m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development
N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 52; no. 6; pp. 1007 - 1021.e8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
16.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development.
[Display omitted]
•Loss of METTL3 inhibits proliferation and differentiation of hematopoietic stem cells•Depletion of m6A results in aberrant dsRNA formation of long m6A-modified transcripts•Loss of METTL3 induces deleterious innate immune responses in hematopoiesis•Mavs and Rnasel depletion partially rescue defects in Vav-Cre+-Mettl3fl/fl mice
Little is known about the role of N6-methyladenosine (m6A) modifications in mammalian hematopoietic development. Gao et al. find that m6A modification of endogenous transcripts preserves their recognition as self by preventing aberrant formation of double-stranded RNA. Deletion of m6A writer Mettl3 and loss of m6A activates pattern recognition receptor pathways, culminating in a deleterious innate immune response and hematopoietic failure. |
---|---|
AbstractList | N
6
methyladenosine (m
6
A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m
6
A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m
6
A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m
6
A modified in their native state, characterized by low folding energies, and predominantly protein-coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream
Mavs
or
Rnasel
signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells
in vitro
and
in vivo
. Our results suggest that m
6
A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development.
Little is known about the role of
N
6
-methyladenosine (m
6
A) modifications in mammalian hematopoietic development, Gao et al. find that m
6
A modification of endogenous transcripts preserves their recognition as self by preventing aberrant formation of double-stranded RNA. Deletion of m
6
A writer
Mettl3
and loss of m
6
A activates pattern recognition receptor pathways, culminating in a deleterious innate immune response and hematopoietic failure. N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development.N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development. N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development. [Display omitted] •Loss of METTL3 inhibits proliferation and differentiation of hematopoietic stem cells•Depletion of m6A results in aberrant dsRNA formation of long m6A-modified transcripts•Loss of METTL3 induces deleterious innate immune responses in hematopoiesis•Mavs and Rnasel depletion partially rescue defects in Vav-Cre+-Mettl3fl/fl mice Little is known about the role of N6-methyladenosine (m6A) modifications in mammalian hematopoietic development. Gao et al. find that m6A modification of endogenous transcripts preserves their recognition as self by preventing aberrant formation of double-stranded RNA. Deletion of m6A writer Mettl3 and loss of m6A activates pattern recognition receptor pathways, culminating in a deleterious innate immune response and hematopoietic failure. |
Author | Xiao, Andrew Song, Yuanbin Joshi, Poorval Biancon, Giulia Fan, Rong Teng, Rhea Dura, Burak Liu, Chengyang Fu, Xiaoying Gbyli, Rana Iwasaki, Akiko Liu, Wei Flavell, Richard A. Ardasheva, Anastasia Gao, Yimeng Kudo, Eriko Li, Hua-Bing Lee, Veronica Viero, Gabriella Tebaldi, Toma Vasic, Radovan Lobben, Kirsten Wang, Xiaman Halene, Stephanie Nelakanti, Raman |
AuthorAffiliation | 7 Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy 11 These authors contributed equally 8 Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA 2 Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA 10 Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 1 Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA 4 Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA 5 Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA 6 Department of Biomedical Engineering and Yale Cancer Center, Yale University, New Haven, Connecticut 06520, USA 9 Yale Institute for Immune Metabolism, Shanghai Jiao Tong University Sc |
AuthorAffiliation_xml | – name: 1 Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA – name: 12 Lead contact – name: 11 These authors contributed equally – name: 7 Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy – name: 4 Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA – name: 5 Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA – name: 6 Department of Biomedical Engineering and Yale Cancer Center, Yale University, New Haven, Connecticut 06520, USA – name: 9 Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China – name: 10 Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China – name: 2 Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA – name: 3 Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA – name: 8 Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA |
Author_xml | – sequence: 1 givenname: Yimeng surname: Gao fullname: Gao, Yimeng email: yimeng.gao@yale.edu organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 2 givenname: Radovan surname: Vasic fullname: Vasic, Radovan organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 3 givenname: Yuanbin surname: Song fullname: Song, Yuanbin organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 4 givenname: Rhea surname: Teng fullname: Teng, Rhea organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 5 givenname: Chengyang surname: Liu fullname: Liu, Chengyang organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 6 givenname: Rana surname: Gbyli fullname: Gbyli, Rana organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 7 givenname: Giulia surname: Biancon fullname: Biancon, Giulia organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 8 givenname: Raman surname: Nelakanti fullname: Nelakanti, Raman organization: Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 9 givenname: Kirsten surname: Lobben fullname: Lobben, Kirsten organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 10 givenname: Eriko surname: Kudo fullname: Kudo, Eriko organization: Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA – sequence: 11 givenname: Wei surname: Liu fullname: Liu, Wei organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 12 givenname: Anastasia surname: Ardasheva fullname: Ardasheva, Anastasia organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 13 givenname: Xiaoying surname: Fu fullname: Fu, Xiaoying organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 14 givenname: Xiaman surname: Wang fullname: Wang, Xiaman organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 15 givenname: Poorval surname: Joshi fullname: Joshi, Poorval organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 16 givenname: Veronica surname: Lee fullname: Lee, Veronica organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 17 givenname: Burak surname: Dura fullname: Dura, Burak organization: Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 18 givenname: Gabriella surname: Viero fullname: Viero, Gabriella organization: Institute of Biophysics, CNR Unit at Trento, Povo Trento 38123, Italy – sequence: 19 givenname: Akiko surname: Iwasaki fullname: Iwasaki, Akiko organization: Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA – sequence: 20 givenname: Rong surname: Fan fullname: Fan, Rong organization: Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 21 givenname: Andrew surname: Xiao fullname: Xiao, Andrew organization: Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 22 givenname: Richard A. surname: Flavell fullname: Flavell, Richard A. email: richard.flavell@yale.edu organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 23 givenname: Hua-Bing surname: Li fullname: Li, Hua-Bing email: huabing.li@shsmu.edu.cn organization: Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China – sequence: 24 givenname: Toma surname: Tebaldi fullname: Tebaldi, Toma email: toma.tebaldi@yale.edu organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 25 givenname: Stephanie orcidid: 0000-0002-2737-9810 surname: Halene fullname: Halene, Stephanie email: stephanie.halene@yale.edu organization: Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA |
BookMark | eNqFUcuO1DAQjNAi9gF_wMFHLgnt2IkTDkijfbAjLQ8tcLYcuzN4lNiDnYy0X8Ev4-zMHuAAJ7fcVdXdVefZifMOs-w1hYICrd9uCzuOs7NFCSUUUBUA7Fl2RqEVOacNnCy14LmoKTvNzmPcAlBetfAiO2Ulb0VVsrPs11ivyEdvbG-1mqx35EvAPbopkhsfxsOX78m1M36Dzs-RXPm5GzD_OgXlDBpy_2kVSSrJFQ44YbALaO2cmpCslxWR3GPceRcxEjMH6zbkFpO033mLk9WJuMfB78Y09mX2vFdDxFfH9yL7fnP97fI2v_v8YX25uss1qyjLtWk0beuOQTpDKN5Co4EiVK3QvGxQ9EqYijHd1n3bdD120HfAoOWqVA2r2UX2_qC7m7sRjU6jgxrkLthRhQfplZV_dpz9ITd-LwWHRvAyCbw5CgT_c8Y4ydFGjcOgHCYDZMkpMN5AWSXouwNUBx9jwF5qOz06m5TtICnIJVG5lYdE5ZKohEqmRBOZ_0V-2vE_tON9mEzcWwwyaotOo7EB9SSNt_8W-A2PP8Ed |
CitedBy_id | crossref_primary_10_1371_journal_pone_0287052 crossref_primary_10_1101_gr_265603_120 crossref_primary_10_1038_s41467_024_51199_8 crossref_primary_10_31083_j_fbl2707207 crossref_primary_10_1002_wrna_1725 crossref_primary_10_1038_s44318_024_00082_9 crossref_primary_10_1038_s41590_022_01268_1 crossref_primary_10_1158_2767_9764_CRC_23_0488 crossref_primary_10_1016_j_stem_2021_09_014 crossref_primary_10_1016_j_xpro_2021_100366 crossref_primary_10_1093_jleuko_qiad061 crossref_primary_10_1016_j_xplc_2023_100551 crossref_primary_10_1016_j_tem_2023_12_007 crossref_primary_10_1038_s41556_024_01368_0 crossref_primary_10_7554_eLife_73628 crossref_primary_10_1016_j_celrep_2022_110373 crossref_primary_10_1002_jcp_30652 crossref_primary_10_1093_narcan_zcac010 crossref_primary_10_1016_j_metabol_2023_155526 crossref_primary_10_1002_chem_202401897 crossref_primary_10_1002_cbin_11471 crossref_primary_10_1126_sciimmunol_adg2979 crossref_primary_10_1111_imr_13025 crossref_primary_10_3389_fcell_2021_710964 crossref_primary_10_1073_pnas_2104805118 crossref_primary_10_1172_JCI177375 crossref_primary_10_1016_j_biopha_2024_116171 crossref_primary_10_1126_sciadv_abq5423 crossref_primary_10_1111_imr_13020 crossref_primary_10_1128_jvi_01598_24 crossref_primary_10_1016_j_trecan_2022_09_001 crossref_primary_10_1038_s41420_023_01505_y crossref_primary_10_3389_fcell_2021_772921 crossref_primary_10_1016_j_clim_2023_109325 crossref_primary_10_3390_antiox10091483 crossref_primary_10_1016_j_bbamcr_2022_119380 crossref_primary_10_1016_j_molcel_2023_11_033 crossref_primary_10_3389_fonc_2021_683768 crossref_primary_10_3390_v13112172 crossref_primary_10_1042_BST20230727 crossref_primary_10_1016_j_stem_2023_11_006 crossref_primary_10_1002_ctm2_70089 crossref_primary_10_1096_fj_202300735R crossref_primary_10_1016_j_cellsig_2021_110060 crossref_primary_10_1016_j_immuni_2024_03_003 crossref_primary_10_1158_2159_8290_CD_23_0007 crossref_primary_10_1016_j_celrep_2023_113163 crossref_primary_10_1016_j_jbc_2021_100543 crossref_primary_10_1038_s41556_021_00707_9 crossref_primary_10_3390_v14081666 crossref_primary_10_1016_j_xcrm_2024_101782 crossref_primary_10_1073_pnas_2116662119 crossref_primary_10_1371_journal_ppat_1010142 crossref_primary_10_1097_BS9_0000000000000206 crossref_primary_10_3389_fcell_2021_670711 crossref_primary_10_1080_08916934_2023_2167983 crossref_primary_10_3389_fimmu_2025_1523503 crossref_primary_10_1186_s41232_024_00326_5 crossref_primary_10_1182_blood_2020009676 crossref_primary_10_3390_ijms25052722 crossref_primary_10_1155_2021_8874360 crossref_primary_10_1093_jmcb_mjae029 crossref_primary_10_1016_j_exphem_2024_104694 crossref_primary_10_1073_pnas_2203318119 crossref_primary_10_1016_j_stem_2022_12_003 crossref_primary_10_1016_j_tcb_2024_06_006 crossref_primary_10_1016_j_celrep_2024_114369 crossref_primary_10_1016_j_chembiol_2024_06_003 crossref_primary_10_1096_fj_201903169R crossref_primary_10_1038_s41467_022_32169_4 crossref_primary_10_15252_embr_202254686 crossref_primary_10_1080_15384101_2023_2165632 crossref_primary_10_3389_fimmu_2021_653711 crossref_primary_10_1136_ard_2024_226224 crossref_primary_10_1038_s41392_023_01696_x crossref_primary_10_1002_jcp_30576 crossref_primary_10_1016_j_exphem_2022_04_006 crossref_primary_10_1242_dev_204226 crossref_primary_10_1007_s12016_025_09041_6 crossref_primary_10_1146_annurev_immunol_101921_045401 crossref_primary_10_1186_s12920_023_01660_2 crossref_primary_10_1016_j_celrep_2022_110976 crossref_primary_10_1016_j_celrep_2024_113684 crossref_primary_10_1016_j_omtn_2022_07_018 crossref_primary_10_3390_cancers14020332 crossref_primary_10_1021_acs_nanolett_3c02185 crossref_primary_10_1080_15384047_2024_2333590 crossref_primary_10_1038_s12276_024_01177_3 crossref_primary_10_1007_s13402_023_00829_2 crossref_primary_10_1016_j_ydbio_2021_03_003 crossref_primary_10_1016_j_tibs_2020_11_008 crossref_primary_10_1016_j_exphem_2020_09_193 crossref_primary_10_1007_s00277_023_05302_6 crossref_primary_10_1080_15476286_2021_1969113 crossref_primary_10_1016_j_ejphar_2024_176955 crossref_primary_10_1016_j_drudis_2023_103513 crossref_primary_10_3389_fimmu_2024_1456891 crossref_primary_10_1016_j_immuni_2020_10_007 crossref_primary_10_1038_s41467_024_50032_6 crossref_primary_10_1002_bies_202300002 crossref_primary_10_1016_j_it_2023_04_002 crossref_primary_10_1016_j_semcdb_2020_08_006 crossref_primary_10_3389_fimmu_2024_1374390 crossref_primary_10_26508_lsa_202302240 crossref_primary_10_1016_j_celrep_2023_112684 crossref_primary_10_1128_JVI_01939_20 crossref_primary_10_3389_fphar_2022_827215 crossref_primary_10_3390_cells13030226 crossref_primary_10_1096_fj_202200716R crossref_primary_10_1016_j_cbpa_2024_102479 crossref_primary_10_3389_fimmu_2021_630358 crossref_primary_10_1038_s41375_023_01965_2 crossref_primary_10_1038_s41420_024_01954_z crossref_primary_10_1038_s41392_020_00450_x crossref_primary_10_1155_2022_8619275 crossref_primary_10_3390_nano12030389 crossref_primary_10_1016_j_bbamcr_2023_119503 crossref_primary_10_1016_j_bbrc_2024_150668 crossref_primary_10_1007_s40778_020_00178_y crossref_primary_10_1016_j_chembiol_2023_12_004 crossref_primary_10_1097_CM9_0000000000003073 crossref_primary_10_1038_s41580_021_00430_1 |
Cites_doi | 10.1038/s41422-018-0072-0 10.1016/j.virol.2012.01.006 10.1038/s41593-017-0057-1 10.1126/science.aau1646 10.1038/nature14234 10.1016/j.cell.2015.05.014 10.1073/pnas.1315974111 10.1016/j.jmb.2015.08.021 10.1016/j.immuni.2018.07.017 10.1016/j.celrep.2019.07.032 10.1016/j.molcel.2019.04.025 10.7554/eLife.25687 10.1128/JVI.05738-11 10.1016/j.molcel.2019.07.016 10.1038/s41556-019-0318-1 10.1016/j.stem.2014.09.019 10.1021/ja513080v 10.1093/emboj/19.2.263 10.1126/science.1249845 10.1038/cr.2018.7 10.1038/nature01080 10.1093/nar/19.11.2993 10.1016/j.cell.2008.01.025 10.1093/nar/gkr586 10.1016/j.stem.2017.11.016 10.1182/blood-2017-12-821413 10.1038/cr.2017.143 10.1038/nm.4416 10.4161/cc.9.17.12792 10.1093/nar/gky1173 10.1101/gr.203992.116 10.1038/nature23450 10.1038/nrm.2016.132 10.1073/pnas.71.10.3971 10.1016/j.tcb.2017.10.001 10.1093/nar/gky721 10.1016/j.stem.2010.08.012 10.1128/JVI.76.11.5532-5539.2002 10.1146/annurev-cellbio-100616-060758 10.1002/stem.2079 10.1038/nature23883 10.1038/nature25784 10.1128/JVI.01471-07 10.1038/nature12730 10.1126/science.1261417 10.1038/ncb2902 10.1016/j.molcel.2019.09.032 10.1074/jbc.M103674200 10.1242/dev.01558 10.1038/nature19342 10.1038/nri2314 10.1038/nature21355 10.1038/nprot.2018.015 10.1261/rna.062000.117 10.1126/science.aac7049 10.3390/v4112598 10.1016/j.molcel.2017.12.006 10.1016/0092-8674(93)90403-D 10.1074/jbc.271.41.25479 10.1038/ni.1680 10.1016/j.cytogfr.2007.06.016 10.1038/s41590-018-0275-z 10.1128/JVI.01299-15 10.1038/nature24678 10.1016/j.cell.2017.11.018 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.immuni.2020.05.003 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 1021.e8 |
ExternalDocumentID | PMC7408742 10_1016_j_immuni_2020_05_003 S1074761320301849 |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 7-5 7RV 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFRAH AFTJW AGGSO AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A O-L O9- OK1 OVD P2P PQQKQ PROAC RCE ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- RIG UHS X7M Y6R ZGI 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c3513-cd8c196b307527a4908c01e0597c428e7fa7d533c96f98bfeb0fb03094a2a8363 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Thu Aug 21 17:21:46 EDT 2025 Tue Aug 05 09:41:55 EDT 2025 Thu Apr 24 23:09:50 EDT 2025 Tue Jul 01 01:58:42 EDT 2025 Fri Feb 23 02:47:10 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | dsRNA RNA modification hematopoietic development hematopoiesis innate immune response METTL3 m6A N6-methyladenosine epitranscriptome double-stranded RNA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3513-cd8c196b307527a4908c01e0597c428e7fa7d533c96f98bfeb0fb03094a2a8363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contribution Conceptualization, S.H., R.A.F., H.-B.L., Y.G. and R.V.; Methodology, S.H., H.-B.L., A.X., R.F., Y.G. and R.V.; Investigation, Y.G., R.V., Y.S., R.T., C.L., R.G., K.L., and V.L.; Data analysis, Y.G., R.V., Y.S.; Bioinformatics, T.T. and G.B.; Validation, Y.G., R.V., R.G., R.N., C.L., E.K., K.L., W.L., A.A., X.F., X.W., B.D., G.V., and A.I.; Writing – Original Draft, S.H., Y.G., R.V. and T.T.; Writing – Review & Editing, S.H., H.-B.L., Y.G., R.V. and T.T.; Funding Acquisition, S.H.; Resources, R.G., A.A. and P.J.; Project Administration, S.H., R.A.F.; Supervision, S.H., H.-B.L. and T.T.. |
ORCID | 0000-0002-2737-9810 |
OpenAccessLink | http://www.cell.com/article/S1074761320301849/pdf |
PMID | 32497523 |
PQID | 2410348025 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7408742 proquest_miscellaneous_2410348025 crossref_citationtrail_10_1016_j_immuni_2020_05_003 crossref_primary_10_1016_j_immuni_2020_05_003 elsevier_sciencedirect_doi_10_1016_j_immuni_2020_05_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200616 |
PublicationDateYYYYMMDD | 2020-06-16 |
PublicationDate_xml | – month: 06 year: 2020 text: 20200616 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Li, Banerjee, Goldstein, Dong, Gaughan, Rath, Donovan, Korennykh, Silverman, Weiss (bib25) 2017; 6 Shi, Wei, He (bib45) 2019; 74 Blango, Bass (bib6) 2016; 26 Chen, Yang, Carmichael (bib7) 2010; 9 Zhao, Wang, Beadell, Lu, Shi, Kuuspalu, Ho, He (bib64) 2017; 542 Son, Liang, Lipton (bib48) 2015; 89 Cheng, Luo, Izzo, Pickering, Nguyen, Myers, Schurer, Gourkanti, Brüning, Vu (bib9) 2019; 28 Lybecker, Zimmermann, Bilusic, Tukhtubaeva, Schroeder (bib31) 2014; 111 Xiang, Yang, Liu, Wu, Chen, Yang (bib60) 2018; 69 Dahlin, Hamey, Pijuan-Sala, Shepherd, Lau, Nestorowa, Weinreb, Wolock, Hannah, Diamanti (bib11) 2018; 131 Tong, Cao, Zhang, Sefik, Amezcua Vesely, Broughton, Zhu, Li, Li, Chen (bib50) 2018; 28 Desrosiers, Friderici, Rottman (bib12) 1974; 71 Zhang, Chen, Sun, Wang, Yang, Ma, Lv, Heng, Ding, Xue (bib62) 2017; 549 Hartner, Walkley, Lu, Orkin (bib21) 2009; 10 Jensen, Thomsen (bib22) 2012; 86 Anderson, Muramatsu, Jha, Silverman, Weissman, Karikó (bib1) 2011; 39 Batista, Molinie, Wang, Qu, Zhang, Li, Bouley, Lujan, Haddad, Daneshvar (bib3) 2014; 15 Zhou, Hassel, Silverman (bib65) 1993; 72 Grandvaux, Servant, tenOever, Sen, Balachandran, Barber, Lin, Hiscott (bib18) 2002; 76 Li, Tong, Zhu, Batista, Duffy, Zhao, Bailis, Cao, Kroehling, Chen (bib24) 2017; 548 Frye, Harada, Behm, He (bib15) 2018; 361 Silverman (bib46) 2007; 81 Wang, Li, Toth, Petroski, Zhang, Zhao (bib54) 2014; 16 Han, Donovan, Rath, Whitney, Chitrakar, Korennykh (bib20) 2014; 343 Nicolet, Engels, Aglialoro, van den Akker, von Lindern, Wolkers (bib33) 2018; 46 Wu, Dao Thi, Huang, Billerbeck, Saha, Hoffmann, Wang, Silva, Sarbanes, Sun (bib59) 2018; 172 Geula, Moshitch-Moshkovitz, Dominissini, Mansour, Kol, Salmon-Divon, Hershkovitz, Peer, Mor, Manor (bib17) 2015; 347 Liu, Li, Cai, Zhang, Zhang, Xiong, Meng, Xu, Huang, Peng (bib28) 2020; 77 Donovan, Rath, Kolet-Mandrikov, Korennykh (bib13) 2017; 23 Guo, Carmichael, Wang, Hong, Acharya, Huang, Bai (bib19) 2015; 33 Liddicoat, Piskol, Chalk, Ramaswami, Higuchi, Hartner, Li, Seeburg, Walkley (bib27) 2015; 349 Saelens, Kalai, Vandenabeele (bib42) 2001; 276 Wang, Lu, Gomez, Hon, Yue, Han, Fu, Parisien, Dai, Jia (bib52) 2014; 505 Zhao, Roundtree, He (bib63) 2017; 18 Besch, Poeck, Hohenauer, Senft, Häcker, Berking, Hornung, Endres, Ruzicka, Rothenfusser, Hartmann (bib5) 2009; 119 Patil, Pickering, Jaffrey (bib36) 2018; 28 Schönborn, Oberstrass, Breyel, Tittgen, Schumacher, Lukacs (bib44) 1991; 19 Winkler, Gillis, Lasman, Safra, Geula, Soyris, Nachshon, Tai-Schmiedel, Friedman, Le-Trilling (bib58) 2019; 20 Liu, Dai, Zheng, He, Parisien, Pan (bib29) 2015; 518 Gantier, Williams (bib16) 2007; 18 Zhou, Parisien, Dai, Liu, Diatchenko, Sachleben, Pan (bib66) 2016; 428 Roost, Lynch, Batista, Qu, Chang, Kool (bib40) 2015; 137 Wang, Zhao, Roundtree, Lu, Han, Ma, Weng, Chen, Shi, He (bib53) 2015; 161 Wang, Li, Yue, Wang, Kumar, Wechsler-Reya, Zhang, Ogawa, Kellis, Duester, Zhao (bib55) 2018; 21 Vu, Pickering, Cheng, Zaccara, Nguyen, Minuesa, Chou, Chow, Saletore, MacKay (bib51) 2017; 23 Patil, Chen, Pickering, Chow, Jackson, Guttman, Jaffrey (bib35) 2016; 537 Bertero, Brown, Madrigal, Osnato, Ortmann, Yiangou, Kadiwala, Hubner, de Los Mozos, Sadée (bib4) 2018; 555 Lee, Bao, Qian, Geula, Leslie, Zhang, Hanna, Ding (bib23) 2019; 21 Skene, Henikoff, Henikoff (bib47) 2018; 13 Warren, Manos, Ahfeldt, Loh, Li, Lau, Ebina, Mandal, Smith, Meissner (bib56) 2010; 7 Raveh, Hovanessian, Meurs, Sonenberg, Kimchi (bib39) 1996; 271 Pulit-Penaloza, Scherbik, Brinton (bib37) 2012; 425 Stadtfeld, Graf (bib49) 2005; 132 Weng, Huang, Wu, Qin, Zhao, Dong, Shi, Skibbe, Shen, Hu (bib57) 2018; 22 Orkin, Zon (bib34) 2008; 132 Dabo, Meurs (bib10) 2012; 4 Li, Qian, Shao, Shi, He, Gogol, Yu, Wang, Qi, Zhu (bib26) 2018; 28 Lv, Zhang, Gao, Zhang, Chen, Li, Yang, Zhou, Liu (bib30) 2018; 28 Sadler, Williams (bib41) 2008; 8 Yockey, Iwasaki (bib61) 2018; 49 Santos-Rosa, Schneider, Bannister, Sherriff, Bernstein, Emre, Schreiber, Mellor, Kouzarides (bib43) 2002; 419 Dura, Choi, Zhang, Damsky, Thakral, Bosenberg, Craft, Fan (bib14) 2019; 47 Meyer, Jaffrey (bib32) 2017; 33 Ramana, Grammatikakis, Chernov, Nguyen, Goh, Williams, Stark (bib38) 2000; 19 Barbieri, Tzelepis, Pandolfini, Shi, Millán-Zambrano, Robson, Aspris, Migliori, Bannister, Han (bib2) 2017; 552 Chen, Chen, Ahmad, Verma, Kasturi, Amaya, Broughton, Kim, Cadena, Pulendran (bib8) 2019; 76 Ramana (10.1016/j.immuni.2020.05.003_bib38) 2000; 19 Schönborn (10.1016/j.immuni.2020.05.003_bib44) 1991; 19 Patil (10.1016/j.immuni.2020.05.003_bib35) 2016; 537 Frye (10.1016/j.immuni.2020.05.003_bib15) 2018; 361 Cheng (10.1016/j.immuni.2020.05.003_bib9) 2019; 28 Yockey (10.1016/j.immuni.2020.05.003_bib61) 2018; 49 Shi (10.1016/j.immuni.2020.05.003_bib45) 2019; 74 Anderson (10.1016/j.immuni.2020.05.003_bib1) 2011; 39 Desrosiers (10.1016/j.immuni.2020.05.003_bib12) 1974; 71 Chen (10.1016/j.immuni.2020.05.003_bib7) 2010; 9 Grandvaux (10.1016/j.immuni.2020.05.003_bib18) 2002; 76 Silverman (10.1016/j.immuni.2020.05.003_bib46) 2007; 81 Besch (10.1016/j.immuni.2020.05.003_bib5) 2009; 119 Nicolet (10.1016/j.immuni.2020.05.003_bib33) 2018; 46 Dura (10.1016/j.immuni.2020.05.003_bib14) 2019; 47 Stadtfeld (10.1016/j.immuni.2020.05.003_bib49) 2005; 132 Sadler (10.1016/j.immuni.2020.05.003_bib41) 2008; 8 Gantier (10.1016/j.immuni.2020.05.003_bib16) 2007; 18 Zhou (10.1016/j.immuni.2020.05.003_bib65) 1993; 72 Warren (10.1016/j.immuni.2020.05.003_bib56) 2010; 7 Dabo (10.1016/j.immuni.2020.05.003_bib10) 2012; 4 Skene (10.1016/j.immuni.2020.05.003_bib47) 2018; 13 Wang (10.1016/j.immuni.2020.05.003_bib52) 2014; 505 Santos-Rosa (10.1016/j.immuni.2020.05.003_bib43) 2002; 419 Dahlin (10.1016/j.immuni.2020.05.003_bib11) 2018; 131 Orkin (10.1016/j.immuni.2020.05.003_bib34) 2008; 132 Zhang (10.1016/j.immuni.2020.05.003_bib62) 2017; 549 Li (10.1016/j.immuni.2020.05.003_bib26) 2018; 28 Zhou (10.1016/j.immuni.2020.05.003_bib66) 2016; 428 Jensen (10.1016/j.immuni.2020.05.003_bib22) 2012; 86 Donovan (10.1016/j.immuni.2020.05.003_bib13) 2017; 23 Liu (10.1016/j.immuni.2020.05.003_bib29) 2015; 518 Bertero (10.1016/j.immuni.2020.05.003_bib4) 2018; 555 Li (10.1016/j.immuni.2020.05.003_bib24) 2017; 548 Lybecker (10.1016/j.immuni.2020.05.003_bib31) 2014; 111 Wang (10.1016/j.immuni.2020.05.003_bib53) 2015; 161 Han (10.1016/j.immuni.2020.05.003_bib20) 2014; 343 Liu (10.1016/j.immuni.2020.05.003_bib28) 2020; 77 Patil (10.1016/j.immuni.2020.05.003_bib36) 2018; 28 Raveh (10.1016/j.immuni.2020.05.003_bib39) 1996; 271 Hartner (10.1016/j.immuni.2020.05.003_bib21) 2009; 10 Lee (10.1016/j.immuni.2020.05.003_bib23) 2019; 21 Liddicoat (10.1016/j.immuni.2020.05.003_bib27) 2015; 349 Wu (10.1016/j.immuni.2020.05.003_bib59) 2018; 172 Roost (10.1016/j.immuni.2020.05.003_bib40) 2015; 137 Barbieri (10.1016/j.immuni.2020.05.003_bib2) 2017; 552 Li (10.1016/j.immuni.2020.05.003_bib25) 2017; 6 Lv (10.1016/j.immuni.2020.05.003_bib30) 2018; 28 Xiang (10.1016/j.immuni.2020.05.003_bib60) 2018; 69 Zhao (10.1016/j.immuni.2020.05.003_bib64) 2017; 542 Son (10.1016/j.immuni.2020.05.003_bib48) 2015; 89 Chen (10.1016/j.immuni.2020.05.003_bib8) 2019; 76 Geula (10.1016/j.immuni.2020.05.003_bib17) 2015; 347 Pulit-Penaloza (10.1016/j.immuni.2020.05.003_bib37) 2012; 425 Saelens (10.1016/j.immuni.2020.05.003_bib42) 2001; 276 Meyer (10.1016/j.immuni.2020.05.003_bib32) 2017; 33 Vu (10.1016/j.immuni.2020.05.003_bib51) 2017; 23 Weng (10.1016/j.immuni.2020.05.003_bib57) 2018; 22 Batista (10.1016/j.immuni.2020.05.003_bib3) 2014; 15 Wang (10.1016/j.immuni.2020.05.003_bib54) 2014; 16 Zhao (10.1016/j.immuni.2020.05.003_bib63) 2017; 18 Tong (10.1016/j.immuni.2020.05.003_bib50) 2018; 28 Blango (10.1016/j.immuni.2020.05.003_bib6) 2016; 26 Guo (10.1016/j.immuni.2020.05.003_bib19) 2015; 33 Wang (10.1016/j.immuni.2020.05.003_bib55) 2018; 21 Winkler (10.1016/j.immuni.2020.05.003_bib58) 2019; 20 |
References_xml | – volume: 542 start-page: 475 year: 2017 end-page: 478 ident: bib64 article-title: m publication-title: Nature – volume: 71 start-page: 3971 year: 1974 end-page: 3975 ident: bib12 article-title: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 19 start-page: 263 year: 2000 end-page: 272 ident: bib38 article-title: Regulation of c-myc expression by IFN-gamma through Stat1-dependent and -independent pathways publication-title: EMBO J. – volume: 9 start-page: 3552 year: 2010 end-page: 3564 ident: bib7 article-title: Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells publication-title: Cell Cycle – volume: 18 start-page: 31 year: 2017 end-page: 42 ident: bib63 article-title: Post-transcriptional gene regulation by mRNA modifications publication-title: Nat. Rev. Mol. Cell Biol. – volume: 131 start-page: e1 year: 2018 end-page: e11 ident: bib11 article-title: A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice publication-title: Blood – volume: 518 start-page: 560 year: 2015 end-page: 564 ident: bib29 article-title: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions publication-title: Nature – volume: 349 start-page: 1115 year: 2015 end-page: 1120 ident: bib27 article-title: RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself publication-title: Science – volume: 33 start-page: 319 year: 2017 end-page: 342 ident: bib32 article-title: Rethinking m publication-title: Annu. Rev. Cell Dev. Biol. – volume: 505 start-page: 117 year: 2014 end-page: 120 ident: bib52 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature – volume: 13 start-page: 1006 year: 2018 end-page: 1019 ident: bib47 article-title: Targeted in situ genome-wide profiling with high efficiency for low cell numbers publication-title: Nat. Protoc. – volume: 15 start-page: 707 year: 2014 end-page: 719 ident: bib3 article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells publication-title: Cell Stem Cell – volume: 76 start-page: 96 year: 2019 end-page: 109.e9 ident: bib8 article-title: N6-methyladenosine modification controls circular RNA immunity publication-title: Mol. Cell – volume: 537 start-page: 369 year: 2016 end-page: 373 ident: bib35 article-title: m(6)A RNA methylation promotes XIST-mediated transcriptional repression publication-title: Nature – volume: 76 start-page: 5532 year: 2002 end-page: 5539 ident: bib18 article-title: Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes publication-title: J. Virol. – volume: 4 start-page: 2598 year: 2012 end-page: 2635 ident: bib10 article-title: dsRNA-dependent protein kinase PKR and its role in stress, signaling and HCV infection publication-title: Viruses – volume: 26 start-page: 852 year: 2016 end-page: 862 ident: bib6 article-title: Identification of the long, edited dsRNAome of LPS-stimulated immune cells publication-title: Genome Res. – volume: 72 start-page: 753 year: 1993 end-page: 765 ident: bib65 article-title: Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action publication-title: Cell – volume: 28 start-page: 113 year: 2018 end-page: 127 ident: bib36 article-title: Reading m publication-title: Trends Cell Biol. – volume: 137 start-page: 2107 year: 2015 end-page: 2115 ident: bib40 article-title: Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 173 year: 2019 end-page: 182 ident: bib58 article-title: m publication-title: Nat. Immunol. – volume: 22 start-page: 191 year: 2018 end-page: 205.e9 ident: bib57 article-title: METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m publication-title: Cell Stem Cell – volume: 172 start-page: 423 year: 2018 end-page: 438.e25 ident: bib59 article-title: Intrinsic immunity shapes viral resistance of stem cells publication-title: Cell – volume: 28 start-page: 904 year: 2018 end-page: 917 ident: bib26 article-title: Suppression of m publication-title: Cell Res. – volume: 21 start-page: 195 year: 2018 end-page: 206 ident: bib55 article-title: N publication-title: Nat. Neurosci. – volume: 119 start-page: 2399 year: 2009 end-page: 2411 ident: bib5 article-title: Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells publication-title: J. Clin. Invest. – volume: 74 start-page: 640 year: 2019 end-page: 650 ident: bib45 article-title: Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers publication-title: Mol. Cell – volume: 7 start-page: 618 year: 2010 end-page: 630 ident: bib56 article-title: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA publication-title: Cell Stem Cell – volume: 6 start-page: e25687 year: 2017 ident: bib25 article-title: Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line publication-title: eLife – volume: 46 start-page: 8168 year: 2018 end-page: 8180 ident: bib33 article-title: Circular RNA expression in human hematopoietic cells is widespread and cell-type specific publication-title: Nucleic Acids Res. – volume: 39 start-page: 9329 year: 2011 end-page: 9338 ident: bib1 article-title: Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L publication-title: Nucleic Acids Res. – volume: 361 start-page: 1346 year: 2018 end-page: 1349 ident: bib15 article-title: RNA modifications modulate gene expression during development publication-title: Science – volume: 347 start-page: 1002 year: 2015 end-page: 1006 ident: bib17 article-title: Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation publication-title: Science – volume: 23 start-page: 1369 year: 2017 end-page: 1376 ident: bib51 article-title: The N publication-title: Nat. Med. – volume: 69 start-page: 126 year: 2018 end-page: 135.e6 ident: bib60 article-title: N publication-title: Mol. Cell – volume: 419 start-page: 407 year: 2002 end-page: 411 ident: bib43 article-title: Active genes are tri-methylated at K4 of histone H3 publication-title: Nature – volume: 19 start-page: 2993 year: 1991 end-page: 3000 ident: bib44 article-title: Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts publication-title: Nucleic Acids Res. – volume: 81 start-page: 12720 year: 2007 end-page: 12729 ident: bib46 article-title: Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response publication-title: J. Virol. – volume: 552 start-page: 126 year: 2017 end-page: 131 ident: bib2 article-title: Promoter-bound METTL3 maintains myeloid leukaemia by m publication-title: Nature – volume: 16 start-page: 191 year: 2014 end-page: 198 ident: bib54 article-title: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells publication-title: Nat. Cell Biol. – volume: 343 start-page: 1244 year: 2014 end-page: 1248 ident: bib20 article-title: Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response publication-title: Science – volume: 49 start-page: 397 year: 2018 end-page: 412 ident: bib61 article-title: Interferons and proinflammatory cytokines in pregnancy and fetal development publication-title: Immunity – volume: 86 start-page: 2900 year: 2012 end-page: 2910 ident: bib22 article-title: Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion publication-title: J. Virol. – volume: 132 start-page: 203 year: 2005 end-page: 213 ident: bib49 article-title: Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing publication-title: Development – volume: 77 start-page: 426 year: 2020 end-page: 440.e6 ident: bib28 article-title: Landscape and regulation of m publication-title: Mol. Cell – volume: 271 start-page: 25479 year: 1996 end-page: 25484 ident: bib39 article-title: Double-stranded RNA-dependent protein kinase mediates c-Myc suppression induced by type I interferons publication-title: J. Biol. Chem. – volume: 21 start-page: 700 year: 2019 end-page: 709 ident: bib23 article-title: Stage-specific requirement for Mettl3-dependent m publication-title: Nat. Cell Biol. – volume: 28 start-page: 253 year: 2018 end-page: 256 ident: bib50 article-title: m publication-title: Cell Res. – volume: 89 start-page: 9383 year: 2015 end-page: 9392 ident: bib48 article-title: Double-stranded RNA is detected by immunofluorescence analysis in RNA and DNA virus infections, including those by negative-stranded RNA viruses publication-title: J. Virol. – volume: 428 start-page: 822 year: 2016 end-page: 833 ident: bib66 article-title: N(6)-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding publication-title: J. Mol. Biol. – volume: 132 start-page: 631 year: 2008 end-page: 644 ident: bib34 article-title: Hematopoiesis: an evolving paradigm for stem cell biology publication-title: Cell – volume: 276 start-page: 41620 year: 2001 end-page: 41628 ident: bib42 article-title: Translation inhibition in apoptosis: caspase-dependent PKR activation and eIF2-alpha phosphorylation publication-title: J. Biol. Chem. – volume: 23 start-page: 1660 year: 2017 end-page: 1671 ident: bib13 article-title: Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery publication-title: RNA – volume: 548 start-page: 338 year: 2017 end-page: 342 ident: bib24 article-title: m publication-title: Nature – volume: 111 start-page: 3134 year: 2014 end-page: 3139 ident: bib31 article-title: The double-stranded transcriptome of Escherichia coli publication-title: Proc. Natl. Acad. Sci. USA – volume: 161 start-page: 1388 year: 2015 end-page: 1399 ident: bib53 article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency publication-title: Cell – volume: 28 start-page: 1703 year: 2019 end-page: 1716.e6 ident: bib9 article-title: m publication-title: Cell Rep. – volume: 18 start-page: 363 year: 2007 end-page: 371 ident: bib16 article-title: The response of mammalian cells to double-stranded RNA publication-title: Cytokine Growth Factor Rev. – volume: 549 start-page: 273 year: 2017 end-page: 276 ident: bib62 article-title: m publication-title: Nature – volume: 425 start-page: 82 year: 2012 end-page: 94 ident: bib37 article-title: Type 1 IFN-independent activation of a subset of interferon stimulated genes in West Nile virus Eg101-infected mouse cells publication-title: Virology – volume: 8 start-page: 559 year: 2008 end-page: 568 ident: bib41 article-title: Interferon-inducible antiviral effectors publication-title: Nat. Rev. Immunol. – volume: 47 start-page: e16 year: 2019 ident: bib14 article-title: scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3′ mRNA profiling publication-title: Nucleic Acids Res. – volume: 555 start-page: 256 year: 2018 end-page: 259 ident: bib4 article-title: The SMAD2/3 interactome reveals that TGFβ controls m publication-title: Nature – volume: 28 start-page: 249 year: 2018 end-page: 252 ident: bib30 article-title: Endothelial-specific m publication-title: Cell Res. – volume: 10 start-page: 109 year: 2009 end-page: 115 ident: bib21 article-title: ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling publication-title: Nat. Immunol. – volume: 33 start-page: 3165 year: 2015 end-page: 3173 ident: bib19 article-title: Attenuated innate immunity in embryonic stem cells and its implications in developmental biology and regenerative medicine publication-title: Stem Cells – volume: 28 start-page: 904 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib26 article-title: Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion publication-title: Cell Res. doi: 10.1038/s41422-018-0072-0 – volume: 425 start-page: 82 year: 2012 ident: 10.1016/j.immuni.2020.05.003_bib37 article-title: Type 1 IFN-independent activation of a subset of interferon stimulated genes in West Nile virus Eg101-infected mouse cells publication-title: Virology doi: 10.1016/j.virol.2012.01.006 – volume: 21 start-page: 195 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib55 article-title: N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0057-1 – volume: 361 start-page: 1346 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib15 article-title: RNA modifications modulate gene expression during development publication-title: Science doi: 10.1126/science.aau1646 – volume: 518 start-page: 560 year: 2015 ident: 10.1016/j.immuni.2020.05.003_bib29 article-title: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions publication-title: Nature doi: 10.1038/nature14234 – volume: 161 start-page: 1388 year: 2015 ident: 10.1016/j.immuni.2020.05.003_bib53 article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency publication-title: Cell doi: 10.1016/j.cell.2015.05.014 – volume: 111 start-page: 3134 year: 2014 ident: 10.1016/j.immuni.2020.05.003_bib31 article-title: The double-stranded transcriptome of Escherichia coli publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1315974111 – volume: 428 start-page: 822 issue: 5 Pt A year: 2016 ident: 10.1016/j.immuni.2020.05.003_bib66 article-title: N(6)-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.08.021 – volume: 49 start-page: 397 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib61 article-title: Interferons and proinflammatory cytokines in pregnancy and fetal development publication-title: Immunity doi: 10.1016/j.immuni.2018.07.017 – volume: 119 start-page: 2399 year: 2009 ident: 10.1016/j.immuni.2020.05.003_bib5 article-title: Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells publication-title: J. Clin. Invest. – volume: 28 start-page: 1703 year: 2019 ident: 10.1016/j.immuni.2020.05.003_bib9 article-title: m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.07.032 – volume: 74 start-page: 640 year: 2019 ident: 10.1016/j.immuni.2020.05.003_bib45 article-title: Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.04.025 – volume: 6 start-page: e25687 year: 2017 ident: 10.1016/j.immuni.2020.05.003_bib25 article-title: Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line publication-title: eLife doi: 10.7554/eLife.25687 – volume: 86 start-page: 2900 year: 2012 ident: 10.1016/j.immuni.2020.05.003_bib22 article-title: Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion publication-title: J. Virol. doi: 10.1128/JVI.05738-11 – volume: 76 start-page: 96 year: 2019 ident: 10.1016/j.immuni.2020.05.003_bib8 article-title: N6-methyladenosine modification controls circular RNA immunity publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.07.016 – volume: 21 start-page: 700 year: 2019 ident: 10.1016/j.immuni.2020.05.003_bib23 article-title: Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0318-1 – volume: 15 start-page: 707 year: 2014 ident: 10.1016/j.immuni.2020.05.003_bib3 article-title: m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.09.019 – volume: 137 start-page: 2107 year: 2015 ident: 10.1016/j.immuni.2020.05.003_bib40 article-title: Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification publication-title: J. Am. Chem. Soc. doi: 10.1021/ja513080v – volume: 19 start-page: 263 year: 2000 ident: 10.1016/j.immuni.2020.05.003_bib38 article-title: Regulation of c-myc expression by IFN-gamma through Stat1-dependent and -independent pathways publication-title: EMBO J. doi: 10.1093/emboj/19.2.263 – volume: 343 start-page: 1244 year: 2014 ident: 10.1016/j.immuni.2020.05.003_bib20 article-title: Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response publication-title: Science doi: 10.1126/science.1249845 – volume: 28 start-page: 253 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib50 article-title: m6A mRNA methylation sustains Treg suppressive functions publication-title: Cell Res. doi: 10.1038/cr.2018.7 – volume: 419 start-page: 407 year: 2002 ident: 10.1016/j.immuni.2020.05.003_bib43 article-title: Active genes are tri-methylated at K4 of histone H3 publication-title: Nature doi: 10.1038/nature01080 – volume: 19 start-page: 2993 year: 1991 ident: 10.1016/j.immuni.2020.05.003_bib44 article-title: Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts publication-title: Nucleic Acids Res. doi: 10.1093/nar/19.11.2993 – volume: 132 start-page: 631 year: 2008 ident: 10.1016/j.immuni.2020.05.003_bib34 article-title: Hematopoiesis: an evolving paradigm for stem cell biology publication-title: Cell doi: 10.1016/j.cell.2008.01.025 – volume: 39 start-page: 9329 year: 2011 ident: 10.1016/j.immuni.2020.05.003_bib1 article-title: Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr586 – volume: 22 start-page: 191 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib57 article-title: METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.11.016 – volume: 131 start-page: e1 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib11 article-title: A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice publication-title: Blood doi: 10.1182/blood-2017-12-821413 – volume: 28 start-page: 249 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib30 article-title: Endothelial-specific m6A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling publication-title: Cell Res. doi: 10.1038/cr.2017.143 – volume: 23 start-page: 1369 year: 2017 ident: 10.1016/j.immuni.2020.05.003_bib51 article-title: The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells publication-title: Nat. Med. doi: 10.1038/nm.4416 – volume: 9 start-page: 3552 year: 2010 ident: 10.1016/j.immuni.2020.05.003_bib7 article-title: Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells publication-title: Cell Cycle doi: 10.4161/cc.9.17.12792 – volume: 47 start-page: e16 year: 2019 ident: 10.1016/j.immuni.2020.05.003_bib14 article-title: scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3′ mRNA profiling publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1173 – volume: 26 start-page: 852 year: 2016 ident: 10.1016/j.immuni.2020.05.003_bib6 article-title: Identification of the long, edited dsRNAome of LPS-stimulated immune cells publication-title: Genome Res. doi: 10.1101/gr.203992.116 – volume: 548 start-page: 338 year: 2017 ident: 10.1016/j.immuni.2020.05.003_bib24 article-title: m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways publication-title: Nature doi: 10.1038/nature23450 – volume: 18 start-page: 31 year: 2017 ident: 10.1016/j.immuni.2020.05.003_bib63 article-title: Post-transcriptional gene regulation by mRNA modifications publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.132 – volume: 71 start-page: 3971 year: 1974 ident: 10.1016/j.immuni.2020.05.003_bib12 article-title: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.71.10.3971 – volume: 28 start-page: 113 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib36 article-title: Reading m6A in the transcriptome: m6A-binding proteins publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2017.10.001 – volume: 46 start-page: 8168 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib33 article-title: Circular RNA expression in human hematopoietic cells is widespread and cell-type specific publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky721 – volume: 7 start-page: 618 year: 2010 ident: 10.1016/j.immuni.2020.05.003_bib56 article-title: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.08.012 – volume: 76 start-page: 5532 year: 2002 ident: 10.1016/j.immuni.2020.05.003_bib18 article-title: Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes publication-title: J. Virol. doi: 10.1128/JVI.76.11.5532-5539.2002 – volume: 33 start-page: 319 year: 2017 ident: 10.1016/j.immuni.2020.05.003_bib32 article-title: Rethinking m6A readers, writers, and erasers publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100616-060758 – volume: 33 start-page: 3165 year: 2015 ident: 10.1016/j.immuni.2020.05.003_bib19 article-title: Attenuated innate immunity in embryonic stem cells and its implications in developmental biology and regenerative medicine publication-title: Stem Cells doi: 10.1002/stem.2079 – volume: 549 start-page: 273 year: 2017 ident: 10.1016/j.immuni.2020.05.003_bib62 article-title: m6A modulates haematopoietic stem and progenitor cell specification publication-title: Nature doi: 10.1038/nature23883 – volume: 555 start-page: 256 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib4 article-title: The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency publication-title: Nature doi: 10.1038/nature25784 – volume: 81 start-page: 12720 year: 2007 ident: 10.1016/j.immuni.2020.05.003_bib46 article-title: Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response publication-title: J. Virol. doi: 10.1128/JVI.01471-07 – volume: 505 start-page: 117 year: 2014 ident: 10.1016/j.immuni.2020.05.003_bib52 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature doi: 10.1038/nature12730 – volume: 347 start-page: 1002 year: 2015 ident: 10.1016/j.immuni.2020.05.003_bib17 article-title: Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation publication-title: Science doi: 10.1126/science.1261417 – volume: 16 start-page: 191 year: 2014 ident: 10.1016/j.immuni.2020.05.003_bib54 article-title: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2902 – volume: 77 start-page: 426 year: 2020 ident: 10.1016/j.immuni.2020.05.003_bib28 article-title: Landscape and regulation of m6A and m6Am methylome across human and mouse tissues publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.032 – volume: 276 start-page: 41620 year: 2001 ident: 10.1016/j.immuni.2020.05.003_bib42 article-title: Translation inhibition in apoptosis: caspase-dependent PKR activation and eIF2-alpha phosphorylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M103674200 – volume: 132 start-page: 203 year: 2005 ident: 10.1016/j.immuni.2020.05.003_bib49 article-title: Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing publication-title: Development doi: 10.1242/dev.01558 – volume: 537 start-page: 369 year: 2016 ident: 10.1016/j.immuni.2020.05.003_bib35 article-title: m(6)A RNA methylation promotes XIST-mediated transcriptional repression publication-title: Nature doi: 10.1038/nature19342 – volume: 8 start-page: 559 year: 2008 ident: 10.1016/j.immuni.2020.05.003_bib41 article-title: Interferon-inducible antiviral effectors publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2314 – volume: 542 start-page: 475 year: 2017 ident: 10.1016/j.immuni.2020.05.003_bib64 article-title: m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition publication-title: Nature doi: 10.1038/nature21355 – volume: 13 start-page: 1006 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib47 article-title: Targeted in situ genome-wide profiling with high efficiency for low cell numbers publication-title: Nat. Protoc. doi: 10.1038/nprot.2018.015 – volume: 23 start-page: 1660 year: 2017 ident: 10.1016/j.immuni.2020.05.003_bib13 article-title: Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery publication-title: RNA doi: 10.1261/rna.062000.117 – volume: 349 start-page: 1115 year: 2015 ident: 10.1016/j.immuni.2020.05.003_bib27 article-title: RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself publication-title: Science doi: 10.1126/science.aac7049 – volume: 4 start-page: 2598 year: 2012 ident: 10.1016/j.immuni.2020.05.003_bib10 article-title: dsRNA-dependent protein kinase PKR and its role in stress, signaling and HCV infection publication-title: Viruses doi: 10.3390/v4112598 – volume: 69 start-page: 126 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib60 article-title: N6-methyladenosines modulate A-to-I RNA editing publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.006 – volume: 72 start-page: 753 year: 1993 ident: 10.1016/j.immuni.2020.05.003_bib65 article-title: Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action publication-title: Cell doi: 10.1016/0092-8674(93)90403-D – volume: 271 start-page: 25479 year: 1996 ident: 10.1016/j.immuni.2020.05.003_bib39 article-title: Double-stranded RNA-dependent protein kinase mediates c-Myc suppression induced by type I interferons publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.41.25479 – volume: 10 start-page: 109 year: 2009 ident: 10.1016/j.immuni.2020.05.003_bib21 article-title: ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling publication-title: Nat. Immunol. doi: 10.1038/ni.1680 – volume: 18 start-page: 363 year: 2007 ident: 10.1016/j.immuni.2020.05.003_bib16 article-title: The response of mammalian cells to double-stranded RNA publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2007.06.016 – volume: 20 start-page: 173 year: 2019 ident: 10.1016/j.immuni.2020.05.003_bib58 article-title: m6A modification controls the innate immune response to infection by targeting type I interferons publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0275-z – volume: 89 start-page: 9383 year: 2015 ident: 10.1016/j.immuni.2020.05.003_bib48 article-title: Double-stranded RNA is detected by immunofluorescence analysis in RNA and DNA virus infections, including those by negative-stranded RNA viruses publication-title: J. Virol. doi: 10.1128/JVI.01299-15 – volume: 552 start-page: 126 year: 2017 ident: 10.1016/j.immuni.2020.05.003_bib2 article-title: Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control publication-title: Nature doi: 10.1038/nature24678 – volume: 172 start-page: 423 year: 2018 ident: 10.1016/j.immuni.2020.05.003_bib59 article-title: Intrinsic immunity shapes viral resistance of stem cells publication-title: Cell doi: 10.1016/j.cell.2017.11.018 |
SSID | ssj0014590 |
Score | 2.328662 |
Snippet | N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that... N 6 methyladenosine (m 6 A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show... |
SourceID | pubmedcentral proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1007 |
SubjectTerms | double-stranded RNA dsRNA epitranscriptome hematopoiesis hematopoietic development innate immune response m6A METTL3 N6-methyladenosine RNA modification |
Title | m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development |
URI | https://dx.doi.org/10.1016/j.immuni.2020.05.003 https://www.proquest.com/docview/2410348025 https://pubmed.ncbi.nlm.nih.gov/PMC7408742 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG6IRuOL8RqvpCa-Lmxrt5VHVAhI5AEl8tZsXRtndCOiD_4K_7Ln7BYWH0h8Y9CN0p6efofzna-EXAvBBYvd2GLaURY3GvygEI5lnDCMVaAhJMnVPif-cMbv5968RW6rWhikVZa-v_Dpubcu3-mUo9lZJEnnEamEEIQzF1G94FjEx-CLsYhvflNnErjXtWveIbSuyudyjleS12BAlOjauX5ndXTW3-1pBX42yZMru9Fgj-yWMJL2ip7uk5ZOD8hWcbDk9wHZfihT5ofk593v0YcsRkpQPgu0VG1a0kFVuEgzQ_tpnBWCrRRAdfSmLRSuxf_H6XTSW1J4Se9gj0JtZ2w0SlOAqXSEv03TaUG11Uta1D3SIWrBZosswSJJukJNOiKzQf_pdmiVpzBYinkOs1A8AJZpBM7Ac4MQE4XKdjTAskBB7KIDEwYxgEbV9U1XREZHtokwccNDNxTMZ8dkI81SfUKoxxQzxgfj9Rj3wHfETmwihWEVM13mnBJWDb5UpUQ5npTxJisu2qsspkzilEnbQ2nTU2LVdy0KiY417YNqXmXD1CTsImvuvKrMQMIqxNRKmGoYcwk4yAbjAwAJT2_YR90l1PFufpImL7med8BtEXD37N_9Oic7eIUMNse_IBufH1_6ErDSZ9Qmm73x9HnczhfFL8FKF-8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB1kQdJcgjRJ0TRpywC5CpZESqSOzmLYSexDFsA3QqJIVIUrGXFy6Ff0lzujxbDRQ4DeBIsSaC7DN5o3bwAulBKK52HucRsYTziLdlCpwHNBmuZGWnRJarXPSTx8FrfTaLoBV10uDNEqW9vf2PTaWre_9NrR7M2LovdIVEJ0wnlIqF6JZBO2EQ1Iqt8wml4uQwkiSvwl8RCbd_lzNcmrqJMw0E0M_VrAs6ud9e_5tII_19mTK8fR4AD2WxzJ-k1XP8KGLQ9hp6ks-fsQdsdtzPwI_vyK-2xc5cQJqqeBtbJNCzboMhdZ5dhNmVeNYitDVJ3NrEfKtfSBnD1M-guGl-waDykSd6ZGo7JEnMpG9N8se2i4tnbBmsRHNiQx2GpeFZQlyVa4ScfwPLh5uhp6bRkGz_Ao4B6pB-A-zdAaRKFMKVJo_MAiLpMGnRcrXSpzRI0miV2iMmcz32UUuRFpmCoe80-wVVal_Qws4oY7F-PqjbiI0HjkQe4yQ34VdwkPToB3g69Nq1FOpTJmuiOj_dTNlGmaMu1HpG16At7yqXmj0fFOe9nNq15baxqPkXeePO-WgcZtSLGVtLQ45hqBkM-FQgSJb19bH8sukZD3-p2y-FELekvhKynCL__dr-_wYfg0vtf3o8ndKezRHaKzBfEZbL2-vNmvCJxes2_1xvgL_ZkZaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=m6A+Modification+Prevents+Formation+of+Endogenous+Double-Stranded+RNAs+and+Deleterious+Innate+Immune+Responses+during+Hematopoietic+Development&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Gao%2C+Yimeng&rft.au=Vasic%2C+Radovan&rft.au=Song%2C+Yuanbin&rft.au=Teng%2C+Rhea&rft.date=2020-06-16&rft.issn=1097-4180&rft.eissn=1097-4180&rft.volume=52&rft.issue=6&rft.spage=1007&rft_id=info:doi/10.1016%2Fj.immuni.2020.05.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |