crossref_primary_10_1021_jacs_4c09222
crossref_primary_10_1002_anie_202403914
crossref_primary_10_1039_D2TC04642C
crossref_primary_10_1002_ange_202403914
crossref_primary_10_1039_D3SC06800E
Cites_doi 10.1021/cr500249p
10.1109/ACCESS.2018.2868842
10.1073/pnas.2020604118
10.1016/j.cplett.2010.09.027
10.1103/PhysRevB.92.014111
10.1021/acs.chemrev.9b00288
10.1039/C9SC02444A
10.1039/C8TC03504K
10.1126/science.aao6139
10.1177/0954405419855239
10.1021/ja4102634
10.1002/adfm.202011012
10.3390/ma11040522
10.1021/acsnano.1c02356
10.1002/0471744751
10.1021/acs.cgd.9b01522
10.1038/s41566-019-0416-4
10.1016/j.ajodo.2009.11.015
10.1002/anie.201810514
10.1002/anie.201805543
10.1038/s41578-019-0167-3
10.1002/aenm.202100324
10.1039/C8SC03897J
10.1063/1.1699114
10.1103/PhysRevB.87.014111
10.1126/sciadv.abc0251
10.3390/ma10080884
10.1039/D0TA02896G
10.1021/acs.chemrev.5b00398
10.1021/acs.cgd.8b00452
10.1002/adma.201906036
10.1021/jacs.0c05440
10.1039/c3ra46688d
10.1016/j.ssc.2013.08.021
10.1038/ncomms5811
10.1038/s41467-019-12044-5
10.1002/admt.202000769
10.1002/adma.201906216
10.1039/D0ME00133C
10.1002/adfm.202101378
10.1002/smll.202006757
10.1002/anie.201916058
10.21037/jtd.2017.06.30
10.1002/anie.201606003
10.1038/nature08603
10.1002/adma.202008558
10.1021/ja5111927
10.1039/c3ce41313f
10.1063/1.4829462
10.1007/s10965-013-0150-4
10.1021/acs.jpca.9b10365
10.1016/j.mattod.2020.06.005
10.1021/acsanm.1c00689
10.1039/C7CP08609A
10.1039/D0CS00638F
10.1002/adma.202006367
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
1XC
DOI 10.1002/adfm.202112117
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1616-3028
EndPage n/a
ExternalDocumentID oai_HAL_hal_03964586v1
10_1002_adfm_202112117
ADFM202112117
Genre article
GrantInformation_xml – fundername: New York University Abu Dhabi
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
1XC
ID FETCH-LOGICAL-c3517-c1cbd938cfa116c8819edba42414bd1cbcfa82f238de574a653350a421bdf9433
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri May 09 12:09:44 EDT 2025
Sun Jul 13 04:07:31 EDT 2025
Tue Jul 01 00:30:26 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Jan 22 16:24:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords phase transitions
martensitic transitions
crystal structures
organic crystals
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3517-c1cbd938cfa116c8819edba42414bd1cbcfa82f238de574a653350a421bdf9433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2416-6569
0000-0002-4303-4169
PQID 2672852013
PQPubID 2045204
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_03964586v1
proquest_journals_2672852013
crossref_citationtrail_10_1002_adfm_202112117
crossref_primary_10_1002_adfm_202112117
wiley_primary_10_1002_adfm_202112117_ADFM202112117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2020; 20
2020; 120
2019; 10
2019; 13
2013; 20
2020; 59
2020; 124
2017; 9
2014; 136
2020; 8
2018; 6
2020; 6
2020; 5
2014; 5
2021; 31
2014; 4
2021; 33
2015; 137
2021; 118
2014; 16
2020; 49
1953; 21
2021; 6
2021; 4
2020; 41
2013; 87
2015; 92
2020; 142
2005
2020; 32
2018; 20
2014; 114
2016; 55
2018; 18
2021; 15
2015; 115
2018; 359
2010; 499
2017; 10
2021; 17
2013; 139
2022; 12
2009; 462
2016
2013; 173
2020; 234
2011; 140
2018; 11
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Urban M. W. (e_1_2_8_1_1) 2016
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 120
  start-page: 310
  year: 2020
  publication-title: Chem. Rev.
– volume: 15
  start-page: 9273
  year: 2021
  publication-title: ACS Nano
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 124
  start-page: 300
  year: 2020
  publication-title: J. Phys. Chem. A
– volume: 18
  start-page: 4245
  year: 2018
  publication-title: Cryst. Growth Des.
– year: 2005
– volume: 137
  start-page: 1895
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 590
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 9
  start-page: S923
  year: 2017
  publication-title: J. Thorac. Dis.
– volume: 6
  year: 2018
  publication-title: IEEE Access
– volume: 41
  start-page: 243
  year: 2020
  publication-title: Mater. Today
– volume: 20
  start-page: 8523
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 16
  start-page: 1850
  year: 2014
  publication-title: CrystEngComm
– volume: 173
  start-page: 46
  year: 2013
  publication-title: Solid State Commun.
– volume: 499
  start-page: 94
  year: 2010
  publication-title: Chem. Phys. Lett.
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 4
  start-page: 5349
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 115
  year: 2015
  publication-title: Chem. Rev.
– volume: 20
  start-page: 1800
  year: 2020
  publication-title: Cryst. Growth Des.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 6
  start-page: 108
  year: 2021
  publication-title: Mol. Syst. Des. Eng.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 49
  start-page: 8287
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 150
  year: 2013
  publication-title: J. Polym. Res.
– volume: 13
  start-page: 547
  year: 2019
  publication-title: Nat. Photonics
– volume: 59
  start-page: 7049
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 139
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 1332
  year: 2019
  publication-title: Chem. Sci.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 4
  start-page: 7640
  year: 2014
  publication-title: RSC Adv.
– volume: 21
  start-page: 1087
  year: 1953
  publication-title: J. Chem. Phys.
– volume: 17
  year: 2021
  publication-title: Small
– year: 2016
– volume: 10
  start-page: 7327
  year: 2019
  publication-title: Chem. Sci.
– volume: 10
  start-page: 4087
  year: 2019
  publication-title: Nat. Commun.
– volume: 234
  start-page: 218
  year: 2020
  publication-title: Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 462
  start-page: 442
  year: 2009
  publication-title: Nature
– volume: 5
  start-page: 4811
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 522
  year: 2018
  publication-title: Materials
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 884
  year: 2017
  publication-title: Materials
– volume: 5
  start-page: 149
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 359
  start-page: 61
  year: 2018
  publication-title: Science
– volume: 140
  start-page: 65
  year: 2011
  publication-title: Am. J. Orthod. Dentofac. Orthop.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_8_17_1
  doi: 10.1021/cr500249p
– ident: e_1_2_8_52_1
  doi: 10.1109/ACCESS.2018.2868842
– ident: e_1_2_8_41_1
  doi: 10.1073/pnas.2020604118
– ident: e_1_2_8_47_1
  doi: 10.1016/j.cplett.2010.09.027
– ident: e_1_2_8_55_1
  doi: 10.1103/PhysRevB.92.014111
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemrev.9b00288
– ident: e_1_2_8_40_1
  doi: 10.1039/C9SC02444A
– ident: e_1_2_8_25_1
  doi: 10.1039/C8TC03504K
– ident: e_1_2_8_28_1
  doi: 10.1126/science.aao6139
– ident: e_1_2_8_36_1
  doi: 10.1177/0954405419855239
– ident: e_1_2_8_49_1
  doi: 10.1021/ja4102634
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.202011012
– ident: e_1_2_8_34_1
  doi: 10.3390/ma11040522
– ident: e_1_2_8_6_1
  doi: 10.1021/acsnano.1c02356
– ident: e_1_2_8_27_1
  doi: 10.1002/0471744751
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.cgd.9b01522
– ident: e_1_2_8_26_1
  doi: 10.1038/s41566-019-0416-4
– ident: e_1_2_8_32_1
  doi: 10.1016/j.ajodo.2009.11.015
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.201810514
– ident: e_1_2_8_19_1
  doi: 10.1002/anie.201805543
– ident: e_1_2_8_33_1
  doi: 10.1038/s41578-019-0167-3
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.202100324
– ident: e_1_2_8_44_1
  doi: 10.1039/C8SC03897J
– ident: e_1_2_8_57_1
  doi: 10.1063/1.1699114
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevB.87.014111
– ident: e_1_2_8_3_1
  doi: 10.1126/sciadv.abc0251
– ident: e_1_2_8_35_1
  doi: 10.3390/ma10080884
– ident: e_1_2_8_7_1
  doi: 10.1039/D0TA02896G
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.chemrev.5b00398
– ident: e_1_2_8_48_1
  doi: 10.1021/acs.cgd.8b00452
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201906036
– ident: e_1_2_8_39_1
  doi: 10.1021/jacs.0c05440
– ident: e_1_2_8_22_1
  doi: 10.1039/c3ra46688d
– ident: e_1_2_8_46_1
  doi: 10.1016/j.ssc.2013.08.021
– ident: e_1_2_8_42_1
  doi: 10.1038/ncomms5811
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-019-12044-5
– ident: e_1_2_8_30_1
  doi: 10.1002/admt.202000769
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201906216
– ident: e_1_2_8_10_1
  doi: 10.1039/D0ME00133C
– ident: e_1_2_8_12_1
  doi: 10.1002/adfm.202101378
– ident: e_1_2_8_50_1
  doi: 10.1002/smll.202006757
– ident: e_1_2_8_14_1
  doi: 10.1002/anie.201916058
– ident: e_1_2_8_31_1
  doi: 10.21037/jtd.2017.06.30
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.201606003
– ident: e_1_2_8_29_1
  doi: 10.1038/nature08603
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.202008558
– ident: e_1_2_8_43_1
  doi: 10.1021/ja5111927
– ident: e_1_2_8_53_1
  doi: 10.1039/c3ce41313f
– volume-title: Stimuli‐Responsive Materials: From Molecules to Nature Mimicking Materials Design
  year: 2016
  ident: e_1_2_8_1_1
– ident: e_1_2_8_56_1
  doi: 10.1063/1.4829462
– ident: e_1_2_8_24_1
  doi: 10.1007/s10965-013-0150-4
– ident: e_1_2_8_9_1
  doi: 10.1021/acs.jpca.9b10365
– ident: e_1_2_8_11_1
  doi: 10.1016/j.mattod.2020.06.005
– ident: e_1_2_8_16_1
  doi: 10.1021/acsanm.1c00689
– ident: e_1_2_8_45_1
  doi: 10.1039/C7CP08609A
– ident: e_1_2_8_38_1
  doi: 10.1039/D0CS00638F
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202006367
SSID ssj0017734
Score 2.4902332
Snippet Martensitic transformations are well documented in metals and alloys where the atoms connected via metallic bonds rearrange concertedly and rapidly; however,...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atomic properties
Chemical bonds
Clean energy
Crystal structure
crystal structures
Crystals
Martensitic transformations
martensitic transitions
Materials science
Organic crystals
Phase transitions
Physics
Switching
Title Ultrafast, Light, Soft Martensitic Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202112117
https://www.proquest.com/docview/2672852013
https://hal.science/hal-03964586
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60Jz34FqtVgghemrabzW62x6KWItWDWugt7CsIlipt6sFf70ySxlQQQSGHJLO7SfY132xmviXkwkqmIm2YTxPp_NAkwlc2kb6LuHNoABidefnei8EovB3zcSWKP-eHKBfccGRk8zUOcKXn7S_SUCgSI8nBgIEDw8nRYQtR0UPJH0WjKP-tLCg6eNHxkrWxE7RXs69opfVn9ImsAM4qbM30Tn-bqOUb5-4mL61Fqlvm4xuZ438-aYdsFaDU6-W9aJesueke2axQFe6T5miSzlSi5mnTG6JB3_QeYQb3kIYAfeAhJ5yneX8-IKP-zdPVwC92WvAN46CmDDXadpk0iaJUGAkwwVmtQlDvobYgBIEMElDv1vEoVAJAIu-AnGqbdEPGDklt-jp1R8STFkAEGN1cGrTVnE4AQ7iOFbJrDGe8TvxlTcemoCHH3TAmcU6gHMRYC3FZC3VyWaZ_ywk4fkx5Dg1XJkLe7EFvGOO9DuuKkEvxTuuksWzXuBit8zgQUSA5QCFWJ0HWQL88Ku5d9-_Kq-O_ZDohGwFGUmQLOg1SS2cLdwr4JtVnWR_-BEF57nY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6RcKA9lFerpg1gIaRe4iTr9a43x4gQhTbJAYjEbeV9WJWK0gpMD_31nbFjN0FClUDywfY-bO9rvlnPfANw5hRPE2N5yDLlw9hmMkxdpkKfCO9JAbCmsPKdy8ki_norKmtC8oUp-SHqDTeaGcV6TROcNqR7_1hDsU5yJUcNBo-kAdsU1puCGIyuagYpliTlj2XJyMSL3Va8jf2ot1l-Qy41vpNV5BrkXAeuheQZ74Kp3rk0OPnRfcxN1_55Quf4qo_ag3crXBoMy4G0D1t-eQBv19gKD6GzuMvv0yx9yDvBlHT6TnCNi3hATARkBo8l8Twvh_R7WIwvbs4n4SrYQmi5QEllmTVuwJXNUsakVYgUvDNpjBI-Ng4TMUFFGUp450USpxJxouhjOjMuG8Scf4Dm8ufSf4RAOcQRqHcLZUld8yZDGOH7TqqBtYKLFoRVU2u7YiKngBh3uuRQjjS1gq5boQVf6vy_Sg6OZ3OeYs_VmYg6ezKcarrX5wMZCyV_sxa0q47Vqwn7oCOZREogGuItiIoe-s-j9HA0ntVXn15S6AR2JjezqZ5ezr99hjcROVYU-zttaOb3j_4I4U5ujosB_Rc-Y_KQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54AdEH7-K8FhF8Wd3SNGn2ONQxdYqog72F5oagTNmqD_56T9qtTkEEhT60zaVtkpPznfScLwCHRtA0UZqGxAkbxtrxMDVOhDZh1noDQKvcy_eat7vxRY_1JqL4C36IcsHNS0Y-X3sBfzGu9kkailX6SHI0YPBIpmE25igxHhbdlgRSJEmK_8qceA8v0hvTNtaj2tfyX9TS9IN3ipxAnJO4NVc8rSVIx69c-Js8Hr9m6li_f2Nz_M83LcPiCJUGzWIYrcCU7a_CwgRX4RpUu0_ZIHXpMKsGHW_RV4M7nMIDz0PgneCxJJ5nxYBeh27r7P6kHY62Wgg1ZainNNHKNKjQLiWEa4E4wRqVxqjfY2UwERNE5FC_G8uSOOWIElkd04kyrhFTugEz_ee-3YRAGEQRaHUzob2xZpVDEGHrhouG1oyyCoTjlpZ6xEPut8N4kgWDciR9K8iyFSpwVOZ_KRg4fsx5gB1XZvLE2e1mR_p7ddrgMRP8jVRgZ9yvciSuQxnxJBIMsRCtQJR30C-Pks3T1lV5tfWXQvswd3Pakp3z68ttmI98VEW-uLMDM9ng1e4i1snUXj6cPwB8TPFI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast%2C+Light%2C+Soft+Martensitic+Materials&rft.jtitle=Advanced+functional+materials&rft.au=Ahmed%2C+Ejaz&rft.au=Karothu%2C+Durga+Prasad&rft.au=Slimani%2C+Ahmed&rft.au=Mahmoud+Halabi%2C+Jad&rft.date=2022-06-01&rft.pub=Wiley&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=23&rft_id=info:doi/10.1002%2Fadfm.202112117&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03964586v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon