Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis

Thymosin α1 is used in the clinic as a treatment in viral disease and acts as an anti-inflammatory. Here it was found to also correct the misfolding of mutant CTFR and potentiate its activity, thus improving outcome in a mouse model of cystic fibrosis. Cystic fibrosis (CF) is caused by mutations in...

Full description

Saved in:
Bibliographic Details
Published inNature Medicine Vol. 23; no. 5; pp. 590 - 600
Main Authors Romani, Luigina, Oikonomou, Vasilis, Moretti, Silvia, Iannitti, Rossana G, D'Adamo, Maria Cristina, Villella, Valeria R, Pariano, Marilena, Sforna, Luigi, Borghi, Monica, Bellet, Marina M, Fallarino, Francesca, Pallotta, Maria Teresa, Servillo, Giuseppe, Ferrari, Eleonora, Puccetti, Paolo, Kroemer, Guido, Pessia, Mauro, Maiuri, Luigi, Goldstein, Allan L, Garaci, Enrico
Format Journal Article Magazine Article
LanguageEnglish
Published New York Nature Publishing Group US 01.05.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thymosin α1 is used in the clinic as a treatment in viral disease and acts as an anti-inflammatory. Here it was found to also correct the misfolding of mutant CTFR and potentiate its activity, thus improving outcome in a mouse model of cystic fibrosis. Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF, which include impaired chloride permeability and persistent lung inflammation, a multidrug approach is required for efficacious CF therapy. To date, no individual drug with pleiotropic beneficial effects is available for CF. Here we report on the ability of thymosin alpha 1 (Tα1)—a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent—to rectify the multiple tissue defects in mice with CF as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology: it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 has strong potential to be an efficacious single-molecule-based therapeutic agent for CF.
AbstractList Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF, which include impaired chloride permeability and persistent lung inflammation, a multidrug approach is required for efficacious CF therapy. To date, no individual drug with pleiotropic beneficial effects is available for CF. Here we report on the ability of thymosin alpha 1 (Tα1)-a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent-to rectify the multiple tissue defects in mice with CF as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology: it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 has strong potential to be an efficacious single-molecule-based therapeutic agent for CF.
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF, which include impaired chloride permeability and persistent lung inflammation, a multidrug approach is required for efficacious CF therapy. To date, no individual drug with pleiotropic beneficial effects is available for CF. Here we report on the ability of thymosin alpha 1 (Tα1)-a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent-to rectify the multiple tissue defects in mice with CF as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology: it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 has strong potential to be an efficacious single-molecule-based therapeutic agent for CF.Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF, which include impaired chloride permeability and persistent lung inflammation, a multidrug approach is required for efficacious CF therapy. To date, no individual drug with pleiotropic beneficial effects is available for CF. Here we report on the ability of thymosin alpha 1 (Tα1)-a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent-to rectify the multiple tissue defects in mice with CF as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology: it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 has strong potential to be an efficacious single-molecule-based therapeutic agent for CF.
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride-channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF —which include impaired chloride permeability and persistent lung inflammation—a multidrug approach is required for efficacious CF therapy. To date, no individual, drug with pleiotropic beneficial effects for CF is available. Here we report on the ability of thymosin alpha 1 (Tα1)—a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent—to rectify the multiple tissue defects in CF mice as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology; namely, it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 offers a strong potential to be an efficacious single molecule-based therapeutic agent in CF.
Thymosin α1 is used in the clinic as a treatment in viral disease and acts as an anti-inflammatory. Here it was found to also correct the misfolding of mutant CTFR and potentiate its activity, thus improving outcome in a mouse model of cystic fibrosis. Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF, which include impaired chloride permeability and persistent lung inflammation, a multidrug approach is required for efficacious CF therapy. To date, no individual drug with pleiotropic beneficial effects is available for CF. Here we report on the ability of thymosin alpha 1 (Tα1)—a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent—to rectify the multiple tissue defects in mice with CF as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology: it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 has strong potential to be an efficacious single-molecule-based therapeutic agent for CF.
Author Ferrari, Eleonora
D'Adamo, Maria Cristina
Pessia, Mauro
Romani, Luigina
Borghi, Monica
Sforna, Luigi
Villella, Valeria R
Maiuri, Luigi
Moretti, Silvia
Puccetti, Paolo
Goldstein, Allan L
Servillo, Giuseppe
Garaci, Enrico
Iannitti, Rossana G
Bellet, Marina M
Fallarino, Francesca
Pariano, Marilena
Pallotta, Maria Teresa
Kroemer, Guido
Oikonomou, Vasilis
AuthorAffiliation 3 European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
8 Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
4 INSERM U1138, Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Descartes, Paris, France
1 Department of Experimental Medicine, University of Perugia, 06132 Perugia
9 Department of Biochemistry and Molecular Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, DC
2 Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Malta
7 Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
10 University San Raffaele and IRCCS San Raffaele, 00166 Rome, Italy
5 Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
6 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Pari
AuthorAffiliation_xml – name: 3 European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
– name: 6 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France
– name: 8 Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
– name: 9 Department of Biochemistry and Molecular Medicine, The George Washington University, School of Medicine and Health Sciences, Washington, DC
– name: 10 University San Raffaele and IRCCS San Raffaele, 00166 Rome, Italy
– name: 1 Department of Experimental Medicine, University of Perugia, 06132 Perugia
– name: 4 INSERM U1138, Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Descartes, Paris, France
– name: 7 Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
– name: 2 Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Malta
– name: 5 Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
Author_xml – sequence: 1
  givenname: Luigina
  orcidid: 0000-0002-1356-525X
  surname: Romani
  fullname: Romani, Luigina
  email: luigina.romani@unipg.it
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 2
  givenname: Vasilis
  surname: Oikonomou
  fullname: Oikonomou, Vasilis
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 3
  givenname: Silvia
  surname: Moretti
  fullname: Moretti, Silvia
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 4
  givenname: Rossana G
  surname: Iannitti
  fullname: Iannitti, Rossana G
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 5
  givenname: Maria Cristina
  surname: D'Adamo
  fullname: D'Adamo, Maria Cristina
  organization: Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta
– sequence: 6
  givenname: Valeria R
  surname: Villella
  fullname: Villella, Valeria R
  organization: Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute
– sequence: 7
  givenname: Marilena
  surname: Pariano
  fullname: Pariano, Marilena
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 8
  givenname: Luigi
  surname: Sforna
  fullname: Sforna, Luigi
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 9
  givenname: Monica
  surname: Borghi
  fullname: Borghi, Monica
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 10
  givenname: Marina M
  orcidid: 0000-0001-7604-0189
  surname: Bellet
  fullname: Bellet, Marina M
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 11
  givenname: Francesca
  surname: Fallarino
  fullname: Fallarino, Francesca
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 12
  givenname: Maria Teresa
  surname: Pallotta
  fullname: Pallotta, Maria Teresa
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 13
  givenname: Giuseppe
  surname: Servillo
  fullname: Servillo, Giuseppe
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 14
  givenname: Eleonora
  surname: Ferrari
  fullname: Ferrari, Eleonora
  organization: Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute
– sequence: 15
  givenname: Paolo
  surname: Puccetti
  fullname: Puccetti, Paolo
  organization: Department of Experimental Medicine, University of Perugia
– sequence: 16
  givenname: Guido
  surname: Kroemer
  fullname: Kroemer, Guido
  organization: Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Descartes, Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital
– sequence: 17
  givenname: Mauro
  surname: Pessia
  fullname: Pessia, Mauro
  organization: Department of Experimental Medicine, University of Perugia, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta
– sequence: 18
  givenname: Luigi
  surname: Maiuri
  fullname: Maiuri, Luigi
  organization: Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Department of Health Sciences, University of Piemonte Orientale
– sequence: 19
  givenname: Allan L
  surname: Goldstein
  fullname: Goldstein, Allan L
  organization: Department of Biochemistry and Molecular Medicine, George Washington University, School of Medicine and Health Sciences
– sequence: 20
  givenname: Enrico
  surname: Garaci
  fullname: Garaci, Enrico
  organization: University San Raffaele and IRCCS San Raffaele
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28394330$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04702766$$DView record in HAL
BookMark eNplkc1q3DAUhUVIaf5K3qBo12ThVLIkW7MphJA0gYFuUsiiICT5ekbBllzJDsxj9UX6TJGZSWmSlQ7Sp3MP9xyhfR88IHRKyQUlTH71_QVnROyhQyp4VdCaPOxnTWpZyIWoDtBRSo-EkMwsPqKDUrIFZ4wcol_3600fkvP47x-KIwwREvgxYY2HMGbldLdTOFOrDoo-dGCnLIxO0OBxDVEPG9yGiO0mjc7i1pmYPdMJ-tDqLsGn3XmMft5c31_dFssf3--uLpeFZYKKgjdct5TZmksjjZYgrDGWitqU2shGk4XmFRjLS1bRpuSsIZpCa2ooTaUbyY7Rt63vMJkeGpvDRt2pIbpex40K2qnXL96t1So8KcFLwgXNBudbg_Wbb7eXSzXfEV6Tsq6qp5k92w2L4fcEaVS9Sxa6TnsIU1JUyorN-Jzr8_-5_jm_rD8DxRaweV8pQqusG_XowhzTdYoSNderfK_mejP_5Q3_Yvme3KVMmfAriOoxTNHnFt6hzxPdtOc
CitedBy_id crossref_primary_10_1093_mmy_myy074
crossref_primary_10_1080_14712598_2018_1497606
crossref_primary_10_3389_fmed_2024_1388959
crossref_primary_10_1152_ajpcell_00341_2018
crossref_primary_10_26508_lsa_202000662
crossref_primary_10_3390_ijms20246161
crossref_primary_10_3390_vaccines8040713
crossref_primary_10_3390_ijms22041952
crossref_primary_10_1172_JCI144983
crossref_primary_10_1021_acs_jmedchem_1c01897
crossref_primary_10_1038_nrd_2017_99
crossref_primary_10_2174_1573398X15666190702151613
crossref_primary_10_1111_bph_14141
crossref_primary_10_3389_fimmu_2019_01841
crossref_primary_10_3389_fonc_2019_00873
crossref_primary_10_1016_j_msard_2018_09_035
crossref_primary_10_3389_fimmu_2020_618312
crossref_primary_10_3389_fimmu_2021_673693
crossref_primary_10_1074_jbc_RA118_002607
crossref_primary_10_1172_jci_insight_98699
crossref_primary_10_3389_fphar_2019_00020
crossref_primary_10_3389_fimmu_2023_1237978
crossref_primary_10_1016_j_jtha_2023_01_028
crossref_primary_10_1016_j_celrep_2019_12_059
crossref_primary_10_1080_14712598_2018_1484447
crossref_primary_10_1080_14728222_2019_1628948
crossref_primary_10_18632_aging_101736
crossref_primary_10_1038_s41419_019_1466_8
crossref_primary_10_1080_14712598_2018_1456527
crossref_primary_10_1016_j_jgr_2019_12_003
crossref_primary_10_1007_s12264_019_00346_z
crossref_primary_10_1128_IAI_00105_21
crossref_primary_10_1038_s41419_019_1392_9
crossref_primary_10_1038_s41419_019_1500_x
crossref_primary_10_3390_cells9091952
crossref_primary_10_1016_j_intimp_2020_106873
crossref_primary_10_1038_s41418_019_0290_0
crossref_primary_10_3389_fimmu_2021_568789
crossref_primary_10_1038_s41598_019_46639_1
crossref_primary_10_1016_j_brainres_2020_147038
crossref_primary_10_1038_cdd_2017_126
crossref_primary_10_1186_s13052_019_0627_9
crossref_primary_10_1021_acs_jmedchem_3c00608
crossref_primary_10_1096_fj_201901050R
crossref_primary_10_1002_ppul_24129
crossref_primary_10_1371_journal_ppat_1012784
crossref_primary_10_1038_s41598_018_30956_y
crossref_primary_10_23736_S0026_4946_19_05506_3
crossref_primary_10_1016_j_biopha_2018_09_064
crossref_primary_10_1016_j_ejmech_2020_112717
crossref_primary_10_1038_s41401_022_00952_0
crossref_primary_10_1038_s41598_017_14055_y
crossref_primary_10_18632_aging_101888
crossref_primary_10_3390_jpm12060868
crossref_primary_10_1038_s41420_020_0283_2
crossref_primary_10_1038_s41591_018_0080_0
crossref_primary_10_1016_j_ajem_2021_04_043
crossref_primary_10_1038_nm_4339
crossref_primary_10_3390_molecules22111843
crossref_primary_10_1016_j_intimp_2019_05_047
crossref_primary_10_1038_s41467_019_09883_7
crossref_primary_10_1038_s41419_017_0235_9
crossref_primary_10_1016_j_biochi_2018_08_001
crossref_primary_10_3390_ijms22010124
crossref_primary_10_1016_j_intimp_2023_109744
crossref_primary_10_1038_s41591_018_0079_6
crossref_primary_10_3390_cells11121868
crossref_primary_10_1016_j_celrep_2018_04_034
crossref_primary_10_4187_respcare_06052
crossref_primary_10_18632_oncotarget_27037
crossref_primary_10_1080_14712598_2018_1484101
crossref_primary_10_1016_j_intimp_2023_109949
crossref_primary_10_1080_14712598_2018_1484103
crossref_primary_10_1016_j_ijpharm_2018_06_041
crossref_primary_10_1177_1178646920919755
crossref_primary_10_3390_jof11030210
crossref_primary_10_1080_14712598_2018_1474196
crossref_primary_10_1210_clinem_dgz102
crossref_primary_10_2174_1872213X12666181012101444
crossref_primary_10_3389_fcell_2021_620370
crossref_primary_10_1080_14712598_2018_1474198
crossref_primary_10_1080_14712598_2018_1474197
crossref_primary_10_15252_embj_2018100101
crossref_primary_10_3390_jof7090720
crossref_primary_10_3389_fphar_2019_01662
crossref_primary_10_1016_j_ejmech_2020_112921
Cites_doi 10.1126/science.1163518
10.1517/14712598.2015.1008446
10.1038/ncb2090
10.1038/sj.gt.3301741
10.1038/nprot.2006.4
10.1073/pnas.1105787108
10.1182/blood-2006-02-004762
10.4161/auto.19381
10.1016/j.it.2014.08.001
10.1038/embor.2009.69
10.4161/15548627.2014.973737
10.1093/ajhp/58.10.879
10.1152/ajpcell.1998.275.4.C913
10.1007/s40272-013-0035-3
10.1172/JCI60862
10.1038/ni1028
10.1097/MPG.0b013e3181afce6c
10.1038/cmi.2010.43
10.1172/JCI2614
10.1073/pnas.91.2.479
10.1056/NEJMra043184
10.1038/cdd.2016.22
10.1136/bmj.i859
10.1016/j.jcf.2004.05.036
10.1056/NEJMoa1409547
10.1016/j.pharmthera.2016.11.009
10.1002/j.1460-2075.1995.tb00119.x
10.1038/nri2163
10.1371/journal.pbio.1000155
10.1016/j.cell.2009.04.042
10.1091/mbc.e04-03-0176
10.1016/S2213-2600(14)70132-8
10.1164/rccm.201107-1174CI
10.1083/jcb.200602082
10.1016/0022-510X(81)90170-2
10.1016/j.jinf.2016.04.022
10.1164/rccm.201207-1346OC
10.1126/science.1191542
10.1172/JCI24898
10.1016/j.jcf.2015.03.003
10.1038/nm.2715
10.1152/ajplung.00326.2014
10.1378/chest.12-1639
10.1056/NEJMra1300109
10.1007/s10059-013-0298-0
10.1038/ni.2077
10.18632/oncotarget.4846
10.2174/1389450116666150518102831
10.1038/cdd.2013.46
10.7554/eLife.10365
10.1038/358761a0
10.1016/j.ceb.2009.11.002
10.1074/jbc.M109.001685
10.1016/j.molmed.2011.10.003
10.1111/cei.12833
10.1126/science.257.5073.1083
10.1016/j.jcf.2013.06.008
10.1007/s00726-016-2169-4
10.1517/14712590902911412
10.1038/ncomms10791
10.1111/tra.12357
10.1074/jbc.M213005200
10.1016/j.jcf.2016.05.002
10.1053/j.gastro.2007.10.007
10.1016/j.jcf.2011.12.005
10.7554/eLife.05875
ContentType Journal Article
Magazine Article
Copyright Springer Nature America, Inc. 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Nature America, Inc. 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.1038/nm.4305
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Sciences (General)
EISSN 1546-170X
1744-7933
EndPage 600
ExternalDocumentID PMC5420451
oai_HAL_hal_04702766v1
28394330
10_1038_nm_4305
Genre Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 293714
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AETEA
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7X8
1XC
FRP
OK1
VOOES
5PM
ID FETCH-LOGICAL-c3515-4d4af13c748b8ba8e5cbbc157b2ab8da09a46ebc42361d243d0a1efb7e2b6ad83
ISSN 1078-8956
1546-170X
IngestDate Thu Aug 21 18:00:04 EDT 2025
Fri May 09 12:20:53 EDT 2025
Fri Jul 11 10:35:53 EDT 2025
Mon Jul 21 06:02:43 EDT 2025
Tue Jul 01 03:53:38 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Fri Feb 21 02:37:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3515-4d4af13c748b8ba8e5cbbc157b2ab8da09a46ebc42361d243d0a1efb7e2b6ad83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7604-0189
0000-0002-1356-525X
OpenAccessLink https://hal.science/hal-04702766
PMID 28394330
PQID 1886347028
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5420451
hal_primary_oai_HAL_hal_04702766v1
proquest_miscellaneous_1886347028
pubmed_primary_28394330
crossref_citationtrail_10_1038_nm_4305
crossref_primary_10_1038_nm_4305
springer_journals_10_1038_nm_4305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170500
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 5
  year: 2017
  text: 20170500
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature Medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2017
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Quon, Rowe (CR7) 2016; 352
Tuthill, King (CR20) 2013; 3
Iannitti (CR28) 2016; 7
Fajac, De Boeck (CR59) 2017; 170
De Luca (CR68) 2012; 122
Hegde (CR8) 2015; 4
Yuk, Jo (CR52) 2013; 36
De Stefano (CR62) 2014; 10
Boyle (CR58) 2014; 2
Galietta (CR5) 2013; 15
Bomberger, Barnaby, Stanton (CR35) 2009; 284
Ancell, Phipps, Young (CR27) 2001; 58
Van Goor (CR45) 2011; 108
de Luca (CR63) 2010; 7
Iannitti (CR22) 2013; 187
Lamark, Johansen (CR43) 2010; 22
Caputo (CR48) 2008; 322
Kucera (CR42) 2016; 17
Romani (CR18) 2006; 108
Zhang (CR44) 2009; 7
Stoltz, Meyerholz, Welsh (CR30) 2015; 372
Villella (CR10) 2013; 20
Lukacs, Verkman (CR2) 2012; 18
Pedemonte (CR4) 2005; 115
Mandaliti (CR19) 2016; 48
Schägger (CR66) 2006; 1
McGaha (CR31) 2015; 6
van der Doef (CR55) 2010; 50
CR49
Rowe, Miller, Sorscher (CR1) 2005; 352
King, Brunel, Warris (CR25) 2016; 72
Pilewski, Donaldson, Cooke, Lekstrom-Himes (CR60) 2014; 49
Pallotta (CR65) 2011; 12
Pica (CR33) 2016; 186
Young (CR56) 2007; 133
Loffing, Moyer, McCoy, Stanton (CR64) 1998; 275
Soares, Gozzelino, Weis (CR53) 2014; 35
King, Tuthill (CR26) 2015; 15
Latz (CR23) 2004; 5
Goldstein, Goldstein (CR17) 2009; 9
Denning (CR34) 1992; 358
Sarandeses, Covelo, Díaz-Jullien, Freire (CR37) 2003; 278
Wainwright, Elborn, Ramsey (CR6) 2015; 373
Hoffman, Ramsey (CR14) 2013; 143
Hassink (CR41) 2009; 10
Taillebourg (CR40) 2012; 8
Darrah (CR54) 2016; 15
Collawn, Matalon (CR51) 2014; 307
Okiyoneda (CR3) 2010; 329
Cantin, Hartl, Konstan, Chmiel (CR11) 2015; 14
Devor, Schultz (CR16) 1998; 102
Millard, Wood (CR39) 2006; 173
Gentzsch (CR36) 2004; 15
de Benedictis, Bush (CR15) 2012; 185
Luciani (CR32) 2010; 12
Munkonge (CR69) 2004; 3
Heard, Thompson, Carver, Bakey, Wang (CR38) 2015; 16
Snouwaert (CR29) 1992; 257
Tosco (CR9) 2016; 23
Bruscia (CR24) 2002; 9
Van Goor, Yu, Burton, Hoffman (CR47) 2014; 13
Dalakas, Engel, McClure, Goldstein, Askanas (CR50) 1981; 50
Yu (CR46) 2012; 11
van Doorninck (CR61) 1995; 14
Clarke (CR57) 1994; 91
Cohen, Prince (CR13) 2012; 18
Sowa, Bennett, Gygi, Harper (CR67) 2009; 138
Puccetti, Grohmann (CR21) 2007; 7
Rubin (CR12) 2014; 15
A Heard (BFnm4305_CR38) 2015; 16
DA Stoltz (BFnm4305_CR30) 2015; 372
MC Dalakas (BFnm4305_CR50) 1981; 50
E Bruscia (BFnm4305_CR24) 2002; 9
VR Villella (BFnm4305_CR10) 2013; 20
JF Collawn (BFnm4305_CR51) 2014; 307
LL Clarke (BFnm4305_CR57) 1994; 91
T Lamark (BFnm4305_CR43) 2010; 22
SM Millard (BFnm4305_CR39) 2006; 173
JM Bomberger (BFnm4305_CR35) 2009; 284
GL Lukacs (BFnm4305_CR2) 2012; 18
N Pedemonte (BFnm4305_CR4) 2005; 115
GC Hassink (BFnm4305_CR41) 2009; 10
LJ Galietta (BFnm4305_CR5) 2013; 15
P Puccetti (BFnm4305_CR21) 2007; 7
MP Boyle (BFnm4305_CR58) 2014; 2
H Yu (BFnm4305_CR46) 2012; 11
I Fajac (BFnm4305_CR59) 2017; 170
CS Sarandeses (BFnm4305_CR37) 2003; 278
TL McGaha (BFnm4305_CR31) 2015; 6
A Caputo (BFnm4305_CR48) 2008; 322
JM Yuk (BFnm4305_CR52) 2013; 36
BK Rubin (BFnm4305_CR12) 2014; 15
RS King (BFnm4305_CR26) 2015; 15
JM Pilewski (BFnm4305_CR60) 2014; 49
F Pica (BFnm4305_CR33) 2016; 186
FD Young (BFnm4305_CR56) 2007; 133
HP van der Doef (BFnm4305_CR55) 2010; 50
BFnm4305_CR49
AM Cantin (BFnm4305_CR11) 2015; 14
J Loffing (BFnm4305_CR64) 1998; 275
D De Stefano (BFnm4305_CR62) 2014; 10
MP Soares (BFnm4305_CR53) 2014; 35
RJ Darrah (BFnm4305_CR54) 2016; 15
RN Hegde (BFnm4305_CR8) 2015; 4
BS Quon (BFnm4305_CR7) 2016; 352
CE Wainwright (BFnm4305_CR6) 2015; 373
M Gentzsch (BFnm4305_CR36) 2004; 15
L Zhang (BFnm4305_CR44) 2009; 7
GM Denning (BFnm4305_CR34) 1992; 358
A Luciani (BFnm4305_CR32) 2010; 12
A De Luca (BFnm4305_CR68) 2012; 122
CV Tuthill (BFnm4305_CR20) 2013; 3
MT Pallotta (BFnm4305_CR65) 2011; 12
L Romani (BFnm4305_CR18) 2006; 108
JN Snouwaert (BFnm4305_CR29) 1992; 257
JH van Doorninck (BFnm4305_CR61) 1995; 14
W Mandaliti (BFnm4305_CR19) 2016; 48
ME Sowa (BFnm4305_CR67) 2009; 138
J King (BFnm4305_CR25) 2016; 72
A Tosco (BFnm4305_CR9) 2016; 23
FM de Benedictis (BFnm4305_CR15) 2012; 185
TS Cohen (BFnm4305_CR13) 2012; 18
A de Luca (BFnm4305_CR63) 2010; 7
T Okiyoneda (BFnm4305_CR3) 2010; 329
LR Hoffman (BFnm4305_CR14) 2013; 143
RG Iannitti (BFnm4305_CR22) 2013; 187
E Latz (BFnm4305_CR23) 2004; 5
SM Rowe (BFnm4305_CR1) 2005; 352
F Munkonge (BFnm4305_CR69) 2004; 3
CD Ancell (BFnm4305_CR27) 2001; 58
A Kucera (BFnm4305_CR42) 2016; 17
AL Goldstein (BFnm4305_CR17) 2009; 9
F Van Goor (BFnm4305_CR45) 2011; 108
F Van Goor (BFnm4305_CR47) 2014; 13
DC Devor (BFnm4305_CR16) 1998; 102
H Schägger (BFnm4305_CR66) 2006; 1
RG Iannitti (BFnm4305_CR28) 2016; 7
E Taillebourg (BFnm4305_CR40) 2012; 8
28475572 - Nat Med. 2017 May 5;23(5):536-538. doi: 10.1038/nm.4339.
29934535 - Nat Med. 2018 Sep;24(9):1482. doi: 10.1038/s41591-018-0099-2.
29934534 - Nat Med. 2018 Sep;24(9):1481. doi: 10.1038/s41591-018-0100-0.
References_xml – volume: 322
  start-page: 590
  year: 2008
  end-page: 594
  ident: CR48
  article-title: TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity
  publication-title: Science
  doi: 10.1126/science.1163518
– volume: 15
  start-page: S41
  issue: Suppl. 1
  year: 2015
  end-page: S49
  ident: CR26
  article-title: Evaluation of thymosin α1 in nonclinical models of the immune-suppressing indications melanoma and sepsis
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712598.2015.1008446
– volume: 12
  start-page: 863
  year: 2010
  end-page: 875
  ident: CR32
  article-title: Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2090
– volume: 9
  start-page: 683
  year: 2002
  end-page: 685
  ident: CR24
  article-title: Isolation of CF cell lines corrected at ΔF508-CFTR locus by SFHR-mediated targeting
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3301741
– ident: CR49
– volume: 1
  start-page: 16
  year: 2006
  end-page: 22
  ident: CR66
  article-title: Tricine–SDS–PAGE
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.4
– volume: 108
  start-page: 18843
  year: 2011
  end-page: 18848
  ident: CR45
  article-title: Correction of the F508del-CFTR protein processing defect by the investigational drug VX-809
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1105787108
– volume: 108
  start-page: 2265
  year: 2006
  end-page: 2274
  ident: CR18
  article-title: Thymosin α1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance
  publication-title: Blood
  doi: 10.1182/blood-2006-02-004762
– volume: 8
  start-page: 767
  year: 2012
  end-page: 779
  ident: CR40
  article-title: The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins
  publication-title: Autophagy
  doi: 10.4161/auto.19381
– volume: 35
  start-page: 483
  year: 2014
  end-page: 494
  ident: CR53
  article-title: Tissue damage control in disease tolerance
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2014.08.001
– volume: 10
  start-page: 755
  year: 2009
  end-page: 761
  ident: CR41
  article-title: The ER-resident ubiquitin-specific protease 19 participates in the UPR and rescues ERAD substrates
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.69
– volume: 10
  start-page: 2053
  year: 2014
  end-page: 2074
  ident: CR62
  article-title: Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.973737
– volume: 58
  start-page: 879
  year: 2001
  end-page: 885
  ident: CR27
  article-title: Thymosin α-1
  publication-title: Am. J. Health Syst. Pharm.
  doi: 10.1093/ajhp/58.10.879
– volume: 275
  start-page: C913
  year: 1998
  end-page: C920
  ident: CR64
  article-title: Exocytosis is not involved in activation of Cl secretion via CFTR in Calu-3 airway epithelial cells
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1998.275.4.C913
– volume: 15
  start-page: 393
  year: 2013
  end-page: 402
  ident: CR5
  article-title: Managing the underlying cause of cystic fibrosis: a future role for potentiators and correctors
  publication-title: Paediatr. Drugs
  doi: 10.1007/s40272-013-0035-3
– volume: 122
  start-page: 1816
  year: 2012
  end-page: 1831
  ident: CR68
  article-title: CD4 T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI60862
– volume: 5
  start-page: 190
  year: 2004
  end-page: 198
  ident: CR23
  article-title: TLR9 signals after translocating from the ER to CpG DNA in the lysosome
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1028
– volume: 50
  start-page: 347
  year: 2010
  end-page: 349
  ident: CR55
  article-title: Association of the CLCA1 p.S357N variant with meconium ileus in European patients with cystic fibrosis
  publication-title: J. Pediatr. Gastroenterol. Nutr.
  doi: 10.1097/MPG.0b013e3181afce6c
– volume: 7
  start-page: 459
  year: 2010
  end-page: 470
  ident: CR63
  article-title: Non-hematopoietic cells contribute to protective tolerance to via a TRIF pathway converging on IDO
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/cmi.2010.43
– volume: 102
  start-page: 679
  year: 1998
  end-page: 687
  ident: CR16
  article-title: Ibuprofen inhibits cystic fibrosis transmembrane conductance regulator-mediated Cl- secretion
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI2614
– volume: 91
  start-page: 479
  year: 1994
  end-page: 483
  ident: CR57
  article-title: Relationship of a non–cystic fibrosis transmembrane conductance regulator–mediated chloride conductance to organ-level disease in mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.2.479
– volume: 352
  start-page: 1992
  year: 2005
  end-page: 2001
  ident: CR1
  article-title: Cystic fibrosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra043184
– volume: 23
  start-page: 1380
  year: 2016
  end-page: 1393
  ident: CR9
  article-title: A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II–mutated CFTR
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2016.22
– volume: 352
  start-page: i859
  year: 2016
  ident: CR7
  article-title: New and emerging targeted therapies for cystic fibrosis
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.i859
– volume: 3
  start-page: 171
  issue: Suppl. 2
  year: 2004
  end-page: 176
  ident: CR69
  article-title: Measurement of halide efflux from cultured and primary airway epithelial cells using fluorescence indicators
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2004.05.036
– volume: 373
  start-page: 1783
  year: 2015
  end-page: 1784
  ident: CR6
  article-title: Lumacaftor–Ivacaftor in patients with cystic fibrosis homozygous for Phe508del
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1409547
– volume: 170
  start-page: 205
  year: 2017
  end-page: 211
  ident: CR59
  article-title: New horizons for cystic fibrosis treatment
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2016.11.009
– volume: 14
  start-page: 4403
  year: 1995
  end-page: 4411
  ident: CR61
  article-title: A mouse model for the cystic fibrosis ΔF508 mutation
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb00119.x
– volume: 7
  start-page: 817
  year: 2007
  end-page: 823
  ident: CR21
  article-title: IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-κB activation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2163
– volume: 7
  start-page: e1000155
  year: 2009
  ident: CR44
  article-title: CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000155
– volume: 138
  start-page: 389
  year: 2009
  end-page: 403
  ident: CR67
  article-title: Defining the human deubiquitinating enzyme interaction landscape
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.042
– volume: 15
  start-page: 2684
  year: 2004
  end-page: 2696
  ident: CR36
  article-title: Endocytic trafficking routes of wild type and ΔF508 cystic fibrosis transmembrane conductance regulator
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-03-0176
– volume: 2
  start-page: 527
  year: 2014
  end-page: 538
  ident: CR58
  article-title: A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a Phe508del mutation: a phase 2 randomised controlled trial
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(14)70132-8
– volume: 185
  start-page: 12
  year: 2012
  end-page: 23
  ident: CR15
  article-title: Corticosteroids in respiratory diseases in children
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201107-1174CI
– volume: 173
  start-page: 463
  year: 2006
  end-page: 468
  ident: CR39
  article-title: Riding the DUBway: regulation of protein trafficking by deubiquitylating enzymes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200602082
– volume: 50
  start-page: 239
  year: 1981
  end-page: 247
  ident: CR50
  article-title: Immunocytochemical localization of thymosin-α1 in thymic epithelial cells of normal and myasthenia gravis patients and in thymic cultures
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(81)90170-2
– volume: 72
  start-page: S50
  issue: Suppl. 1
  year: 2016
  end-page: S55
  ident: CR25
  article-title: infections in cystic fibrosis
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2016.04.022
– volume: 187
  start-page: 609
  year: 2013
  end-page: 620
  ident: CR22
  article-title: Th17/Treg imbalance in murine cystic fibrosis is linked to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201207-1346OC
– volume: 49
  start-page: 157
  year: 2014
  end-page: 159
  ident: CR60
  article-title: Phase 2 studies reveal additive effects of VX-661, an investigational CFTR corrector, and ivacaftor, a CFTR potentiator, in patients who carry the ΔF508-CFTR mutation
  publication-title: Pediatr. Pulmonol.
– volume: 329
  start-page: 805
  year: 2010
  end-page: 810
  ident: CR3
  article-title: Peripheral protein quality control removes unfolded CFTR from the plasma membrane
  publication-title: Science
  doi: 10.1126/science.1191542
– volume: 115
  start-page: 2564
  year: 2005
  end-page: 2571
  ident: CR4
  article-title: Small-molecule correctors of defective ΔF508-CFTR cellular processing identified by high-throughput screening
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI24898
– volume: 3
  start-page: 133
  year: 2013
  ident: CR20
  article-title: Thymosin α1—a peptide immune modulator with a broad range of clinical applications
  publication-title: Clin. Exp. Pharmacol.
– volume: 14
  start-page: 419
  year: 2015
  end-page: 430
  ident: CR11
  article-title: Inflammation in cystic fibrosis lung disease: pathogenesis and therapy
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2015.03.003
– volume: 18
  start-page: 509
  year: 2012
  end-page: 519
  ident: CR13
  article-title: Cystic fibrosis: a mucosal immunodeficiency syndrome
  publication-title: Nat. Med.
  doi: 10.1038/nm.2715
– volume: 307
  start-page: L917
  year: 2014
  end-page: L923
  ident: CR51
  article-title: CFTR and lung homeostasis
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00326.2014
– volume: 143
  start-page: 207
  year: 2013
  end-page: 213
  ident: CR14
  article-title: Cystic fibrosis therapeutics: the road ahead
  publication-title: Chest
  doi: 10.1378/chest.12-1639
– volume: 372
  start-page: 351
  year: 2015
  end-page: 362
  ident: CR30
  article-title: Origins of cystic fibrosis lung disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1300109
– volume: 36
  start-page: 393
  year: 2013
  end-page: 399
  ident: CR52
  article-title: Crosstalk between autophagy and inflammasomes
  publication-title: Mol. Cells
  doi: 10.1007/s10059-013-0298-0
– volume: 12
  start-page: 870
  year: 2011
  end-page: 878
  ident: CR65
  article-title: Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2077
– volume: 6
  start-page: 21771
  year: 2015
  end-page: 21772
  ident: CR31
  article-title: IDO–GCN2 and autophagy in inflammation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4846
– volume: 16
  start-page: 958
  year: 2015
  end-page: 964
  ident: CR38
  article-title: Targeting molecular chaperones for the treatment of cystic fibrosis: is it a viable approach?
  publication-title: Curr. Drug Targets
  doi: 10.2174/1389450116666150518102831
– volume: 20
  start-page: 1101
  year: 2013
  end-page: 1115
  ident: CR10
  article-title: Disease-relevant proteostasis regulation of cystic fibrosis transmembrane conductance regulator
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2013.46
– volume: 4
  start-page: e10365
  year: 2015
  ident: CR8
  article-title: Unravelling druggable signalling networks that control F508del-CFTR proteostasis
  publication-title: eLife
  doi: 10.7554/eLife.10365
– volume: 358
  start-page: 761
  year: 1992
  end-page: 764
  ident: CR34
  article-title: Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive
  publication-title: Nature
  doi: 10.1038/358761a0
– volume: 22
  start-page: 192
  year: 2010
  end-page: 198
  ident: CR43
  article-title: Autophagy: links with the proteasome
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.11.002
– volume: 284
  start-page: 18778
  year: 2009
  end-page: 18789
  ident: CR35
  article-title: The deubiquitinating enzyme USP10 regulates the post-endocytic sorting of cystic fibrosis transmembrane conductance regulator in airway epithelial cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.001685
– volume: 18
  start-page: 81
  year: 2012
  end-page: 91
  ident: CR2
  article-title: CFTR: folding, misfolding and correcting the ΔF508 conformational defect
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2011.10.003
– volume: 186
  start-page: 39
  year: 2016
  end-page: 45
  ident: CR33
  article-title: Serum thymosin α1 levels in patients with chronic inflammatory autoimmune diseases
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/cei.12833
– volume: 15
  start-page: 113
  year: 2014
  end-page: 116
  ident: CR12
  article-title: Cystic fibrosis: myths, mistakes, and dogma
  publication-title: Paediatr. Respir. Rev.
– volume: 257
  start-page: 1083
  year: 1992
  end-page: 1088
  ident: CR29
  article-title: An animal model for cystic fibrosis made by gene targeting
  publication-title: Science
  doi: 10.1126/science.257.5073.1083
– volume: 13
  start-page: 29
  year: 2014
  end-page: 36
  ident: CR47
  article-title: Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2013.06.008
– volume: 48
  start-page: 1231
  year: 2016
  end-page: 1239
  ident: CR19
  article-title: New studies about the insertion mechanism of thymosin α1 in negative regions of model membranes as starting point of the bioactivity
  publication-title: Amino Acids
  doi: 10.1007/s00726-016-2169-4
– volume: 9
  start-page: 593
  year: 2009
  end-page: 608
  ident: CR17
  article-title: From lab to bedside: emerging clinical applications of thymosin α1
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712590902911412
– volume: 7
  start-page: 10791
  year: 2016
  ident: CR28
  article-title: IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10791
– volume: 17
  start-page: 211
  year: 2016
  end-page: 229
  ident: CR42
  article-title: Spatiotemporal resolution of Rab9 and CI-MPR dynamics in the endocytic pathway
  publication-title: Traffic
  doi: 10.1111/tra.12357
– volume: 278
  start-page: 13286
  year: 2003
  end-page: 13293
  ident: CR37
  article-title: Prothymosin α is processed to thymosin α1 and thymosin αl11 by a lysosomal asparaginyl endopeptidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M213005200
– volume: 15
  start-page: 736
  year: 2016
  end-page: 744
  ident: CR54
  article-title: Early pulmonary disease manifestations in cystic fibrosis mice
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2016.05.002
– volume: 133
  start-page: 1928
  year: 2007
  end-page: 1937
  ident: CR56
  article-title: Amelioration of cystic fibrosis intestinal mucous disease in mice by restoration of mCLCA3
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.10.007
– volume: 11
  start-page: 237
  year: 2012
  end-page: 245
  ident: CR46
  article-title: Ivacaftor potentiation of multiple CFTR channels with gating mutations
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2011.12.005
– volume: 14
  start-page: 4403
  year: 1995
  ident: BFnm4305_CR61
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb00119.x
– volume: 122
  start-page: 1816
  year: 2012
  ident: BFnm4305_CR68
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI60862
– volume: 22
  start-page: 192
  year: 2010
  ident: BFnm4305_CR43
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.11.002
– volume: 187
  start-page: 609
  year: 2013
  ident: BFnm4305_CR22
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201207-1346OC
– volume: 5
  start-page: 190
  year: 2004
  ident: BFnm4305_CR23
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1028
– volume: 10
  start-page: 755
  year: 2009
  ident: BFnm4305_CR41
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.69
– volume: 15
  start-page: 2684
  year: 2004
  ident: BFnm4305_CR36
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-03-0176
– volume: 48
  start-page: 1231
  year: 2016
  ident: BFnm4305_CR19
  publication-title: Amino Acids
  doi: 10.1007/s00726-016-2169-4
– volume: 36
  start-page: 393
  year: 2013
  ident: BFnm4305_CR52
  publication-title: Mol. Cells
  doi: 10.1007/s10059-013-0298-0
– volume: 3
  start-page: 133
  year: 2013
  ident: BFnm4305_CR20
  publication-title: Clin. Exp. Pharmacol.
– volume: 170
  start-page: 205
  year: 2017
  ident: BFnm4305_CR59
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2016.11.009
– volume: 7
  start-page: 10791
  year: 2016
  ident: BFnm4305_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10791
– volume: 7
  start-page: 459
  year: 2010
  ident: BFnm4305_CR63
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/cmi.2010.43
– volume: 138
  start-page: 389
  year: 2009
  ident: BFnm4305_CR67
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.042
– volume: 352
  start-page: 1992
  year: 2005
  ident: BFnm4305_CR1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra043184
– volume: 15
  start-page: 393
  year: 2013
  ident: BFnm4305_CR5
  publication-title: Paediatr. Drugs
  doi: 10.1007/s40272-013-0035-3
– volume: 35
  start-page: 483
  year: 2014
  ident: BFnm4305_CR53
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2014.08.001
– volume: 133
  start-page: 1928
  year: 2007
  ident: BFnm4305_CR56
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.10.007
– volume: 14
  start-page: 419
  year: 2015
  ident: BFnm4305_CR11
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2015.03.003
– volume: 143
  start-page: 207
  year: 2013
  ident: BFnm4305_CR14
  publication-title: Chest
  doi: 10.1378/chest.12-1639
– volume: 8
  start-page: 767
  year: 2012
  ident: BFnm4305_CR40
  publication-title: Autophagy
  doi: 10.4161/auto.19381
– volume: 372
  start-page: 351
  year: 2015
  ident: BFnm4305_CR30
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1300109
– volume: 3
  start-page: 171
  issue: Suppl. 2
  year: 2004
  ident: BFnm4305_CR69
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2004.05.036
– volume: 115
  start-page: 2564
  year: 2005
  ident: BFnm4305_CR4
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI24898
– volume: 11
  start-page: 237
  year: 2012
  ident: BFnm4305_CR46
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2011.12.005
– volume: 18
  start-page: 81
  year: 2012
  ident: BFnm4305_CR2
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2011.10.003
– volume: 373
  start-page: 1783
  year: 2015
  ident: BFnm4305_CR6
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1409547
– volume: 284
  start-page: 18778
  year: 2009
  ident: BFnm4305_CR35
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.001685
– volume: 15
  start-page: 113
  year: 2014
  ident: BFnm4305_CR12
  publication-title: Paediatr. Respir. Rev.
– volume: 278
  start-page: 13286
  year: 2003
  ident: BFnm4305_CR37
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M213005200
– ident: BFnm4305_CR49
  doi: 10.7554/eLife.05875
– volume: 9
  start-page: 683
  year: 2002
  ident: BFnm4305_CR24
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3301741
– volume: 15
  start-page: 736
  year: 2016
  ident: BFnm4305_CR54
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2016.05.002
– volume: 50
  start-page: 239
  year: 1981
  ident: BFnm4305_CR50
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(81)90170-2
– volume: 2
  start-page: 527
  year: 2014
  ident: BFnm4305_CR58
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(14)70132-8
– volume: 50
  start-page: 347
  year: 2010
  ident: BFnm4305_CR55
  publication-title: J. Pediatr. Gastroenterol. Nutr.
  doi: 10.1097/MPG.0b013e3181afce6c
– volume: 358
  start-page: 761
  year: 1992
  ident: BFnm4305_CR34
  publication-title: Nature
  doi: 10.1038/358761a0
– volume: 1
  start-page: 16
  year: 2006
  ident: BFnm4305_CR66
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.4
– volume: 7
  start-page: 817
  year: 2007
  ident: BFnm4305_CR21
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2163
– volume: 9
  start-page: 593
  year: 2009
  ident: BFnm4305_CR17
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712590902911412
– volume: 13
  start-page: 29
  year: 2014
  ident: BFnm4305_CR47
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2013.06.008
– volume: 23
  start-page: 1380
  year: 2016
  ident: BFnm4305_CR9
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2016.22
– volume: 49
  start-page: 157
  year: 2014
  ident: BFnm4305_CR60
  publication-title: Pediatr. Pulmonol.
– volume: 12
  start-page: 863
  year: 2010
  ident: BFnm4305_CR32
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2090
– volume: 15
  start-page: S41
  issue: Suppl. 1
  year: 2015
  ident: BFnm4305_CR26
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712598.2015.1008446
– volume: 186
  start-page: 39
  year: 2016
  ident: BFnm4305_CR33
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/cei.12833
– volume: 72
  start-page: S50
  issue: Suppl. 1
  year: 2016
  ident: BFnm4305_CR25
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2016.04.022
– volume: 329
  start-page: 805
  year: 2010
  ident: BFnm4305_CR3
  publication-title: Science
  doi: 10.1126/science.1191542
– volume: 257
  start-page: 1083
  year: 1992
  ident: BFnm4305_CR29
  publication-title: Science
  doi: 10.1126/science.257.5073.1083
– volume: 108
  start-page: 2265
  year: 2006
  ident: BFnm4305_CR18
  publication-title: Blood
  doi: 10.1182/blood-2006-02-004762
– volume: 58
  start-page: 879
  year: 2001
  ident: BFnm4305_CR27
  publication-title: Am. J. Health Syst. Pharm.
  doi: 10.1093/ajhp/58.10.879
– volume: 185
  start-page: 12
  year: 2012
  ident: BFnm4305_CR15
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201107-1174CI
– volume: 20
  start-page: 1101
  year: 2013
  ident: BFnm4305_CR10
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2013.46
– volume: 275
  start-page: C913
  year: 1998
  ident: BFnm4305_CR64
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1998.275.4.C913
– volume: 16
  start-page: 958
  year: 2015
  ident: BFnm4305_CR38
  publication-title: Curr. Drug Targets
  doi: 10.2174/1389450116666150518102831
– volume: 17
  start-page: 211
  year: 2016
  ident: BFnm4305_CR42
  publication-title: Traffic
  doi: 10.1111/tra.12357
– volume: 102
  start-page: 679
  year: 1998
  ident: BFnm4305_CR16
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI2614
– volume: 18
  start-page: 509
  year: 2012
  ident: BFnm4305_CR13
  publication-title: Nat. Med.
  doi: 10.1038/nm.2715
– volume: 12
  start-page: 870
  year: 2011
  ident: BFnm4305_CR65
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2077
– volume: 91
  start-page: 479
  year: 1994
  ident: BFnm4305_CR57
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.2.479
– volume: 173
  start-page: 463
  year: 2006
  ident: BFnm4305_CR39
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200602082
– volume: 307
  start-page: L917
  year: 2014
  ident: BFnm4305_CR51
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00326.2014
– volume: 322
  start-page: 590
  year: 2008
  ident: BFnm4305_CR48
  publication-title: Science
  doi: 10.1126/science.1163518
– volume: 6
  start-page: 21771
  year: 2015
  ident: BFnm4305_CR31
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4846
– volume: 108
  start-page: 18843
  year: 2011
  ident: BFnm4305_CR45
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1105787108
– volume: 4
  start-page: e10365
  year: 2015
  ident: BFnm4305_CR8
  publication-title: eLife
  doi: 10.7554/eLife.10365
– volume: 7
  start-page: e1000155
  year: 2009
  ident: BFnm4305_CR44
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000155
– volume: 10
  start-page: 2053
  year: 2014
  ident: BFnm4305_CR62
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.973737
– volume: 352
  start-page: i859
  year: 2016
  ident: BFnm4305_CR7
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.i859
– reference: 29934534 - Nat Med. 2018 Sep;24(9):1481. doi: 10.1038/s41591-018-0100-0.
– reference: 29934535 - Nat Med. 2018 Sep;24(9):1482. doi: 10.1038/s41591-018-0099-2.
– reference: 28475572 - Nat Med. 2017 May 5;23(5):536-538. doi: 10.1038/nm.4339.
SSID ssj0003059
ssj0038457
Score 2.5159106
Snippet Thymosin α1 is used in the clinic as a treatment in viral disease and acts as an anti-inflammatory. Here it was found to also correct the misfolding of mutant...
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride...
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 590
SubjectTerms 13/1
13/109
13/21
13/89
14/63
38/61
64/60
692/308
692/308/1426
82/80
9/74
Adjuvants, Immunologic - pharmacology
Animals
Autophagy - drug effects
Biomedicine
Blotting, Western
Cancer Research
Cell Line
Chloride Channels - drug effects
Chloride Channels - metabolism
Cystic Fibrosis - genetics
Cystic Fibrosis - immunology
Cystic Fibrosis - metabolism
Cystic Fibrosis Transmembrane Conductance Regulator - drug effects
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Cytokines - drug effects
Cytokines - immunology
Disease Models, Animal
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Fluorescent Antibody Technique
Humans
Immunohistochemistry
Immunoprecipitation
Indoleamine-Pyrrole 2,3,-Dioxygenase - drug effects
Indoleamine-Pyrrole 2,3,-Dioxygenase - immunology
Infectious Diseases
Inflammation
Life Sciences
Metabolic Diseases
Mice
Mice, Inbred CFTR
Molecular Medicine
Neurosciences
Patch-Clamp Techniques
Protein Stability - drug effects
RAW 264.7 Cells
Respiratory Mucosa - cytology
Thymalfasin
Thymosin - analogs & derivatives
Thymosin - pharmacology
Ubiquitin Thiolesterase - drug effects
Ubiquitin Thiolesterase - metabolism
Ubiquitination - drug effects
Title Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis
URI https://link.springer.com/article/10.1038/nm.4305
https://www.ncbi.nlm.nih.gov/pubmed/28394330
https://www.proquest.com/docview/1886347028
https://hal.science/hal-04702766
https://pubmed.ncbi.nlm.nih.gov/PMC5420451
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6TSBeEIyv8jEZxHip0jWJkziP2zRU0Fqhskl9QAq242oRbVrRdtL4V_wRfhP32k7WrkMCXqoodmK15_Tm3vjecwl5qwMRhUwpTwap9FjAtJcqFXsilTmXaB41ViP3-nH3nH0cRsNG4-tK1tJyIdvqx611Jf-DKpwDXLFK9h-QrW8KJ-AY8IVPQBg-_xJjiNwh2G_tH5_sH_l-y0hUzk3RmmjNpgtMBcJSK3PUwtcCY-1NbEdc7eETzKRPoq6AyTdUVyjb3BpBDA33na96rn2jALqxFz-YTmxXqNbp0rTYqt_aFt-wXmK6NJm0Yl6Mi9p972HtpM0j-FyML4v6og_YQcmNDODxLUrhmn-5FxPwsKvTANvaGVMWe37SGa5aW1td7FgVrZjOyLYN3TDpVsC9nLRRnGx1BmAxmxhkwUVKWej2d9bVs6uhLbITQCCBljAZ1iE5WrvUllLjOgduFVSIdtetuStbF5gsuxmJbCbU3thVN87K2QNy30UZ9NBS5iFp6HKX3LF9R692yd2eQ_ER-VJxiP766dNr_lBBa_64I3orf6jjDwX-UMsfWvHnMTl_f3J23PVcxw1PheDYeixnYuSHKmFccim4jpSUyo8SGQjJc9FJBYu1VAwle_KAhXlH-HokEx3IWOQ8fEK2y2mpnxHKFeM5-L4BygkJFaXhKMhVgoqATCcjv0neVT9sppwcPXZFGWcmLSLkWTnJEIwmofXEmVVg2ZzyBpCpR1ExvXt4muG5Dks6QRLHl7Dg6wq4DEwo7ouJUk-X88znPA5xHm-SpxbI-l4VD5okWYN4bbH1kbK4MDLtEcNWD7huRYbM2Y75zS_w_I_rviD3rv9bL8n24vtSvwI3eCH3DJP3yM7RSf_T4DfXP7q9
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thymosin+%CE%B11+represents+a+potential+potent+single-molecule-based+therapy+for+cystic+fibrosis&rft.jtitle=Nature+medicine&rft.au=Romani%2C+Luigina&rft.au=Oikonomou%2C+Vasilis&rft.au=Moretti%2C+Silvia&rft.au=Iannitti%2C+Rossana+G&rft.date=2017-05-01&rft.eissn=1546-170X&rft.volume=23&rft.issue=5&rft.spage=590&rft_id=info:doi/10.1038%2Fnm.4305&rft_id=info%3Apmid%2F28394330&rft.externalDocID=28394330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon