m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development

N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 52; no. 6; pp. 1007 - 1021.e8
Main Authors Gao, Yimeng, Vasic, Radovan, Song, Yuanbin, Teng, Rhea, Liu, Chengyang, Gbyli, Rana, Biancon, Giulia, Nelakanti, Raman, Lobben, Kirsten, Kudo, Eriko, Liu, Wei, Ardasheva, Anastasia, Fu, Xiaoying, Wang, Xiaman, Joshi, Poorval, Lee, Veronica, Dura, Burak, Viero, Gabriella, Iwasaki, Akiko, Fan, Rong, Xiao, Andrew, Flavell, Richard A., Li, Hua-Bing, Tebaldi, Toma, Halene, Stephanie
Format Journal Article
LanguageEnglish
Published Elsevier Inc 16.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development. [Display omitted] •Loss of METTL3 inhibits proliferation and differentiation of hematopoietic stem cells•Depletion of m6A results in aberrant dsRNA formation of long m6A-modified transcripts•Loss of METTL3 induces deleterious innate immune responses in hematopoiesis•Mavs and Rnasel depletion partially rescue defects in Vav-Cre+-Mettl3fl/fl mice Little is known about the role of N6-methyladenosine (m6A) modifications in mammalian hematopoietic development. Gao et al. find that m6A modification of endogenous transcripts preserves their recognition as self by preventing aberrant formation of double-stranded RNA. Deletion of m6A writer Mettl3 and loss of m6A activates pattern recognition receptor pathways, culminating in a deleterious innate immune response and hematopoietic failure.
AbstractList N 6 methyladenosine (m 6 A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m 6 A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m 6 A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m 6 A modified in their native state, characterized by low folding energies, and predominantly protein-coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo . Our results suggest that m 6 A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development. Little is known about the role of N 6 -methyladenosine (m 6 A) modifications in mammalian hematopoietic development, Gao et al. find that m 6 A modification of endogenous transcripts preserves their recognition as self by preventing aberrant formation of double-stranded RNA. Deletion of m 6 A writer Mettl3 and loss of m 6 A activates pattern recognition receptor pathways, culminating in a deleterious innate immune response and hematopoietic failure.
N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development.N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development.
N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development. [Display omitted] •Loss of METTL3 inhibits proliferation and differentiation of hematopoietic stem cells•Depletion of m6A results in aberrant dsRNA formation of long m6A-modified transcripts•Loss of METTL3 induces deleterious innate immune responses in hematopoiesis•Mavs and Rnasel depletion partially rescue defects in Vav-Cre+-Mettl3fl/fl mice Little is known about the role of N6-methyladenosine (m6A) modifications in mammalian hematopoietic development. Gao et al. find that m6A modification of endogenous transcripts preserves their recognition as self by preventing aberrant formation of double-stranded RNA. Deletion of m6A writer Mettl3 and loss of m6A activates pattern recognition receptor pathways, culminating in a deleterious innate immune response and hematopoietic failure.
Author Xiao, Andrew
Song, Yuanbin
Joshi, Poorval
Biancon, Giulia
Fan, Rong
Teng, Rhea
Dura, Burak
Liu, Chengyang
Fu, Xiaoying
Gbyli, Rana
Iwasaki, Akiko
Liu, Wei
Flavell, Richard A.
Ardasheva, Anastasia
Gao, Yimeng
Kudo, Eriko
Li, Hua-Bing
Lee, Veronica
Viero, Gabriella
Tebaldi, Toma
Vasic, Radovan
Lobben, Kirsten
Wang, Xiaman
Halene, Stephanie
Nelakanti, Raman
AuthorAffiliation 7 Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy
11 These authors contributed equally
8 Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
2 Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
10 Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
1 Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
4 Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
5 Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
6 Department of Biomedical Engineering and Yale Cancer Center, Yale University, New Haven, Connecticut 06520, USA
9 Yale Institute for Immune Metabolism, Shanghai Jiao Tong University Sc
AuthorAffiliation_xml – name: 1 Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
– name: 12 Lead contact
– name: 11 These authors contributed equally
– name: 7 Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy
– name: 4 Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
– name: 5 Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
– name: 6 Department of Biomedical Engineering and Yale Cancer Center, Yale University, New Haven, Connecticut 06520, USA
– name: 9 Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
– name: 10 Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
– name: 2 Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
– name: 3 Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
– name: 8 Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
Author_xml – sequence: 1
  givenname: Yimeng
  surname: Gao
  fullname: Gao, Yimeng
  email: yimeng.gao@yale.edu
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 2
  givenname: Radovan
  surname: Vasic
  fullname: Vasic, Radovan
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 3
  givenname: Yuanbin
  surname: Song
  fullname: Song, Yuanbin
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 4
  givenname: Rhea
  surname: Teng
  fullname: Teng, Rhea
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 5
  givenname: Chengyang
  surname: Liu
  fullname: Liu, Chengyang
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 6
  givenname: Rana
  surname: Gbyli
  fullname: Gbyli, Rana
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 7
  givenname: Giulia
  surname: Biancon
  fullname: Biancon, Giulia
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 8
  givenname: Raman
  surname: Nelakanti
  fullname: Nelakanti, Raman
  organization: Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 9
  givenname: Kirsten
  surname: Lobben
  fullname: Lobben, Kirsten
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 10
  givenname: Eriko
  surname: Kudo
  fullname: Kudo, Eriko
  organization: Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
– sequence: 11
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 12
  givenname: Anastasia
  surname: Ardasheva
  fullname: Ardasheva, Anastasia
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 13
  givenname: Xiaoying
  surname: Fu
  fullname: Fu, Xiaoying
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 14
  givenname: Xiaman
  surname: Wang
  fullname: Wang, Xiaman
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 15
  givenname: Poorval
  surname: Joshi
  fullname: Joshi, Poorval
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 16
  givenname: Veronica
  surname: Lee
  fullname: Lee, Veronica
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 17
  givenname: Burak
  surname: Dura
  fullname: Dura, Burak
  organization: Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 18
  givenname: Gabriella
  surname: Viero
  fullname: Viero, Gabriella
  organization: Institute of Biophysics, CNR Unit at Trento, Povo Trento 38123, Italy
– sequence: 19
  givenname: Akiko
  surname: Iwasaki
  fullname: Iwasaki, Akiko
  organization: Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
– sequence: 20
  givenname: Rong
  surname: Fan
  fullname: Fan, Rong
  organization: Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 21
  givenname: Andrew
  surname: Xiao
  fullname: Xiao, Andrew
  organization: Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 22
  givenname: Richard A.
  surname: Flavell
  fullname: Flavell, Richard A.
  email: richard.flavell@yale.edu
  organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 23
  givenname: Hua-Bing
  surname: Li
  fullname: Li, Hua-Bing
  email: huabing.li@shsmu.edu.cn
  organization: Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
– sequence: 24
  givenname: Toma
  surname: Tebaldi
  fullname: Tebaldi, Toma
  email: toma.tebaldi@yale.edu
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 25
  givenname: Stephanie
  orcidid: 0000-0002-2737-9810
  surname: Halene
  fullname: Halene, Stephanie
  email: stephanie.halene@yale.edu
  organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
BookMark eNqFUcuO1DAQjNAi9gF_wMFHLgnt2IkTDkijfbAjLQ8tcLYcuzN4lNiDnYy0X8Ev4-zMHuAAJ7fcVdXdVefZifMOs-w1hYICrd9uCzuOs7NFCSUUUBUA7Fl2RqEVOacNnCy14LmoKTvNzmPcAlBetfAiO2Ulb0VVsrPs11ivyEdvbG-1mqx35EvAPbopkhsfxsOX78m1M36Dzs-RXPm5GzD_OgXlDBpy_2kVSSrJFQ44YbALaO2cmpCslxWR3GPceRcxEjMH6zbkFpO033mLk9WJuMfB78Y09mX2vFdDxFfH9yL7fnP97fI2v_v8YX25uss1qyjLtWk0beuOQTpDKN5Co4EiVK3QvGxQ9EqYijHd1n3bdD120HfAoOWqVA2r2UX2_qC7m7sRjU6jgxrkLthRhQfplZV_dpz9ITd-LwWHRvAyCbw5CgT_c8Y4ydFGjcOgHCYDZMkpMN5AWSXouwNUBx9jwF5qOz06m5TtICnIJVG5lYdE5ZKohEqmRBOZ_0V-2vE_tON9mEzcWwwyaotOo7EB9SSNt_8W-A2PP8Ed
CitedBy_id crossref_primary_10_1371_journal_pone_0287052
crossref_primary_10_1101_gr_265603_120
crossref_primary_10_1038_s41467_024_51199_8
crossref_primary_10_31083_j_fbl2707207
crossref_primary_10_1002_wrna_1725
crossref_primary_10_1038_s44318_024_00082_9
crossref_primary_10_1038_s41590_022_01268_1
crossref_primary_10_1158_2767_9764_CRC_23_0488
crossref_primary_10_1016_j_stem_2021_09_014
crossref_primary_10_1016_j_xpro_2021_100366
crossref_primary_10_1093_jleuko_qiad061
crossref_primary_10_1016_j_xplc_2023_100551
crossref_primary_10_1016_j_tem_2023_12_007
crossref_primary_10_1038_s41556_024_01368_0
crossref_primary_10_7554_eLife_73628
crossref_primary_10_1016_j_celrep_2022_110373
crossref_primary_10_1002_jcp_30652
crossref_primary_10_1093_narcan_zcac010
crossref_primary_10_1016_j_metabol_2023_155526
crossref_primary_10_1002_chem_202401897
crossref_primary_10_1002_cbin_11471
crossref_primary_10_1126_sciimmunol_adg2979
crossref_primary_10_1111_imr_13025
crossref_primary_10_3389_fcell_2021_710964
crossref_primary_10_1073_pnas_2104805118
crossref_primary_10_1172_JCI177375
crossref_primary_10_1016_j_biopha_2024_116171
crossref_primary_10_1126_sciadv_abq5423
crossref_primary_10_1111_imr_13020
crossref_primary_10_1128_jvi_01598_24
crossref_primary_10_1016_j_trecan_2022_09_001
crossref_primary_10_1038_s41420_023_01505_y
crossref_primary_10_3389_fcell_2021_772921
crossref_primary_10_1016_j_clim_2023_109325
crossref_primary_10_3390_antiox10091483
crossref_primary_10_1016_j_bbamcr_2022_119380
crossref_primary_10_1016_j_molcel_2023_11_033
crossref_primary_10_3389_fonc_2021_683768
crossref_primary_10_3390_v13112172
crossref_primary_10_1042_BST20230727
crossref_primary_10_1016_j_stem_2023_11_006
crossref_primary_10_1002_ctm2_70089
crossref_primary_10_1096_fj_202300735R
crossref_primary_10_1016_j_cellsig_2021_110060
crossref_primary_10_1016_j_immuni_2024_03_003
crossref_primary_10_1158_2159_8290_CD_23_0007
crossref_primary_10_1016_j_celrep_2023_113163
crossref_primary_10_1016_j_jbc_2021_100543
crossref_primary_10_1038_s41556_021_00707_9
crossref_primary_10_3390_v14081666
crossref_primary_10_1016_j_xcrm_2024_101782
crossref_primary_10_1073_pnas_2116662119
crossref_primary_10_1371_journal_ppat_1010142
crossref_primary_10_1097_BS9_0000000000000206
crossref_primary_10_3389_fcell_2021_670711
crossref_primary_10_1080_08916934_2023_2167983
crossref_primary_10_3389_fimmu_2025_1523503
crossref_primary_10_1186_s41232_024_00326_5
crossref_primary_10_1182_blood_2020009676
crossref_primary_10_3390_ijms25052722
crossref_primary_10_1155_2021_8874360
crossref_primary_10_1093_jmcb_mjae029
crossref_primary_10_1016_j_exphem_2024_104694
crossref_primary_10_1073_pnas_2203318119
crossref_primary_10_1016_j_stem_2022_12_003
crossref_primary_10_1016_j_tcb_2024_06_006
crossref_primary_10_1016_j_celrep_2024_114369
crossref_primary_10_1016_j_chembiol_2024_06_003
crossref_primary_10_1096_fj_201903169R
crossref_primary_10_1038_s41467_022_32169_4
crossref_primary_10_15252_embr_202254686
crossref_primary_10_1080_15384101_2023_2165632
crossref_primary_10_3389_fimmu_2021_653711
crossref_primary_10_1136_ard_2024_226224
crossref_primary_10_1038_s41392_023_01696_x
crossref_primary_10_1002_jcp_30576
crossref_primary_10_1016_j_exphem_2022_04_006
crossref_primary_10_1242_dev_204226
crossref_primary_10_1007_s12016_025_09041_6
crossref_primary_10_1146_annurev_immunol_101921_045401
crossref_primary_10_1186_s12920_023_01660_2
crossref_primary_10_1016_j_celrep_2022_110976
crossref_primary_10_1016_j_celrep_2024_113684
crossref_primary_10_1016_j_omtn_2022_07_018
crossref_primary_10_3390_cancers14020332
crossref_primary_10_1021_acs_nanolett_3c02185
crossref_primary_10_1080_15384047_2024_2333590
crossref_primary_10_1038_s12276_024_01177_3
crossref_primary_10_1007_s13402_023_00829_2
crossref_primary_10_1016_j_ydbio_2021_03_003
crossref_primary_10_1016_j_tibs_2020_11_008
crossref_primary_10_1016_j_exphem_2020_09_193
crossref_primary_10_1007_s00277_023_05302_6
crossref_primary_10_1080_15476286_2021_1969113
crossref_primary_10_1016_j_ejphar_2024_176955
crossref_primary_10_1016_j_drudis_2023_103513
crossref_primary_10_3389_fimmu_2024_1456891
crossref_primary_10_1016_j_immuni_2020_10_007
crossref_primary_10_1038_s41467_024_50032_6
crossref_primary_10_1002_bies_202300002
crossref_primary_10_1016_j_it_2023_04_002
crossref_primary_10_1016_j_semcdb_2020_08_006
crossref_primary_10_3389_fimmu_2024_1374390
crossref_primary_10_26508_lsa_202302240
crossref_primary_10_1016_j_celrep_2023_112684
crossref_primary_10_1128_JVI_01939_20
crossref_primary_10_3389_fphar_2022_827215
crossref_primary_10_3390_cells13030226
crossref_primary_10_1096_fj_202200716R
crossref_primary_10_1016_j_cbpa_2024_102479
crossref_primary_10_3389_fimmu_2021_630358
crossref_primary_10_1038_s41375_023_01965_2
crossref_primary_10_1038_s41420_024_01954_z
crossref_primary_10_1038_s41392_020_00450_x
crossref_primary_10_1155_2022_8619275
crossref_primary_10_3390_nano12030389
crossref_primary_10_1016_j_bbamcr_2023_119503
crossref_primary_10_1016_j_bbrc_2024_150668
crossref_primary_10_1007_s40778_020_00178_y
crossref_primary_10_1016_j_chembiol_2023_12_004
crossref_primary_10_1097_CM9_0000000000003073
crossref_primary_10_1038_s41580_021_00430_1
Cites_doi 10.1038/s41422-018-0072-0
10.1016/j.virol.2012.01.006
10.1038/s41593-017-0057-1
10.1126/science.aau1646
10.1038/nature14234
10.1016/j.cell.2015.05.014
10.1073/pnas.1315974111
10.1016/j.jmb.2015.08.021
10.1016/j.immuni.2018.07.017
10.1016/j.celrep.2019.07.032
10.1016/j.molcel.2019.04.025
10.7554/eLife.25687
10.1128/JVI.05738-11
10.1016/j.molcel.2019.07.016
10.1038/s41556-019-0318-1
10.1016/j.stem.2014.09.019
10.1021/ja513080v
10.1093/emboj/19.2.263
10.1126/science.1249845
10.1038/cr.2018.7
10.1038/nature01080
10.1093/nar/19.11.2993
10.1016/j.cell.2008.01.025
10.1093/nar/gkr586
10.1016/j.stem.2017.11.016
10.1182/blood-2017-12-821413
10.1038/cr.2017.143
10.1038/nm.4416
10.4161/cc.9.17.12792
10.1093/nar/gky1173
10.1101/gr.203992.116
10.1038/nature23450
10.1038/nrm.2016.132
10.1073/pnas.71.10.3971
10.1016/j.tcb.2017.10.001
10.1093/nar/gky721
10.1016/j.stem.2010.08.012
10.1128/JVI.76.11.5532-5539.2002
10.1146/annurev-cellbio-100616-060758
10.1002/stem.2079
10.1038/nature23883
10.1038/nature25784
10.1128/JVI.01471-07
10.1038/nature12730
10.1126/science.1261417
10.1038/ncb2902
10.1016/j.molcel.2019.09.032
10.1074/jbc.M103674200
10.1242/dev.01558
10.1038/nature19342
10.1038/nri2314
10.1038/nature21355
10.1038/nprot.2018.015
10.1261/rna.062000.117
10.1126/science.aac7049
10.3390/v4112598
10.1016/j.molcel.2017.12.006
10.1016/0092-8674(93)90403-D
10.1074/jbc.271.41.25479
10.1038/ni.1680
10.1016/j.cytogfr.2007.06.016
10.1038/s41590-018-0275-z
10.1128/JVI.01299-15
10.1038/nature24678
10.1016/j.cell.2017.11.018
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.immuni.2020.05.003
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 1021.e8
ExternalDocumentID PMC7408742
10_1016_j_immuni_2020_05_003
S1074761320301849
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
7-5
7RV
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFRAH
AFTJW
AGGSO
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
.55
.GJ
29I
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AHHHB
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
RIG
UHS
X7M
Y6R
ZGI
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c3513-cd8c196b307527a4908c01e0597c428e7fa7d533c96f98bfeb0fb03094a2a8363
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Thu Aug 21 17:21:46 EDT 2025
Tue Aug 05 09:41:55 EDT 2025
Thu Apr 24 23:09:50 EDT 2025
Tue Jul 01 01:58:42 EDT 2025
Fri Feb 23 02:47:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords dsRNA
RNA modification
hematopoietic development
hematopoiesis
innate immune response
METTL3
m6A
N6-methyladenosine
epitranscriptome
double-stranded RNA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3513-cd8c196b307527a4908c01e0597c428e7fa7d533c96f98bfeb0fb03094a2a8363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contribution
Conceptualization, S.H., R.A.F., H.-B.L., Y.G. and R.V.; Methodology, S.H., H.-B.L., A.X., R.F., Y.G. and R.V.; Investigation, Y.G., R.V., Y.S., R.T., C.L., R.G., K.L., and V.L.; Data analysis, Y.G., R.V., Y.S.; Bioinformatics, T.T. and G.B.; Validation, Y.G., R.V., R.G., R.N., C.L., E.K., K.L., W.L., A.A., X.F., X.W., B.D., G.V., and A.I.; Writing – Original Draft, S.H., Y.G., R.V. and T.T.; Writing – Review & Editing, S.H., H.-B.L., Y.G., R.V. and T.T.; Funding Acquisition, S.H.; Resources, R.G., A.A. and P.J.; Project Administration, S.H., R.A.F.; Supervision, S.H., H.-B.L. and T.T..
ORCID 0000-0002-2737-9810
OpenAccessLink http://www.cell.com/article/S1074761320301849/pdf
PMID 32497523
PQID 2410348025
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7408742
proquest_miscellaneous_2410348025
crossref_citationtrail_10_1016_j_immuni_2020_05_003
crossref_primary_10_1016_j_immuni_2020_05_003
elsevier_sciencedirect_doi_10_1016_j_immuni_2020_05_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200616
PublicationDateYYYYMMDD 2020-06-16
PublicationDate_xml – month: 06
  year: 2020
  text: 20200616
  day: 16
PublicationDecade 2020
PublicationTitle Immunity (Cambridge, Mass.)
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Banerjee, Goldstein, Dong, Gaughan, Rath, Donovan, Korennykh, Silverman, Weiss (bib25) 2017; 6
Shi, Wei, He (bib45) 2019; 74
Blango, Bass (bib6) 2016; 26
Chen, Yang, Carmichael (bib7) 2010; 9
Zhao, Wang, Beadell, Lu, Shi, Kuuspalu, Ho, He (bib64) 2017; 542
Son, Liang, Lipton (bib48) 2015; 89
Cheng, Luo, Izzo, Pickering, Nguyen, Myers, Schurer, Gourkanti, Brüning, Vu (bib9) 2019; 28
Lybecker, Zimmermann, Bilusic, Tukhtubaeva, Schroeder (bib31) 2014; 111
Xiang, Yang, Liu, Wu, Chen, Yang (bib60) 2018; 69
Dahlin, Hamey, Pijuan-Sala, Shepherd, Lau, Nestorowa, Weinreb, Wolock, Hannah, Diamanti (bib11) 2018; 131
Tong, Cao, Zhang, Sefik, Amezcua Vesely, Broughton, Zhu, Li, Li, Chen (bib50) 2018; 28
Desrosiers, Friderici, Rottman (bib12) 1974; 71
Zhang, Chen, Sun, Wang, Yang, Ma, Lv, Heng, Ding, Xue (bib62) 2017; 549
Hartner, Walkley, Lu, Orkin (bib21) 2009; 10
Jensen, Thomsen (bib22) 2012; 86
Anderson, Muramatsu, Jha, Silverman, Weissman, Karikó (bib1) 2011; 39
Batista, Molinie, Wang, Qu, Zhang, Li, Bouley, Lujan, Haddad, Daneshvar (bib3) 2014; 15
Zhou, Hassel, Silverman (bib65) 1993; 72
Grandvaux, Servant, tenOever, Sen, Balachandran, Barber, Lin, Hiscott (bib18) 2002; 76
Li, Tong, Zhu, Batista, Duffy, Zhao, Bailis, Cao, Kroehling, Chen (bib24) 2017; 548
Frye, Harada, Behm, He (bib15) 2018; 361
Silverman (bib46) 2007; 81
Wang, Li, Toth, Petroski, Zhang, Zhao (bib54) 2014; 16
Han, Donovan, Rath, Whitney, Chitrakar, Korennykh (bib20) 2014; 343
Nicolet, Engels, Aglialoro, van den Akker, von Lindern, Wolkers (bib33) 2018; 46
Wu, Dao Thi, Huang, Billerbeck, Saha, Hoffmann, Wang, Silva, Sarbanes, Sun (bib59) 2018; 172
Geula, Moshitch-Moshkovitz, Dominissini, Mansour, Kol, Salmon-Divon, Hershkovitz, Peer, Mor, Manor (bib17) 2015; 347
Liu, Li, Cai, Zhang, Zhang, Xiong, Meng, Xu, Huang, Peng (bib28) 2020; 77
Donovan, Rath, Kolet-Mandrikov, Korennykh (bib13) 2017; 23
Guo, Carmichael, Wang, Hong, Acharya, Huang, Bai (bib19) 2015; 33
Liddicoat, Piskol, Chalk, Ramaswami, Higuchi, Hartner, Li, Seeburg, Walkley (bib27) 2015; 349
Saelens, Kalai, Vandenabeele (bib42) 2001; 276
Wang, Lu, Gomez, Hon, Yue, Han, Fu, Parisien, Dai, Jia (bib52) 2014; 505
Zhao, Roundtree, He (bib63) 2017; 18
Besch, Poeck, Hohenauer, Senft, Häcker, Berking, Hornung, Endres, Ruzicka, Rothenfusser, Hartmann (bib5) 2009; 119
Patil, Pickering, Jaffrey (bib36) 2018; 28
Schönborn, Oberstrass, Breyel, Tittgen, Schumacher, Lukacs (bib44) 1991; 19
Winkler, Gillis, Lasman, Safra, Geula, Soyris, Nachshon, Tai-Schmiedel, Friedman, Le-Trilling (bib58) 2019; 20
Liu, Dai, Zheng, He, Parisien, Pan (bib29) 2015; 518
Gantier, Williams (bib16) 2007; 18
Zhou, Parisien, Dai, Liu, Diatchenko, Sachleben, Pan (bib66) 2016; 428
Roost, Lynch, Batista, Qu, Chang, Kool (bib40) 2015; 137
Wang, Zhao, Roundtree, Lu, Han, Ma, Weng, Chen, Shi, He (bib53) 2015; 161
Wang, Li, Yue, Wang, Kumar, Wechsler-Reya, Zhang, Ogawa, Kellis, Duester, Zhao (bib55) 2018; 21
Vu, Pickering, Cheng, Zaccara, Nguyen, Minuesa, Chou, Chow, Saletore, MacKay (bib51) 2017; 23
Patil, Chen, Pickering, Chow, Jackson, Guttman, Jaffrey (bib35) 2016; 537
Bertero, Brown, Madrigal, Osnato, Ortmann, Yiangou, Kadiwala, Hubner, de Los Mozos, Sadée (bib4) 2018; 555
Lee, Bao, Qian, Geula, Leslie, Zhang, Hanna, Ding (bib23) 2019; 21
Skene, Henikoff, Henikoff (bib47) 2018; 13
Warren, Manos, Ahfeldt, Loh, Li, Lau, Ebina, Mandal, Smith, Meissner (bib56) 2010; 7
Raveh, Hovanessian, Meurs, Sonenberg, Kimchi (bib39) 1996; 271
Pulit-Penaloza, Scherbik, Brinton (bib37) 2012; 425
Stadtfeld, Graf (bib49) 2005; 132
Weng, Huang, Wu, Qin, Zhao, Dong, Shi, Skibbe, Shen, Hu (bib57) 2018; 22
Orkin, Zon (bib34) 2008; 132
Dabo, Meurs (bib10) 2012; 4
Li, Qian, Shao, Shi, He, Gogol, Yu, Wang, Qi, Zhu (bib26) 2018; 28
Lv, Zhang, Gao, Zhang, Chen, Li, Yang, Zhou, Liu (bib30) 2018; 28
Sadler, Williams (bib41) 2008; 8
Yockey, Iwasaki (bib61) 2018; 49
Santos-Rosa, Schneider, Bannister, Sherriff, Bernstein, Emre, Schreiber, Mellor, Kouzarides (bib43) 2002; 419
Dura, Choi, Zhang, Damsky, Thakral, Bosenberg, Craft, Fan (bib14) 2019; 47
Meyer, Jaffrey (bib32) 2017; 33
Ramana, Grammatikakis, Chernov, Nguyen, Goh, Williams, Stark (bib38) 2000; 19
Barbieri, Tzelepis, Pandolfini, Shi, Millán-Zambrano, Robson, Aspris, Migliori, Bannister, Han (bib2) 2017; 552
Chen, Chen, Ahmad, Verma, Kasturi, Amaya, Broughton, Kim, Cadena, Pulendran (bib8) 2019; 76
Ramana (10.1016/j.immuni.2020.05.003_bib38) 2000; 19
Schönborn (10.1016/j.immuni.2020.05.003_bib44) 1991; 19
Patil (10.1016/j.immuni.2020.05.003_bib35) 2016; 537
Frye (10.1016/j.immuni.2020.05.003_bib15) 2018; 361
Cheng (10.1016/j.immuni.2020.05.003_bib9) 2019; 28
Yockey (10.1016/j.immuni.2020.05.003_bib61) 2018; 49
Shi (10.1016/j.immuni.2020.05.003_bib45) 2019; 74
Anderson (10.1016/j.immuni.2020.05.003_bib1) 2011; 39
Desrosiers (10.1016/j.immuni.2020.05.003_bib12) 1974; 71
Chen (10.1016/j.immuni.2020.05.003_bib7) 2010; 9
Grandvaux (10.1016/j.immuni.2020.05.003_bib18) 2002; 76
Silverman (10.1016/j.immuni.2020.05.003_bib46) 2007; 81
Besch (10.1016/j.immuni.2020.05.003_bib5) 2009; 119
Nicolet (10.1016/j.immuni.2020.05.003_bib33) 2018; 46
Dura (10.1016/j.immuni.2020.05.003_bib14) 2019; 47
Stadtfeld (10.1016/j.immuni.2020.05.003_bib49) 2005; 132
Sadler (10.1016/j.immuni.2020.05.003_bib41) 2008; 8
Gantier (10.1016/j.immuni.2020.05.003_bib16) 2007; 18
Zhou (10.1016/j.immuni.2020.05.003_bib65) 1993; 72
Warren (10.1016/j.immuni.2020.05.003_bib56) 2010; 7
Dabo (10.1016/j.immuni.2020.05.003_bib10) 2012; 4
Skene (10.1016/j.immuni.2020.05.003_bib47) 2018; 13
Wang (10.1016/j.immuni.2020.05.003_bib52) 2014; 505
Santos-Rosa (10.1016/j.immuni.2020.05.003_bib43) 2002; 419
Dahlin (10.1016/j.immuni.2020.05.003_bib11) 2018; 131
Orkin (10.1016/j.immuni.2020.05.003_bib34) 2008; 132
Zhang (10.1016/j.immuni.2020.05.003_bib62) 2017; 549
Li (10.1016/j.immuni.2020.05.003_bib26) 2018; 28
Zhou (10.1016/j.immuni.2020.05.003_bib66) 2016; 428
Jensen (10.1016/j.immuni.2020.05.003_bib22) 2012; 86
Donovan (10.1016/j.immuni.2020.05.003_bib13) 2017; 23
Liu (10.1016/j.immuni.2020.05.003_bib29) 2015; 518
Bertero (10.1016/j.immuni.2020.05.003_bib4) 2018; 555
Li (10.1016/j.immuni.2020.05.003_bib24) 2017; 548
Lybecker (10.1016/j.immuni.2020.05.003_bib31) 2014; 111
Wang (10.1016/j.immuni.2020.05.003_bib53) 2015; 161
Han (10.1016/j.immuni.2020.05.003_bib20) 2014; 343
Liu (10.1016/j.immuni.2020.05.003_bib28) 2020; 77
Patil (10.1016/j.immuni.2020.05.003_bib36) 2018; 28
Raveh (10.1016/j.immuni.2020.05.003_bib39) 1996; 271
Hartner (10.1016/j.immuni.2020.05.003_bib21) 2009; 10
Lee (10.1016/j.immuni.2020.05.003_bib23) 2019; 21
Liddicoat (10.1016/j.immuni.2020.05.003_bib27) 2015; 349
Wu (10.1016/j.immuni.2020.05.003_bib59) 2018; 172
Roost (10.1016/j.immuni.2020.05.003_bib40) 2015; 137
Barbieri (10.1016/j.immuni.2020.05.003_bib2) 2017; 552
Li (10.1016/j.immuni.2020.05.003_bib25) 2017; 6
Lv (10.1016/j.immuni.2020.05.003_bib30) 2018; 28
Xiang (10.1016/j.immuni.2020.05.003_bib60) 2018; 69
Zhao (10.1016/j.immuni.2020.05.003_bib64) 2017; 542
Son (10.1016/j.immuni.2020.05.003_bib48) 2015; 89
Chen (10.1016/j.immuni.2020.05.003_bib8) 2019; 76
Geula (10.1016/j.immuni.2020.05.003_bib17) 2015; 347
Pulit-Penaloza (10.1016/j.immuni.2020.05.003_bib37) 2012; 425
Saelens (10.1016/j.immuni.2020.05.003_bib42) 2001; 276
Meyer (10.1016/j.immuni.2020.05.003_bib32) 2017; 33
Vu (10.1016/j.immuni.2020.05.003_bib51) 2017; 23
Weng (10.1016/j.immuni.2020.05.003_bib57) 2018; 22
Batista (10.1016/j.immuni.2020.05.003_bib3) 2014; 15
Wang (10.1016/j.immuni.2020.05.003_bib54) 2014; 16
Zhao (10.1016/j.immuni.2020.05.003_bib63) 2017; 18
Tong (10.1016/j.immuni.2020.05.003_bib50) 2018; 28
Blango (10.1016/j.immuni.2020.05.003_bib6) 2016; 26
Guo (10.1016/j.immuni.2020.05.003_bib19) 2015; 33
Wang (10.1016/j.immuni.2020.05.003_bib55) 2018; 21
Winkler (10.1016/j.immuni.2020.05.003_bib58) 2019; 20
References_xml – volume: 542
  start-page: 475
  year: 2017
  end-page: 478
  ident: bib64
  article-title: m
  publication-title: Nature
– volume: 71
  start-page: 3971
  year: 1974
  end-page: 3975
  ident: bib12
  article-title: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 263
  year: 2000
  end-page: 272
  ident: bib38
  article-title: Regulation of c-myc expression by IFN-gamma through Stat1-dependent and -independent pathways
  publication-title: EMBO J.
– volume: 9
  start-page: 3552
  year: 2010
  end-page: 3564
  ident: bib7
  article-title: Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells
  publication-title: Cell Cycle
– volume: 18
  start-page: 31
  year: 2017
  end-page: 42
  ident: bib63
  article-title: Post-transcriptional gene regulation by mRNA modifications
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 131
  start-page: e1
  year: 2018
  end-page: e11
  ident: bib11
  article-title: A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice
  publication-title: Blood
– volume: 518
  start-page: 560
  year: 2015
  end-page: 564
  ident: bib29
  article-title: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions
  publication-title: Nature
– volume: 349
  start-page: 1115
  year: 2015
  end-page: 1120
  ident: bib27
  article-title: RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself
  publication-title: Science
– volume: 33
  start-page: 319
  year: 2017
  end-page: 342
  ident: bib32
  article-title: Rethinking m
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 505
  start-page: 117
  year: 2014
  end-page: 120
  ident: bib52
  article-title: N6-methyladenosine-dependent regulation of messenger RNA stability
  publication-title: Nature
– volume: 13
  start-page: 1006
  year: 2018
  end-page: 1019
  ident: bib47
  article-title: Targeted in situ genome-wide profiling with high efficiency for low cell numbers
  publication-title: Nat. Protoc.
– volume: 15
  start-page: 707
  year: 2014
  end-page: 719
  ident: bib3
  article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 76
  start-page: 96
  year: 2019
  end-page: 109.e9
  ident: bib8
  article-title: N6-methyladenosine modification controls circular RNA immunity
  publication-title: Mol. Cell
– volume: 537
  start-page: 369
  year: 2016
  end-page: 373
  ident: bib35
  article-title: m(6)A RNA methylation promotes XIST-mediated transcriptional repression
  publication-title: Nature
– volume: 76
  start-page: 5532
  year: 2002
  end-page: 5539
  ident: bib18
  article-title: Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes
  publication-title: J. Virol.
– volume: 4
  start-page: 2598
  year: 2012
  end-page: 2635
  ident: bib10
  article-title: dsRNA-dependent protein kinase PKR and its role in stress, signaling and HCV infection
  publication-title: Viruses
– volume: 26
  start-page: 852
  year: 2016
  end-page: 862
  ident: bib6
  article-title: Identification of the long, edited dsRNAome of LPS-stimulated immune cells
  publication-title: Genome Res.
– volume: 72
  start-page: 753
  year: 1993
  end-page: 765
  ident: bib65
  article-title: Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action
  publication-title: Cell
– volume: 28
  start-page: 113
  year: 2018
  end-page: 127
  ident: bib36
  article-title: Reading m
  publication-title: Trends Cell Biol.
– volume: 137
  start-page: 2107
  year: 2015
  end-page: 2115
  ident: bib40
  article-title: Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 173
  year: 2019
  end-page: 182
  ident: bib58
  article-title: m
  publication-title: Nat. Immunol.
– volume: 22
  start-page: 191
  year: 2018
  end-page: 205.e9
  ident: bib57
  article-title: METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m
  publication-title: Cell Stem Cell
– volume: 172
  start-page: 423
  year: 2018
  end-page: 438.e25
  ident: bib59
  article-title: Intrinsic immunity shapes viral resistance of stem cells
  publication-title: Cell
– volume: 28
  start-page: 904
  year: 2018
  end-page: 917
  ident: bib26
  article-title: Suppression of m
  publication-title: Cell Res.
– volume: 21
  start-page: 195
  year: 2018
  end-page: 206
  ident: bib55
  article-title: N
  publication-title: Nat. Neurosci.
– volume: 119
  start-page: 2399
  year: 2009
  end-page: 2411
  ident: bib5
  article-title: Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells
  publication-title: J. Clin. Invest.
– volume: 74
  start-page: 640
  year: 2019
  end-page: 650
  ident: bib45
  article-title: Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers
  publication-title: Mol. Cell
– volume: 7
  start-page: 618
  year: 2010
  end-page: 630
  ident: bib56
  article-title: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA
  publication-title: Cell Stem Cell
– volume: 6
  start-page: e25687
  year: 2017
  ident: bib25
  article-title: Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line
  publication-title: eLife
– volume: 46
  start-page: 8168
  year: 2018
  end-page: 8180
  ident: bib33
  article-title: Circular RNA expression in human hematopoietic cells is widespread and cell-type specific
  publication-title: Nucleic Acids Res.
– volume: 39
  start-page: 9329
  year: 2011
  end-page: 9338
  ident: bib1
  article-title: Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L
  publication-title: Nucleic Acids Res.
– volume: 361
  start-page: 1346
  year: 2018
  end-page: 1349
  ident: bib15
  article-title: RNA modifications modulate gene expression during development
  publication-title: Science
– volume: 347
  start-page: 1002
  year: 2015
  end-page: 1006
  ident: bib17
  article-title: Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation
  publication-title: Science
– volume: 23
  start-page: 1369
  year: 2017
  end-page: 1376
  ident: bib51
  article-title: The N
  publication-title: Nat. Med.
– volume: 69
  start-page: 126
  year: 2018
  end-page: 135.e6
  ident: bib60
  article-title: N
  publication-title: Mol. Cell
– volume: 419
  start-page: 407
  year: 2002
  end-page: 411
  ident: bib43
  article-title: Active genes are tri-methylated at K4 of histone H3
  publication-title: Nature
– volume: 19
  start-page: 2993
  year: 1991
  end-page: 3000
  ident: bib44
  article-title: Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts
  publication-title: Nucleic Acids Res.
– volume: 81
  start-page: 12720
  year: 2007
  end-page: 12729
  ident: bib46
  article-title: Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response
  publication-title: J. Virol.
– volume: 552
  start-page: 126
  year: 2017
  end-page: 131
  ident: bib2
  article-title: Promoter-bound METTL3 maintains myeloid leukaemia by m
  publication-title: Nature
– volume: 16
  start-page: 191
  year: 2014
  end-page: 198
  ident: bib54
  article-title: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells
  publication-title: Nat. Cell Biol.
– volume: 343
  start-page: 1244
  year: 2014
  end-page: 1248
  ident: bib20
  article-title: Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response
  publication-title: Science
– volume: 49
  start-page: 397
  year: 2018
  end-page: 412
  ident: bib61
  article-title: Interferons and proinflammatory cytokines in pregnancy and fetal development
  publication-title: Immunity
– volume: 86
  start-page: 2900
  year: 2012
  end-page: 2910
  ident: bib22
  article-title: Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion
  publication-title: J. Virol.
– volume: 132
  start-page: 203
  year: 2005
  end-page: 213
  ident: bib49
  article-title: Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing
  publication-title: Development
– volume: 77
  start-page: 426
  year: 2020
  end-page: 440.e6
  ident: bib28
  article-title: Landscape and regulation of m
  publication-title: Mol. Cell
– volume: 271
  start-page: 25479
  year: 1996
  end-page: 25484
  ident: bib39
  article-title: Double-stranded RNA-dependent protein kinase mediates c-Myc suppression induced by type I interferons
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 700
  year: 2019
  end-page: 709
  ident: bib23
  article-title: Stage-specific requirement for Mettl3-dependent m
  publication-title: Nat. Cell Biol.
– volume: 28
  start-page: 253
  year: 2018
  end-page: 256
  ident: bib50
  article-title: m
  publication-title: Cell Res.
– volume: 89
  start-page: 9383
  year: 2015
  end-page: 9392
  ident: bib48
  article-title: Double-stranded RNA is detected by immunofluorescence analysis in RNA and DNA virus infections, including those by negative-stranded RNA viruses
  publication-title: J. Virol.
– volume: 428
  start-page: 822
  year: 2016
  end-page: 833
  ident: bib66
  article-title: N(6)-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding
  publication-title: J. Mol. Biol.
– volume: 132
  start-page: 631
  year: 2008
  end-page: 644
  ident: bib34
  article-title: Hematopoiesis: an evolving paradigm for stem cell biology
  publication-title: Cell
– volume: 276
  start-page: 41620
  year: 2001
  end-page: 41628
  ident: bib42
  article-title: Translation inhibition in apoptosis: caspase-dependent PKR activation and eIF2-alpha phosphorylation
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 1660
  year: 2017
  end-page: 1671
  ident: bib13
  article-title: Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery
  publication-title: RNA
– volume: 548
  start-page: 338
  year: 2017
  end-page: 342
  ident: bib24
  article-title: m
  publication-title: Nature
– volume: 111
  start-page: 3134
  year: 2014
  end-page: 3139
  ident: bib31
  article-title: The double-stranded transcriptome of Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 161
  start-page: 1388
  year: 2015
  end-page: 1399
  ident: bib53
  article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency
  publication-title: Cell
– volume: 28
  start-page: 1703
  year: 2019
  end-page: 1716.e6
  ident: bib9
  article-title: m
  publication-title: Cell Rep.
– volume: 18
  start-page: 363
  year: 2007
  end-page: 371
  ident: bib16
  article-title: The response of mammalian cells to double-stranded RNA
  publication-title: Cytokine Growth Factor Rev.
– volume: 549
  start-page: 273
  year: 2017
  end-page: 276
  ident: bib62
  article-title: m
  publication-title: Nature
– volume: 425
  start-page: 82
  year: 2012
  end-page: 94
  ident: bib37
  article-title: Type 1 IFN-independent activation of a subset of interferon stimulated genes in West Nile virus Eg101-infected mouse cells
  publication-title: Virology
– volume: 8
  start-page: 559
  year: 2008
  end-page: 568
  ident: bib41
  article-title: Interferon-inducible antiviral effectors
  publication-title: Nat. Rev. Immunol.
– volume: 47
  start-page: e16
  year: 2019
  ident: bib14
  article-title: scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3′ mRNA profiling
  publication-title: Nucleic Acids Res.
– volume: 555
  start-page: 256
  year: 2018
  end-page: 259
  ident: bib4
  article-title: The SMAD2/3 interactome reveals that TGFβ controls m
  publication-title: Nature
– volume: 28
  start-page: 249
  year: 2018
  end-page: 252
  ident: bib30
  article-title: Endothelial-specific m
  publication-title: Cell Res.
– volume: 10
  start-page: 109
  year: 2009
  end-page: 115
  ident: bib21
  article-title: ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling
  publication-title: Nat. Immunol.
– volume: 33
  start-page: 3165
  year: 2015
  end-page: 3173
  ident: bib19
  article-title: Attenuated innate immunity in embryonic stem cells and its implications in developmental biology and regenerative medicine
  publication-title: Stem Cells
– volume: 28
  start-page: 904
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib26
  article-title: Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0072-0
– volume: 425
  start-page: 82
  year: 2012
  ident: 10.1016/j.immuni.2020.05.003_bib37
  article-title: Type 1 IFN-independent activation of a subset of interferon stimulated genes in West Nile virus Eg101-infected mouse cells
  publication-title: Virology
  doi: 10.1016/j.virol.2012.01.006
– volume: 21
  start-page: 195
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib55
  article-title: N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-017-0057-1
– volume: 361
  start-page: 1346
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib15
  article-title: RNA modifications modulate gene expression during development
  publication-title: Science
  doi: 10.1126/science.aau1646
– volume: 518
  start-page: 560
  year: 2015
  ident: 10.1016/j.immuni.2020.05.003_bib29
  article-title: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions
  publication-title: Nature
  doi: 10.1038/nature14234
– volume: 161
  start-page: 1388
  year: 2015
  ident: 10.1016/j.immuni.2020.05.003_bib53
  article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.014
– volume: 111
  start-page: 3134
  year: 2014
  ident: 10.1016/j.immuni.2020.05.003_bib31
  article-title: The double-stranded transcriptome of Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1315974111
– volume: 428
  start-page: 822
  issue: 5 Pt A
  year: 2016
  ident: 10.1016/j.immuni.2020.05.003_bib66
  article-title: N(6)-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2015.08.021
– volume: 49
  start-page: 397
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib61
  article-title: Interferons and proinflammatory cytokines in pregnancy and fetal development
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.07.017
– volume: 119
  start-page: 2399
  year: 2009
  ident: 10.1016/j.immuni.2020.05.003_bib5
  article-title: Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells
  publication-title: J. Clin. Invest.
– volume: 28
  start-page: 1703
  year: 2019
  ident: 10.1016/j.immuni.2020.05.003_bib9
  article-title: m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.07.032
– volume: 74
  start-page: 640
  year: 2019
  ident: 10.1016/j.immuni.2020.05.003_bib45
  article-title: Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.04.025
– volume: 6
  start-page: e25687
  year: 2017
  ident: 10.1016/j.immuni.2020.05.003_bib25
  article-title: Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line
  publication-title: eLife
  doi: 10.7554/eLife.25687
– volume: 86
  start-page: 2900
  year: 2012
  ident: 10.1016/j.immuni.2020.05.003_bib22
  article-title: Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion
  publication-title: J. Virol.
  doi: 10.1128/JVI.05738-11
– volume: 76
  start-page: 96
  year: 2019
  ident: 10.1016/j.immuni.2020.05.003_bib8
  article-title: N6-methyladenosine modification controls circular RNA immunity
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.07.016
– volume: 21
  start-page: 700
  year: 2019
  ident: 10.1016/j.immuni.2020.05.003_bib23
  article-title: Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0318-1
– volume: 15
  start-page: 707
  year: 2014
  ident: 10.1016/j.immuni.2020.05.003_bib3
  article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.09.019
– volume: 137
  start-page: 2107
  year: 2015
  ident: 10.1016/j.immuni.2020.05.003_bib40
  article-title: Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja513080v
– volume: 19
  start-page: 263
  year: 2000
  ident: 10.1016/j.immuni.2020.05.003_bib38
  article-title: Regulation of c-myc expression by IFN-gamma through Stat1-dependent and -independent pathways
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.2.263
– volume: 343
  start-page: 1244
  year: 2014
  ident: 10.1016/j.immuni.2020.05.003_bib20
  article-title: Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response
  publication-title: Science
  doi: 10.1126/science.1249845
– volume: 28
  start-page: 253
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib50
  article-title: m6A mRNA methylation sustains Treg suppressive functions
  publication-title: Cell Res.
  doi: 10.1038/cr.2018.7
– volume: 419
  start-page: 407
  year: 2002
  ident: 10.1016/j.immuni.2020.05.003_bib43
  article-title: Active genes are tri-methylated at K4 of histone H3
  publication-title: Nature
  doi: 10.1038/nature01080
– volume: 19
  start-page: 2993
  year: 1991
  ident: 10.1016/j.immuni.2020.05.003_bib44
  article-title: Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/19.11.2993
– volume: 132
  start-page: 631
  year: 2008
  ident: 10.1016/j.immuni.2020.05.003_bib34
  article-title: Hematopoiesis: an evolving paradigm for stem cell biology
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.025
– volume: 39
  start-page: 9329
  year: 2011
  ident: 10.1016/j.immuni.2020.05.003_bib1
  article-title: Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr586
– volume: 22
  start-page: 191
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib57
  article-title: METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.11.016
– volume: 131
  start-page: e1
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib11
  article-title: A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice
  publication-title: Blood
  doi: 10.1182/blood-2017-12-821413
– volume: 28
  start-page: 249
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib30
  article-title: Endothelial-specific m6A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.143
– volume: 23
  start-page: 1369
  year: 2017
  ident: 10.1016/j.immuni.2020.05.003_bib51
  article-title: The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.4416
– volume: 9
  start-page: 3552
  year: 2010
  ident: 10.1016/j.immuni.2020.05.003_bib7
  article-title: Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.17.12792
– volume: 47
  start-page: e16
  year: 2019
  ident: 10.1016/j.immuni.2020.05.003_bib14
  article-title: scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3′ mRNA profiling
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1173
– volume: 26
  start-page: 852
  year: 2016
  ident: 10.1016/j.immuni.2020.05.003_bib6
  article-title: Identification of the long, edited dsRNAome of LPS-stimulated immune cells
  publication-title: Genome Res.
  doi: 10.1101/gr.203992.116
– volume: 548
  start-page: 338
  year: 2017
  ident: 10.1016/j.immuni.2020.05.003_bib24
  article-title: m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways
  publication-title: Nature
  doi: 10.1038/nature23450
– volume: 18
  start-page: 31
  year: 2017
  ident: 10.1016/j.immuni.2020.05.003_bib63
  article-title: Post-transcriptional gene regulation by mRNA modifications
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.132
– volume: 71
  start-page: 3971
  year: 1974
  ident: 10.1016/j.immuni.2020.05.003_bib12
  article-title: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.71.10.3971
– volume: 28
  start-page: 113
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib36
  article-title: Reading m6A in the transcriptome: m6A-binding proteins
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2017.10.001
– volume: 46
  start-page: 8168
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib33
  article-title: Circular RNA expression in human hematopoietic cells is widespread and cell-type specific
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky721
– volume: 7
  start-page: 618
  year: 2010
  ident: 10.1016/j.immuni.2020.05.003_bib56
  article-title: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.08.012
– volume: 76
  start-page: 5532
  year: 2002
  ident: 10.1016/j.immuni.2020.05.003_bib18
  article-title: Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.11.5532-5539.2002
– volume: 33
  start-page: 319
  year: 2017
  ident: 10.1016/j.immuni.2020.05.003_bib32
  article-title: Rethinking m6A readers, writers, and erasers
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100616-060758
– volume: 33
  start-page: 3165
  year: 2015
  ident: 10.1016/j.immuni.2020.05.003_bib19
  article-title: Attenuated innate immunity in embryonic stem cells and its implications in developmental biology and regenerative medicine
  publication-title: Stem Cells
  doi: 10.1002/stem.2079
– volume: 549
  start-page: 273
  year: 2017
  ident: 10.1016/j.immuni.2020.05.003_bib62
  article-title: m6A modulates haematopoietic stem and progenitor cell specification
  publication-title: Nature
  doi: 10.1038/nature23883
– volume: 555
  start-page: 256
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib4
  article-title: The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency
  publication-title: Nature
  doi: 10.1038/nature25784
– volume: 81
  start-page: 12720
  year: 2007
  ident: 10.1016/j.immuni.2020.05.003_bib46
  article-title: Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response
  publication-title: J. Virol.
  doi: 10.1128/JVI.01471-07
– volume: 505
  start-page: 117
  year: 2014
  ident: 10.1016/j.immuni.2020.05.003_bib52
  article-title: N6-methyladenosine-dependent regulation of messenger RNA stability
  publication-title: Nature
  doi: 10.1038/nature12730
– volume: 347
  start-page: 1002
  year: 2015
  ident: 10.1016/j.immuni.2020.05.003_bib17
  article-title: Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation
  publication-title: Science
  doi: 10.1126/science.1261417
– volume: 16
  start-page: 191
  year: 2014
  ident: 10.1016/j.immuni.2020.05.003_bib54
  article-title: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2902
– volume: 77
  start-page: 426
  year: 2020
  ident: 10.1016/j.immuni.2020.05.003_bib28
  article-title: Landscape and regulation of m6A and m6Am methylome across human and mouse tissues
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.032
– volume: 276
  start-page: 41620
  year: 2001
  ident: 10.1016/j.immuni.2020.05.003_bib42
  article-title: Translation inhibition in apoptosis: caspase-dependent PKR activation and eIF2-alpha phosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M103674200
– volume: 132
  start-page: 203
  year: 2005
  ident: 10.1016/j.immuni.2020.05.003_bib49
  article-title: Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing
  publication-title: Development
  doi: 10.1242/dev.01558
– volume: 537
  start-page: 369
  year: 2016
  ident: 10.1016/j.immuni.2020.05.003_bib35
  article-title: m(6)A RNA methylation promotes XIST-mediated transcriptional repression
  publication-title: Nature
  doi: 10.1038/nature19342
– volume: 8
  start-page: 559
  year: 2008
  ident: 10.1016/j.immuni.2020.05.003_bib41
  article-title: Interferon-inducible antiviral effectors
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2314
– volume: 542
  start-page: 475
  year: 2017
  ident: 10.1016/j.immuni.2020.05.003_bib64
  article-title: m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition
  publication-title: Nature
  doi: 10.1038/nature21355
– volume: 13
  start-page: 1006
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib47
  article-title: Targeted in situ genome-wide profiling with high efficiency for low cell numbers
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2018.015
– volume: 23
  start-page: 1660
  year: 2017
  ident: 10.1016/j.immuni.2020.05.003_bib13
  article-title: Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery
  publication-title: RNA
  doi: 10.1261/rna.062000.117
– volume: 349
  start-page: 1115
  year: 2015
  ident: 10.1016/j.immuni.2020.05.003_bib27
  article-title: RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself
  publication-title: Science
  doi: 10.1126/science.aac7049
– volume: 4
  start-page: 2598
  year: 2012
  ident: 10.1016/j.immuni.2020.05.003_bib10
  article-title: dsRNA-dependent protein kinase PKR and its role in stress, signaling and HCV infection
  publication-title: Viruses
  doi: 10.3390/v4112598
– volume: 69
  start-page: 126
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib60
  article-title: N6-methyladenosines modulate A-to-I RNA editing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.006
– volume: 72
  start-page: 753
  year: 1993
  ident: 10.1016/j.immuni.2020.05.003_bib65
  article-title: Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90403-D
– volume: 271
  start-page: 25479
  year: 1996
  ident: 10.1016/j.immuni.2020.05.003_bib39
  article-title: Double-stranded RNA-dependent protein kinase mediates c-Myc suppression induced by type I interferons
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.41.25479
– volume: 10
  start-page: 109
  year: 2009
  ident: 10.1016/j.immuni.2020.05.003_bib21
  article-title: ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1680
– volume: 18
  start-page: 363
  year: 2007
  ident: 10.1016/j.immuni.2020.05.003_bib16
  article-title: The response of mammalian cells to double-stranded RNA
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2007.06.016
– volume: 20
  start-page: 173
  year: 2019
  ident: 10.1016/j.immuni.2020.05.003_bib58
  article-title: m6A modification controls the innate immune response to infection by targeting type I interferons
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0275-z
– volume: 89
  start-page: 9383
  year: 2015
  ident: 10.1016/j.immuni.2020.05.003_bib48
  article-title: Double-stranded RNA is detected by immunofluorescence analysis in RNA and DNA virus infections, including those by negative-stranded RNA viruses
  publication-title: J. Virol.
  doi: 10.1128/JVI.01299-15
– volume: 552
  start-page: 126
  year: 2017
  ident: 10.1016/j.immuni.2020.05.003_bib2
  article-title: Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control
  publication-title: Nature
  doi: 10.1038/nature24678
– volume: 172
  start-page: 423
  year: 2018
  ident: 10.1016/j.immuni.2020.05.003_bib59
  article-title: Intrinsic immunity shapes viral resistance of stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2017.11.018
SSID ssj0014590
Score 2.328662
Snippet N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that...
N 6 methyladenosine (m 6 A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show...
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1007
SubjectTerms double-stranded RNA
dsRNA
epitranscriptome
hematopoiesis
hematopoietic development
innate immune response
m6A
METTL3
N6-methyladenosine
RNA modification
Title m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development
URI https://dx.doi.org/10.1016/j.immuni.2020.05.003
https://www.proquest.com/docview/2410348025
https://pubmed.ncbi.nlm.nih.gov/PMC7408742
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG6IRuOL8RqvpCa-Lmxrt5VHVAhI5AEl8tZsXRtndCOiD_4K_7Ln7BYWH0h8Y9CN0p6efofzna-EXAvBBYvd2GLaURY3GvygEI5lnDCMVaAhJMnVPif-cMbv5968RW6rWhikVZa-v_Dpubcu3-mUo9lZJEnnEamEEIQzF1G94FjEx-CLsYhvflNnErjXtWveIbSuyudyjleS12BAlOjauX5ndXTW3-1pBX42yZMru9Fgj-yWMJL2ip7uk5ZOD8hWcbDk9wHZfihT5ofk593v0YcsRkpQPgu0VG1a0kFVuEgzQ_tpnBWCrRRAdfSmLRSuxf_H6XTSW1J4Se9gj0JtZ2w0SlOAqXSEv03TaUG11Uta1D3SIWrBZosswSJJukJNOiKzQf_pdmiVpzBYinkOs1A8AJZpBM7Ac4MQE4XKdjTAskBB7KIDEwYxgEbV9U1XREZHtokwccNDNxTMZ8dkI81SfUKoxxQzxgfj9Rj3wHfETmwihWEVM13mnBJWDb5UpUQ5npTxJisu2qsspkzilEnbQ2nTU2LVdy0KiY417YNqXmXD1CTsImvuvKrMQMIqxNRKmGoYcwk4yAbjAwAJT2_YR90l1PFufpImL7med8BtEXD37N_9Oic7eIUMNse_IBufH1_6ErDSZ9Qmm73x9HnczhfFL8FKF-8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB1kQdJcgjRJ0TRpywC5CpZESqSOzmLYSexDFsA3QqJIVIUrGXFy6Ff0lzujxbDRQ4DeBIsSaC7DN5o3bwAulBKK52HucRsYTziLdlCpwHNBmuZGWnRJarXPSTx8FrfTaLoBV10uDNEqW9vf2PTaWre_9NrR7M2LovdIVEJ0wnlIqF6JZBO2EQ1Iqt8wml4uQwkiSvwl8RCbd_lzNcmrqJMw0E0M_VrAs6ud9e_5tII_19mTK8fR4AD2WxzJ-k1XP8KGLQ9hp6ks-fsQdsdtzPwI_vyK-2xc5cQJqqeBtbJNCzboMhdZ5dhNmVeNYitDVJ3NrEfKtfSBnD1M-guGl-waDykSd6ZGo7JEnMpG9N8se2i4tnbBmsRHNiQx2GpeFZQlyVa4ScfwPLh5uhp6bRkGz_Ao4B6pB-A-zdAaRKFMKVJo_MAiLpMGnRcrXSpzRI0miV2iMmcz32UUuRFpmCoe80-wVVal_Qws4oY7F-PqjbiI0HjkQe4yQ34VdwkPToB3g69Nq1FOpTJmuiOj_dTNlGmaMu1HpG16At7yqXmj0fFOe9nNq15baxqPkXeePO-WgcZtSLGVtLQ45hqBkM-FQgSJb19bH8sukZD3-p2y-FELekvhKynCL__dr-_wYfg0vtf3o8ndKezRHaKzBfEZbL2-vNmvCJxes2_1xvgL_ZkZaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=m6A+Modification+Prevents+Formation+of+Endogenous+Double-Stranded+RNAs+and+Deleterious+Innate+Immune+Responses+during+Hematopoietic+Development&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Gao%2C+Yimeng&rft.au=Vasic%2C+Radovan&rft.au=Song%2C+Yuanbin&rft.au=Teng%2C+Rhea&rft.date=2020-06-16&rft.issn=1097-4180&rft.eissn=1097-4180&rft.volume=52&rft.issue=6&rft.spage=1007&rft_id=info:doi/10.1016%2Fj.immuni.2020.05.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon