An approach for cancer classification using optimization driven deep learning
The normal and cancer cell tissues exhibit different gene expressions. Therefore, gene expression data are the effective source for cancer classification, in which the usage of the original gene expression data is challenging due to their high dimension and small size of the data samples. This artic...
Saved in:
Published in | International journal of imaging systems and technology Vol. 31; no. 4; pp. 1936 - 1953 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The normal and cancer cell tissues exhibit different gene expressions. Therefore, gene expression data are the effective source for cancer classification, in which the usage of the original gene expression data is challenging due to their high dimension and small size of the data samples. This article proposes a fractional biogeography‐based optimization‐based deep convolutional neural network (FBBO‐based deep CNN) for cancer classification. The developed FBBO is the integration of the fractional calculus (FC) in the biogeography‐based optimization (BBO), which aims at determining the optimal weights for tuning the deep CNN. Initially, the gene expression data is pre‐processed and subjected to dimensional reduction using the probabilistic principal component analysis (PPCA). The selected features are used for cancer classification enabling a high degree of robustness and accuracy. The experimental analysis using the Colon dataset and Leukemia dataset reveals that the proposed classifier acquired maximal accuracy, sensitivity, specificity, precision, and F‐Measure of 0.98. |
---|---|
AbstractList | The normal and cancer cell tissues exhibit different gene expressions. Therefore, gene expression data are the effective source for cancer classification, in which the usage of the original gene expression data is challenging due to their high dimension and small size of the data samples. This article proposes a fractional biogeography‐based optimization‐based deep convolutional neural network (FBBO‐based deep CNN) for cancer classification. The developed FBBO is the integration of the fractional calculus (FC) in the biogeography‐based optimization (BBO), which aims at determining the optimal weights for tuning the deep CNN. Initially, the gene expression data is pre‐processed and subjected to dimensional reduction using the probabilistic principal component analysis (PPCA). The selected features are used for cancer classification enabling a high degree of robustness and accuracy. The experimental analysis using the Colon dataset and Leukemia dataset reveals that the proposed classifier acquired maximal accuracy, sensitivity, specificity, precision, and F‐Measure of 0.98. Abstract The normal and cancer cell tissues exhibit different gene expressions. Therefore, gene expression data are the effective source for cancer classification, in which the usage of the original gene expression data is challenging due to their high dimension and small size of the data samples. This article proposes a fractional biogeography‐based optimization‐based deep convolutional neural network (FBBO‐based deep CNN) for cancer classification. The developed FBBO is the integration of the fractional calculus (FC) in the biogeography‐based optimization (BBO), which aims at determining the optimal weights for tuning the deep CNN. Initially, the gene expression data is pre‐processed and subjected to dimensional reduction using the probabilistic principal component analysis (PPCA). The selected features are used for cancer classification enabling a high degree of robustness and accuracy. The experimental analysis using the Colon dataset and Leukemia dataset reveals that the proposed classifier acquired maximal accuracy, sensitivity, specificity, precision, and F‐Measure of 0.98. |
Author | Devendran, Menaga Sathya, Revathi |
Author_xml | – sequence: 1 givenname: Menaga orcidid: 0000-0002-3481-6169 surname: Devendran fullname: Devendran, Menaga email: dev.menaga@gmail.com organization: B. S. Abdur Rahman Crescent Institute of Science and Technology – sequence: 2 givenname: Revathi surname: Sathya fullname: Sathya, Revathi organization: B. S. Abdur Rahman Crescent Institute of Science and Technology |
BookMark | eNp1kMtOAyEUhompiW114RtM4srF2AMDU1g2jZcmbdx0TxhglGYKI7Sa-vRSx60b_nDOd27_BI188BahWwwPGIDM3F49EMJEfYHGGAQvz88IjYELUQrK5ldoktIOAGMGbIw2C1-ovo9B6feiDbHQymubpVMpudZpdXDBF8fk_FsR-oPbu-8hZKL7tFms7YvOqugzcY0uW9Ule_OnU7R9etwuX8r16_NquViXumK4Lm1TcUIpwLzSBkhNjeacNTnHLdCKWSMw1w1vqSCVIbRuFJhaGBCgcG2qKbob2ua9P442HeQuHKPPE2U-HSgQTESm7gdKx5BStK3sY7YnniQGeTZL5p_8NSuzs4H9cp09_Q_K1WYxVPwA67JsaQ |
CitedBy_id | crossref_primary_10_1186_s13036_022_00319_3 crossref_primary_10_1007_s00500_023_08126_8 crossref_primary_10_1080_0952813X_2023_2217813 crossref_primary_10_1016_j_eswa_2024_124396 |
Cites_doi | 10.1002/ima.22087 10.1007/s40477-018-0313-6 10.1109/TCBB.2018.2822803 10.1097/j.pain.0000000000000487 10.32098/mltj.01.2019.04 10.46253/jcmps.v3i1.a5 10.1016/j.gpb.2017.08.002 10.1109/TFUZZ.2015.2453153 10.1016/j.neucom.2014.06.023 10.1109/CEC.2012.6256127 10.1371/journal.pone.0138814 10.1016/j.compbiomed.2018.04.018 10.1109/TVLSI.2017.2688340 10.1145/1961189.1961199 10.1016/j.biosystems.2018.12.009 10.1109/TEVC.2008.919004 10.1016/j.cell.2014.06.049 10.3322/caac.21332 10.46253/jcmps.v3i2.a5 10.1038/ng1296-457 10.1109/ICASSP.2016.7472100 10.1016/j.neucom.2016.07.080 10.1109/TCBB.2017.2712607 10.1007/s11277-017-5044-z 10.1142/S0219720019400079 10.1109/ICCES48766.2020.9137897 10.1007/978-3-319-32025-0_14 10.1007/BF00994018 10.1155/2014/396529 10.1109/ITME.2018.00015 10.1111/j.1743-6109.2009.01640.x 10.1016/j.asoc.2016.11.026 10.1016/j.asoc.2017.09.038 10.1145/1150402.1150454 10.46253/j.mr.v3i2.a4 10.46253/j.mr.v3i2.a1 10.1073/pnas.211566398 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/ima.22596 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1098-1098 |
EndPage | 1953 |
ExternalDocumentID | 10_1002_ima_22596 IMA22596 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION |
ID | FETCH-LOGICAL-c3516-eb382440073cd0264dc885b3518e0435ed918cb8f4923d246ba0d69d090a16d3 |
IEDL.DBID | DR2 |
ISSN | 0899-9457 |
IngestDate | Thu Oct 10 17:15:17 EDT 2024 Fri Aug 23 04:03:02 EDT 2024 Sat Aug 24 01:34:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3516-eb382440073cd0264dc885b3518e0435ed918cb8f4923d246ba0d69d090a16d3 |
ORCID | 0000-0002-3481-6169 |
PQID | 2590402129 |
PQPubID | 1026352 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2590402129 crossref_primary_10_1002_ima_22596 wiley_primary_10_1002_ima_22596_IMA22596 |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | International journal of imaging systems and technology |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 7 2019; 9 2011; 2 2017; 25 2019; 2 2018; 102 2015; 10 2008; 9 2019; 17 2014; 26 2019; 16 2008; 12 2014; 24 2006 2014; 2014 2018; 62 1996; 14 2018; 21 2017; 256 2014; 158 1995; 20 2017; 50 2016; 9642 2020; 3 2016; 2 2017; 15 2018; 1 2020 2016; 157 2019 2018 2016 2017; 18 2014 2014; 143 2018; 97 2010; 7 2016; 24 2018; 15 2016; 66 2001; 98 2019; 176 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_33_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 Vinolin V (e_1_2_9_14_1) 2019; 2 e_1_2_9_41_1 e_1_2_9_20_1 Souto MCD (e_1_2_9_25_1) 2008; 9 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Ratre A (e_1_2_9_22_1) 2019; 7 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_7_1 e_1_2_9_5_1 Feng C (e_1_2_9_44_1) 2014; 26 Tarek S (e_1_2_9_3_1) 2017; 18 Rashmi M (e_1_2_9_12_1) 2016; 2 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_48_1 Sumit H (e_1_2_9_4_1) 2021; 9 Bhagyalakshmi V (e_1_2_9_23_1) 2018; 1 e_1_2_9_29_1 |
References_xml | – volume: 50 start-page: 124 year: 2017 end-page: 134 article-title: Classification of human cancer diseases by gene expression profiles publication-title: Appl Soft Comput – start-page: 2364 year: 2016 end-page: 2368 – volume: 3 start-page: 42 issue: 1 year: 2020 end-page: 47 article-title: Optimal sizing and siting of distributed generators by hybrid particle swarm optimization‐grey wolf optimization algorithm publication-title: J Comput Mech Power Syst Control – volume: 14 start-page: 457 issue: 4 year: 1996 end-page: 460 article-title: Use of a cDNA microarray to analyse gene expression patterns in human cancer publication-title: Nat Genet – volume: 18 start-page: 151 issue: 3 year: 2017 end-page: 159 article-title: Gene expression based cancer classification publication-title: Egypt Inf J – volume: 9 start-page: 1 issue: 497 year: 2008 end-page: 14 article-title: Clustering cancer gene expression data: a comparative study publication-title: BMC Bioinformatics – volume: 1 start-page: 28 issue: 1 year: 2018 end-page: 35 article-title: Arrhythmia classification using cat swarm optimization based support vector neural network publication-title: J Networking Commun Syst – volume: 26 start-page: 105 issue: 2 year: 2014 end-page: 109 article-title: Log‐transformation and its implications for data analysis publication-title: Shanghai Arch Psychiatry – volume: 15 start-page: 389 issue: 6 year: 2017 end-page: 395 article-title: Hybrid method based on information gain and support vector machine for gene selection in cancer classification publication-title: Genomics Proteomics Bioinformatics – volume: 176 start-page: 41 year: 2019 end-page: 51 article-title: Gene expression cancer classification using modified K‐nearest neighbors technique publication-title: Biosystems – start-page: 464 year: 2006 end-page: 473 – volume: 16 start-page: 2089 issue: 6 year: 2019 end-page: 2100 article-title: Transfer learning for molecular cancer classification using deep neural networks publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 7 issue: 4 year: 2019 article-title: Taylor series based compressive approach and firefly support vector neural network for tracking and anomaly detection in crowded videos publication-title: J Eng Res – volume: 9 start-page: 1457 issue: 2 year: 2021 end-page: 1459 article-title: Rapid digitization of healthcare – a review of COVID‐19 impact on our health systems publication-title: Int J All Res Educ Sci Methods – volume: 2 start-page: 376 issue: 5 year: 2016 end-page: 380 article-title: Cancer diagnosis using Naive Bayes algorithm publication-title: Int J Recent Trends Eng Res – volume: 2 start-page: 10 issue: 2 year: 2019 end-page: 18 article-title: Breast cancer detection by optimal classification using GWO algorithm publication-title: Multimedia Res – volume: 15 start-page: 1315 issue: 4 year: 2018 end-page: 1324 article-title: A self‐training subspace clustering algorithm under low‐rank representation for cancer classification on gene expression data publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 3 start-page: 27 issue: 2 year: 2020 end-page: 34 article-title: Skin cancer detection with optimized neural network via hybrid algorithm publication-title: Multimedia Res – volume: 3 start-page: 33 issue: 2 year: 2020 end-page: 40 article-title: Determination and enrichment of ATC by optimally localized TCSC via hybrid algorithm publication-title: J Comput Mech Power Syst Control – volume: 9 start-page: 124 issue: 1 year: 2019 end-page: 130 article-title: Usefulness of point shear wave elastography to assess the effects of extracorporeal shockwaves on spastic muscles in children with cerebral palsy: an uncontrolled experimental study publication-title: Muscles Ligaments Tendons J – volume: 12 start-page: 702 issue: 6 year: 2008 end-page: 713 article-title: Biogeography‐based optimization publication-title: IEEE Trans Evol Comput – volume: 7 start-page: 3899 issue: 12 year: 2010 end-page: 3908 article-title: The relationship between anger and heterosexual behavior. An investigation in a nonclinical sample of urban Italian undergraduates publication-title: J Sex Med – volume: 66 start-page: 7 issue: 1 year: 2016 end-page: 30 article-title: Cancer statistics, 2016 publication-title: CA Cancer J Clin – volume: 24 start-page: 273 issue: 2 year: 2016 end-page: 287 article-title: Modified AHP for gene selection and cancer classification using type‐2 fuzzy logic publication-title: IEEE Trans Fuzzy Syst – volume: 97 start-page: 145 year: 2018 end-page: 152 article-title: Gene selection for microarray gene expression classification using Bayesian Lasso quantile regression publication-title: Comput Biol Med – year: 2018 – volume: 17 start-page: 1 issue: 3 year: 2019 end-page: 11 article-title: Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles publication-title: J Bioinformatics Comput Biol – year: 2014 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Mach Learn – volume: 25 start-page: 2220 issue: 8 year: 2017 end-page: 2233 article-title: Deep convolutional neural network architecture with reconfigurable computation patterns publication-title: IEEE Trans Very Large Scale Integr VLSI Syst – volume: 158 start-page: 929 issue: 4 year: 2014 end-page: 944 article-title: Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin publication-title: Cell – volume: 21 start-page: 241 issue: 3 year: 2018 end-page: 247 article-title: Use of ultrasound shear wave to measure muscle stiffness in children with cerebral palsy publication-title: J Ultrasound – volume: 9642 start-page: 214 year: 2016 end-page: 228 article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life publication-title: Proc Int Conf Database Syst Adv Appl – volume: 10 start-page: 1 issue: 9 year: 2015 end-page: 20 article-title: Semi‐supervised projective non‐negative matrix factorization for cancer classification publication-title: PLoS One – volume: 102 start-page: 2099 issue: 3 year: 2018 end-page: 2116 article-title: Machine learning based big data processing framework for cancer diagnosis using hidden Markov model and GM clustering publication-title: Wireless Pers0 Commun – volume: 62 start-page: 203 year: 2018 end-page: 215 article-title: Correlation feature selection based improved‐binary particle swarm optimization for gene selection and cancer classification publication-title: Appl Soft Comput – volume: 143 start-page: 44 year: 2014 end-page: 50 article-title: Gene expression data clustering based on graph regularized subspace segmentation publication-title: Neurocomputing – volume: 2014 start-page: 1 year: 2014 end-page: 12 article-title: A clustering approach for the l‐diversity model in privacy preserving data mining using fractional calculus‐bacterial foraging optimization algorithm publication-title: Adv Comput Eng – start-page: 500 year: 2020 end-page: 505 – volume: 24 start-page: 129 issue: 2 year: 2014 end-page: 137 article-title: Threshold prediction for segmenting tumour from brain MRI scans publication-title: Int J Imaging Syst Technol – volume: 256 start-page: 56 year: 2017 end-page: 62 article-title: A hybrid feature selection algorithm for gene expression data classification publication-title: Neurocomputing – volume: 98 start-page: 15149 issue: 26 year: 2001 end-page: 15154 article-title: Multiclass cancer diagnosis using tumor gene expression signatures publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: 27 issue: 3 year: 2011 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol – volume: 3 start-page: 1 issue: 2 year: 2020 end-page: 10 article-title: Hybrid classifier: brain tumor classification and segmentation using genetic‐based grey wolf optimization publication-title: Multimedia Res – year: 2019 – volume: 157 start-page: 1105 issue: 5 year: 2016 end-page: 1113 article-title: Unilateral paravertebral block compared with subarachnoid anesthesia for the management of postoperative pain syndrome after inguinal herniorrhaphy a randomized controlled clinical trial publication-title: Pain – volume: 1 start-page: 28 issue: 1 year: 2018 ident: e_1_2_9_23_1 article-title: Arrhythmia classification using cat swarm optimization based support vector neural network publication-title: J Networking Commun Syst contributor: fullname: Bhagyalakshmi V – ident: e_1_2_9_16_1 doi: 10.1002/ima.22087 – ident: e_1_2_9_48_1 – volume: 2 start-page: 10 issue: 2 year: 2019 ident: e_1_2_9_14_1 article-title: Breast cancer detection by optimal classification using GWO algorithm publication-title: Multimedia Res contributor: fullname: Vinolin V – volume: 9 start-page: 1457 issue: 2 year: 2021 ident: e_1_2_9_4_1 article-title: Rapid digitization of healthcare – a review of COVID‐19 impact on our health systems publication-title: Int J All Res Educ Sci Methods contributor: fullname: Sumit H – ident: e_1_2_9_32_1 doi: 10.1007/s40477-018-0313-6 – ident: e_1_2_9_50_1 doi: 10.1109/TCBB.2018.2822803 – ident: e_1_2_9_5_1 doi: 10.1097/j.pain.0000000000000487 – volume: 18 start-page: 151 issue: 3 year: 2017 ident: e_1_2_9_3_1 article-title: Gene expression based cancer classification publication-title: Egypt Inf J contributor: fullname: Tarek S – ident: e_1_2_9_33_1 doi: 10.32098/mltj.01.2019.04 – ident: e_1_2_9_18_1 doi: 10.46253/jcmps.v3i1.a5 – ident: e_1_2_9_36_1 doi: 10.1016/j.gpb.2017.08.002 – ident: e_1_2_9_2_1 doi: 10.1109/TFUZZ.2015.2453153 – ident: e_1_2_9_49_1 – ident: e_1_2_9_27_1 doi: 10.1016/j.neucom.2014.06.023 – ident: e_1_2_9_43_1 doi: 10.1109/CEC.2012.6256127 – ident: e_1_2_9_20_1 doi: 10.1371/journal.pone.0138814 – ident: e_1_2_9_35_1 doi: 10.1016/j.compbiomed.2018.04.018 – ident: e_1_2_9_47_1 doi: 10.1109/TVLSI.2017.2688340 – ident: e_1_2_9_28_1 doi: 10.1145/1961189.1961199 – ident: e_1_2_9_42_1 doi: 10.1016/j.biosystems.2018.12.009 – ident: e_1_2_9_39_1 doi: 10.1109/TEVC.2008.919004 – ident: e_1_2_9_9_1 doi: 10.1016/j.cell.2014.06.049 – ident: e_1_2_9_8_1 doi: 10.3322/caac.21332 – volume: 7 issue: 4 year: 2019 ident: e_1_2_9_22_1 article-title: Taylor series based compressive approach and firefly support vector neural network for tracking and anomaly detection in crowded videos publication-title: J Eng Res contributor: fullname: Ratre A – ident: e_1_2_9_24_1 doi: 10.46253/jcmps.v3i2.a5 – ident: e_1_2_9_17_1 doi: 10.1038/ng1296-457 – volume: 9 start-page: 1 issue: 497 year: 2008 ident: e_1_2_9_25_1 article-title: Clustering cancer gene expression data: a comparative study publication-title: BMC Bioinformatics contributor: fullname: Souto MCD – ident: e_1_2_9_26_1 doi: 10.1109/ICASSP.2016.7472100 – ident: e_1_2_9_37_1 doi: 10.1016/j.neucom.2016.07.080 – ident: e_1_2_9_30_1 doi: 10.1109/TCBB.2017.2712607 – ident: e_1_2_9_31_1 doi: 10.1007/s11277-017-5044-z – ident: e_1_2_9_41_1 doi: 10.1142/S0219720019400079 – ident: e_1_2_9_7_1 doi: 10.1109/ICCES48766.2020.9137897 – ident: e_1_2_9_13_1 – ident: e_1_2_9_46_1 doi: 10.1007/978-3-319-32025-0_14 – ident: e_1_2_9_29_1 doi: 10.1007/BF00994018 – ident: e_1_2_9_10_1 – ident: e_1_2_9_34_1 doi: 10.1155/2014/396529 – ident: e_1_2_9_40_1 doi: 10.1109/ITME.2018.00015 – ident: e_1_2_9_6_1 doi: 10.1111/j.1743-6109.2009.01640.x – ident: e_1_2_9_15_1 doi: 10.1016/j.asoc.2016.11.026 – ident: e_1_2_9_38_1 doi: 10.1016/j.asoc.2017.09.038 – volume: 26 start-page: 105 issue: 2 year: 2014 ident: e_1_2_9_44_1 article-title: Log‐transformation and its implications for data analysis publication-title: Shanghai Arch Psychiatry contributor: fullname: Feng C – volume: 2 start-page: 376 issue: 5 year: 2016 ident: e_1_2_9_12_1 article-title: Cancer diagnosis using Naive Bayes algorithm publication-title: Int J Recent Trends Eng Res contributor: fullname: Rashmi M – ident: e_1_2_9_45_1 doi: 10.1145/1150402.1150454 – ident: e_1_2_9_11_1 doi: 10.46253/j.mr.v3i2.a4 – ident: e_1_2_9_21_1 doi: 10.46253/j.mr.v3i2.a1 – ident: e_1_2_9_19_1 doi: 10.1073/pnas.211566398 |
SSID | ssj0011505 |
Score | 2.3383756 |
Snippet | The normal and cancer cell tissues exhibit different gene expressions. Therefore, gene expression data are the effective source for cancer classification, in... Abstract The normal and cancer cell tissues exhibit different gene expressions. Therefore, gene expression data are the effective source for cancer... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1936 |
SubjectTerms | Artificial neural networks Biogeography Cancer cancer classification Classification Colon Datasets deep learning Fractional calculus Gene expression gene expression data Leukemia Machine learning Optimization Principal components analysis |
Title | An approach for cancer classification using optimization driven deep learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22596 https://www.proquest.com/docview/2590402129 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6MgaAPXqbidEoQH3zp1kvSJfg01DGF-SAT9iCU5tIh4jZ2efHXe5K22xQE8aktSUObc3LOl_bLF4CrVMnYbwvmUcWkRwOpPayZeb6RKeZHxkJhFyf3n-LeC30csmEFbsq1MLk-xOqDmx0ZLl7bAZ7KeWstGvpmZYMQvFu57SBqWzrX3fNKOsoCHUdf5FaBkrJ2qSrkh63Vnd9z0RpgbsJUl2e6e_BaPmFOL3lvLheyqT5_iDf-8xX2YbfAn6STO8wBVMy4BjsbqoQ12HKsUDU_hH5nTErRcYLolijrI3iwkNtyjJxZieXOj8gEg89HsaqT6JmNokQbMyXFxhSjIxh07we3Pa_Yf8FTEQtiD-fZHLO__ZmnNM7VqFacM4ll3PgIs4wWAVeSZ1bkTYc0lqmvY6F94adBrKNjqI4nY3MCRCLQ0VkkYiENVegHNEWTaZrFRmnDRR0uS0Mk01xlI8n1lMMErxLXSXVolCZKioE2T7AAwxDmX2zj2vX17w0kD_2OOzn9e9Uz2A4ti8URWBpQXcyW5hxhyEJeOH_7AguO2Lg |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwHP6hE1EPPqbidGoQD1669ZFmLXgZ6th020Em7CKleXSIuI09Lv71_pK22xQE8dSWpKVNfo8v6ZcvANex4Myuhb5Fhc8t6nBpYc3EshWPMT_6vhvqxcmdLmu-0Me-31-D23wtTKoPsZhw055h4rV2cD0hXV2qhr5p3SBE72wdNtDdPb1_wf3zQjxKQx1DYAy0BiX1a7mukO1WF7d-z0ZLiLkKVE2maezBa_6OKcHkvTKf8Yr4_CHf-N-P2IfdDIKSemozB7CmhkXYWREmLMKmIYaK6SF06kOS644TBLhEaDPBg0bdmmZkepZo-vyAjDD-fGQLO4mc6EBKpFJjku1NMTiCXuOhd9e0si0YLOH5DrNwqB0gAND_84TE4RqVIgh8jmWBshFpKRk6geBBonXepEsZj23JQmmHduww6R1DYTgaqhMgHLGOTLyQhVxRgaZAY8erSZowJaQKwhJc5T0RjVOhjSiVVHYjvIpMI5WgnPdRlPnaNMICjESYgvEZN6axf39A1OrUzcnp36tewlaz12lH7Vb36Qy2XU1qMXyWMhRmk7k6R1Qy4xfG-L4AnX_c0g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58oOjBt_g2iAcv1bRNsw2eFnVx1RURBQ9CaB4VEbuLu1789U7Sdl0FQTy1JWlok8nMl_abLwD7mVacNkQSMJ2ogIXKBFgzD6hVGcbHJImES07uXPPze3bxkDyMwXGdC1PqQww_uLmZ4f21m-A9kx99iYY-O9kgBO98HCYZj6njc53eDrWjHNLx_MXUSVCypFHLCtHoaHjr92D0hTBHcaoPNK15eKwfseSXvBy-D9Sh_vih3vjPd1iAuQqAkmZpMYswZoslmB2RJVyCKU8L1f1l6DQLUquOE4S3RDsjwYPD3I5k5MeVOPL8E-mi93mt0jqJeXNulBhre6TameJpBe5aZ3cn50G1AUOg4yTkAS60Uwz_7m-eNrhYY0anaaKwLLUUcZY1Iky1SnOn8mYixlVGDReGCpqF3MSrMFF0C7sGRCHSMXksuFCWaTQEloVxw7CcW21sKtZhrx4I2StlNmQpqBxJvJK-k9Zhqx4iWc20vsQC9EMYgLGNA9_Xvzcg252mP9n4e9VdmL45bcmr9vXlJsxEjtHiySxbMDF4e7fbCEkGaseb3icpMduB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+for+cancer+classification+using+optimization+driven+deep+learning&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Devendran%2C+Menaga&rft.au=Sathya%2C+Revathi&rft.date=2021-12-01&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=31&rft.issue=4&rft.spage=1936&rft.epage=1953&rft_id=info:doi/10.1002%2Fima.22596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ima_22596 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |