The effects of street environment features on road running: An analysis using crowdsourced fitness tracker data and machine learning

Urban streets provide environment for road running. The study proposes a non-parametric approach that uses machine learning models to predict road running intensity. The models were developed using route check-in data from Keep, a mobile exercise application, and street geographic information data i...

Full description

Saved in:
Bibliographic Details
Published inEnvironment and planning. B, Urban analytics and city science Vol. 51; no. 2; pp. 529 - 545
Main Authors Zhang, Shuyang, Liu, Nianxiong, Ma, Beini, Yan, Shurui
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Urban streets provide environment for road running. The study proposes a non-parametric approach that uses machine learning models to predict road running intensity. The models were developed using route check-in data from Keep, a mobile exercise application, and street geographic information data in Beijing’s core district. The results show that blue space and trail continuity are the most important factors in improving road running intensity. There is an optimum design value for the sky openness and the street enclosure, which need to be balanced with shade while meeting the light of the road. And it is also important to provide appropriate visual permeability. Furthermore, unlike daily activities, it was found that higher function mixture and function density did not have significant positive effects on the road running intensity. This study provides empirical evidence on road running and highlights the key factors that planners, landscape architects, and city managers should consider when design running-friendly urban streets.
AbstractList Urban streets provide environment for road running. The study proposes a non-parametric approach that uses machine learning models to predict road running intensity. The models were developed using route check-in data from Keep, a mobile exercise application, and street geographic information data in Beijing’s core district. The results show that blue space and trail continuity are the most important factors in improving road running intensity. There is an optimum design value for the sky openness and the street enclosure, which need to be balanced with shade while meeting the light of the road. And it is also important to provide appropriate visual permeability. Furthermore, unlike daily activities, it was found that higher function mixture and function density did not have significant positive effects on the road running intensity. This study provides empirical evidence on road running and highlights the key factors that planners, landscape architects, and city managers should consider when design running-friendly urban streets.
Author Zhang, Shuyang
Yan, Shurui
Liu, Nianxiong
Ma, Beini
Author_xml – sequence: 1
  givenname: Shuyang
  orcidid: 0000-0002-3677-1363
  surname: Zhang
  fullname: Zhang, Shuyang
  organization: School of Architecture
– sequence: 2
  givenname: Nianxiong
  surname: Liu
  fullname: Liu, Nianxiong
  organization: School of Architecture
– sequence: 3
  givenname: Beini
  surname: Ma
  fullname: Ma, Beini
  organization: School of Architecture
– sequence: 4
  givenname: Shurui
  surname: Yan
  fullname: Yan, Shurui
  organization: School of Architecture
BookMark eNp9kM9OwzAMxiM0JMbYA3DLC3TEzdKm3KaJf9IkLuNcua27ZXQpSlLQ7jw4mYY4gMTJ1mf_PtnfJRvZ3hJj1yBmAHl-k8qi0ELLVAJopXRxxsZHLdGigNFPr-UFm3q_E0KAnkstYcw-11vi1LZUB8_7lvvgiAIn-25cb_dkA28Jw-Aoji13PTbcDdYau7nlC8vRYnfwxvPBR4nXrv9ofD-4mhremmDJex4c1q_keIMBI9DwPdZbY4l3hO7odMXOW-w8Tb_rhL3c362Xj8nq-eFpuVgltVQiJESQVdk8B50XDRWgMqoyLetKzkHIRpFUmCvVQJqJFBBzRKWrAlLK47YkOWFw8o1neu-oLd-c2aM7lCDKY5LlnyQjk_9iahMwmN7Gt0z3Lzk7kR43VO5iKDEr_w_wBYI_iF0
CitedBy_id crossref_primary_10_3390_urbansci9020034
crossref_primary_10_1007_s43762_024_00158_6
crossref_primary_10_1109_JSTARS_2025_3544642
crossref_primary_10_3390_ijerph22010071
crossref_primary_10_1016_j_landurbplan_2023_104969
crossref_primary_10_3390_buildings14030835
crossref_primary_10_1007_s43762_024_00141_1
crossref_primary_10_1016_j_ufug_2025_128684
crossref_primary_10_1080_23748834_2024_2320477
crossref_primary_10_1016_j_jtrangeo_2025_104179
crossref_primary_10_1016_j_foar_2024_08_008
crossref_primary_10_1016_j_foar_2024_10_006
crossref_primary_10_1186_s12889_024_19605_4
crossref_primary_10_3390_urbansci8020065
Cites_doi 10.1016/j.ypmed.2012.04.018
10.1016/j.envint.2019.105016
10.1214/aos/1013203451
10.1016/j.amepre.2004.03.006
10.1061/(ASCE)UP.1943-5444.0000718
10.1016/j.compenvurbsys.2020.101518
10.1016/j.apgeog.2016.09.024
10.1016/j.ufug.2022.127480
10.1016/S1469-0292(01)00038-3
10.1177/0265813515624688
10.1016/j.scs.2022.103724
10.1016/j.ufug.2018.08.008
10.1249/JES.0000000000000035
10.1016/j.ufug.2020.126947
10.1016/j.ufug.2012.11.001
10.1016/j.compenvurbsys.2021.101650
10.4278/0890-1171-18.3.239
10.1007/s00267-013-0066-0
10.1016/j.scs.2022.104336
10.1016/j.landurbplan.2016.08.005
10.1016/j.compenvurbsys.2017.09.012
10.1016/j.ypmed.2014.06.001
10.1016/j.landurbplan.2018.08.029
10.1016/j.socscimed.2018.05.022
10.1007/s00125-019-05050-1
10.1123/jpah.2013-0126
10.3390/ijerph18126268
10.3390/buildings12081167
10.1016/j.healthplace.2020.102428
10.1016/j.landurbplan.2016.04.001
10.1145/1964897.1964918
10.1080/13574800802451155
10.1371/journal.pone.0260570
10.1001/jamanetworkopen.2018.2421
10.1093/eurheartj/ehab580
10.1068/b3406
10.1016/j.healthplace.2009.03.002
10.3390/ijerph17072276
10.1016/j.scs.2019.101605
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID AAYXX
CITATION
DOI 10.1177/23998083231185589
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Architecture
Engineering
EISSN 2399-8091
EndPage 545
ExternalDocumentID 10_1177_23998083231185589
10.1177_23998083231185589
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52130803
– fundername: National Natural Science Foundation of China
  grantid: 52078262
GroupedDBID 0R~
54M
AADIR
AAGLT
AAQXI
AARIX
AATAA
ABCCA
ABCJG
ABFXH
ABIDT
ABPNF
ABQPY
ABQXT
ABRHV
ABUJY
ACCVJ
ACDXX
ACFUR
ACFZE
ACGFS
ACJER
ACOXC
ACSIQ
ACUIR
ADEBD
ADNON
ADRRZ
ADTOS
AEDXQ
AESZF
AEWDL
AEWHI
AFKRG
AFMOU
AFQAA
AFUIA
AGDVU
AGKLV
AGNHF
AGNWV
AHDMH
AHHCN
AHWHD
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AUTPY
AYPQM
BDZRT
BPACV
DV7
DV8
EBS
EJD
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
J8X
O9-
ROL
SAUOL
SCNPE
SFC
SSDHQ
ZPLXX
ZPPRI
AAYXX
ACCVC
AJGYC
AJVBE
AMNSR
CITATION
ID FETCH-LOGICAL-c350t-ee16b6471879de9156eb683cb34103d5e35a755d126021aa7aa58b912e7e913e3
ISSN 2399-8083
IngestDate Thu Apr 24 23:12:01 EDT 2025
Sun Jul 06 05:06:07 EDT 2025
Tue Jun 17 22:28:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords running-friendly street
machine learning
road running intensity
random forest regression
road running
crowdsourced data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-ee16b6471879de9156eb683cb34103d5e35a755d126021aa7aa58b912e7e913e3
ORCID 0000-0002-3677-1363
PageCount 17
ParticipantIDs crossref_primary_10_1177_23998083231185589
crossref_citationtrail_10_1177_23998083231185589
sage_journals_10_1177_23998083231185589
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Environment and planning. B, Urban analytics and city science
PublicationYear 2024
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Coutts 2008; 35
Vich, Marquet, Miralles-Guasch 2019; 40
Hoseinzadeh, Liu, Han 2020; 83
Kwapisz, Weiss, Moore 2011; 12
Li, Peng, Wu 2022; 12
Su, Tan, Liu 2014; 66
Huang, Tian, Yuan 2023; 89
Liu, Siu, Gong 2016; 152
Chen, Zhang, Long 2021; 16
Nayor, Chernofsky, Spartano 2021; 42
Birenboim, Helbich, Kwan 2021; 88
Tan, Chang, Nghiem 2021; 57
Xu, Zhang, Long 2019; 26
Zhou, Long 2017; 2017
Bodin, Hartig 2003; 4
Lu, Sarkar, Xiao 2018; 208
Nagata, Nakaya, Hanibuchi 2020; 66
Owen, Humpel, Leslie 2004; 27
Huang, Jiang, Yuan 2022; 68
Jiang, Han, Liu 2022; 79
Majumdar, Sahu, Patil 2021; 147
Ying, Ning, Xin 2015; 12
Chen, Long 2021; 2021
Ewing, Handy 2009; 14
Karusisi, Bean, Oppert 2012; 55
Lee, Kwan 2018; 67
Lu 2019; 191
Pasanen, White, Wheeler 2019; 131
Fang, Han, Cheng 2018; 1
Humpel, Owen, Leslie 2004; 18
Tang, Long 2017; 33
Zhang, Chen, Sun 2013; 12
Yerramalla, Fayosse, Dugravot 2020; 63
2018
Pedregosa, Varoquaux, Gramfort 2011; 12
Friedman 2001; 29
Harvey, Aultman-Hall, Troy 2017; 44
Janssen, Walravens, Thibaut 2020; 17
Schuurman, Rosenkrantz, Lear 2021; 18
Zhou, He, Cai 2019; 50
Walden-Schreiner, Leung 2013; 52
Korpilo, Virtanen, Lehvävirta 2017; 157
Yin, Wang 2016; 76
Hug, Hartig, Hansmann 2009; 15
Jankowska, Schipperijn, Kerr 2015; 43
bibr21-23998083231185589
Chen J (bibr3-23998083231185589) 2021; 2021
bibr34-23998083231185589
bibr9-23998083231185589
bibr31-23998083231185589
bibr11-23998083231185589
bibr19-23998083231185589
Tang J (bibr37-23998083231185589) 2017; 33
bibr16-23998083231185589
bibr6-23998083231185589
bibr7-23998083231185589
bibr4-23998083231185589
Pedregosa F (bibr33-23998083231185589) 2011; 12
bibr1-23998083231185589
bibr27-23998083231185589
Xu W (bibr40-23998083231185589) 2019; 26
bibr14-23998083231185589
bibr41-23998083231185589
bibr24-23998083231185589
bibr17-23998083231185589
bibr44-23998083231185589
Zhou Y (bibr46-23998083231185589) 2017; 2017
bibr2-23998083231185589
bibr18-23998083231185589
bibr28-23998083231185589
bibr5-23998083231185589
bibr38-23998083231185589
bibr15-23998083231185589
bibr25-23998083231185589
bibr8-23998083231185589
bibr35-23998083231185589
bibr43-23998083231185589
bibr10-23998083231185589
bibr23-23998083231185589
bibr20-23998083231185589
bibr30-23998083231185589
bibr13-23998083231185589
bibr36-23998083231185589
bibr26-23998083231185589
bibr32-23998083231185589
bibr29-23998083231185589
bibr45-23998083231185589
bibr39-23998083231185589
bibr42-23998083231185589
bibr22-23998083231185589
bibr12-23998083231185589
References_xml – volume: 4
  start-page: 141
  issue: 2
  year: 2003
  end-page: 153
  article-title: Does the outdoor environment matter for psychological restoration gained through running?
  publication-title: Psychology of Sport and Exercise
– volume: 76
  start-page: 147
  year: 2016
  end-page: 153
  article-title: Measuring visual enclosure for street walkability: using machine learning algorithms and google street view imagery
  publication-title: Applied Geography
– volume: 35
  start-page: 552
  issue: 3
  year: 2008
  end-page: 563
  article-title: Greenway accessibility and physical-activity behavior
  publication-title: Environment and Planning B: Planning and Design
– volume: 55
  start-page: 50
  issue: 1
  year: 2012
  end-page: 55
  article-title: Multiple dimensions of residential environments, neighborhood experiences, and jogging behavior in the RECORD study
  publication-title: Preventive Medicine
– volume: 67
  start-page: 124
  year: 2018
  end-page: 131
  article-title: Physical activity classification in free-living conditions using smartphone accelerometer data and exploration of predicted results
  publication-title: Computers, Environment and Urban Systems
– year: 2018
  article-title: Standard for urban residential area planning and design
– volume: 42
  start-page: 4565
  issue: 44
  year: 2021
  end-page: 4575
  article-title: Physical activity and fitness in the community: the Framingham heart study
  publication-title: European Heart Journal
– volume: 12
  start-page: 1167
  issue: 8
  year: 2022
  article-title: Street view imagery (SVI) in the built environment: a theoretical and systematic review
  publication-title: Buildings
– volume: 26
  start-page: 55
  issue: 10
  year: 2019
  end-page: 63
  article-title: A preliminary study on housing choice behavior in urban residential space based on mobile phone data and multi-source data: taking communities within fifth ring road of Beijing as an example
  publication-title: Urban Development Studies
– volume: 2021
  start-page: 44
  issue: 01
  year: 2021
  end-page: 50
  article-title: Element identification, measurement, impact evaluation and spatial intervention of disordered urban public space
  publication-title: Time+Architrcture
– volume: 68
  start-page: 127480
  year: 2022
  article-title: Analyzing the effects of nature exposure on perceived satisfaction with running routes: an activity path-based measure approach
  publication-title: Urban Forestry and Urban Greening
– volume: 15
  start-page: 971
  issue: 4
  year: 2009
  end-page: 980
  article-title: Restorative qualities of indoor and outdoor exercise settings as predictors of exercise frequency
  publication-title: Health and Place
– volume: 12
  start-page: 44
  issue: 1
  year: 2013
  end-page: 52
  article-title: Landscape perception and recreation needs in urban green space in Fuyang, Hangzhou, China
  publication-title: Urban Forestry and Urban Greening
– volume: 1
  start-page: e182421
  issue: 5
  year: 2018
  article-title: Association of levels of physical activity with risk of parkinson disease
  publication-title: JAMA Network Open
– volume: 208
  start-page: 41
  year: 2018
  end-page: 49
  article-title: The effect of street-level greenery on walking behavior: evidence from Hong Kong
  publication-title: Social Science and Medicine
– volume: 88
  start-page: 101650
  year: 2021
  article-title: Advances in portable sensing for urban environments: understanding cities from a mobility perspective
  publication-title: Computers, Environment and Urban Systems
– volume: 157
  start-page: 608
  year: 2017
  end-page: 617
  article-title: Smartphone GPS tracking—inexpensive and efficient data collection on recreational movement
  publication-title: Landscape and Urban Planning
– volume: 191
  start-page: 103435
  year: 2019
  article-title: Using google street view to investigate the association between street greenery and physical activity
  publication-title: Landscape and Urban Planning
– volume: 14
  start-page: 65
  issue: 1
  year: 2009
  end-page: 84
  article-title: Measuring the unmeasurable: urban design qualities related to walkability
  publication-title: Journal of Urban Design
– volume: 12
  start-page: 569
  issue: 4
  year: 2015
  end-page: 578
  article-title: Relationship between built environment, physical activity, adiposity, and health in adults aged 46-80 in Shanghai, China
  publication-title: Journal of Physical Activity and Health
– volume: 66
  start-page: 60
  year: 2014
  end-page: 64
  article-title: Association between perceived urban built environment attributes and leisure-time physical activity among adults in Hangzhou, China
  publication-title: Preventive Medicine
– volume: 18
  start-page: 239
  issue: 3
  year: 2004
  end-page: 242
  article-title: Associations of location and perceived environmental attributes with walking in neighborhoods
  publication-title: American Journal of Health Promotion
– volume: 43
  start-page: 48
  issue: 1
  year: 2015
  end-page: 56
  article-title: A framework for using GPS data in physical activity and sedentary behavior studies
  publication-title: Exercise and Sport Sciences Reviews
– volume: 33
  start-page: 68
  issue: 02
  year: 2017
  end-page: 73
  article-title: Metropolitan street space quality evaluation: second and third ring of Beijing, inner ring of Shanghai
  publication-title: Planners
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  end-page: 1232
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Annals of Statistics
– volume: 79
  start-page: 103724
  year: 2022
  article-title: Street vitality and built environment features: a data-informed approach from fourteen Chinese cities
  publication-title: Sustainable Cities and Society
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  end-page: 82
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explorations Newsletter
– volume: 57
  start-page: 126947
  year: 2021
  article-title: The right mix: Residential urban green-blue space combinations are correlated with physical exercise in a tropical city-state
  publication-title: Urban Forestry and Urban Greening
– volume: 66
  start-page: 102428
  year: 2020
  article-title: Objective scoring of streetscape walkability related to leisure walking: statistical modeling approach with semantic segmentation of google street view images
  publication-title: Health and Place
– volume: 152
  start-page: 49
  year: 2016
  end-page: 58
  article-title: Where do networks really work? The effects of the Shenzhen greenway network on supporting physical activities
  publication-title: Landscape and Urban Planning
– volume: 131
  start-page: 105016
  year: 2019
  article-title: Neighbourhood blue space, health and wellbeing: the mediating role of different types of physical activity
  publication-title: Environment International
– volume: 89
  start-page: 104336
  year: 2023
  article-title: Sustainable design of running friendly streets: Environmental exposures predict runnability by volunteered geographic information and multilevel model approaches
  publication-title: Sustainable Cities and Society
– volume: 50
  start-page: 101605
  year: 2019
  article-title: Social inequalities in neighborhood visual walkability: using street view imagery and deep learning technologies to facilitate healthy city planning
  publication-title: Sustainable Cities and Society
– volume: 17
  start-page: 2276
  issue: 7
  year: 2020
  article-title: Understanding different types of recreational runners and how they use running-related technology
  publication-title: International Journal of Environmental Research and Public Health
– volume: 2017
  start-page: 88
  issue: 01
  year: 2017
  end-page: 93
  article-title: Large-scale evaluation for street walkability: methodological improvements and the empirical application in Chengdu
  publication-title: Shanghai Urban Planning Review
– volume: 27
  start-page: 67
  issue: 1
  year: 2004
  end-page: 76
  article-title: Understanding environmental influences on walking: review and research agenda
  publication-title: American Journal of Preventive Medicine
– volume: 16
  start-page: 0260570
  issue: 12
  year: 2021
  article-title: Association between leisure-time physical activity and the built environment in China: empirical evidence from an accelerometer and GPS-based fitness app
  publication-title: Plos One
– volume: 40
  start-page: 275
  year: 2019
  end-page: 285
  article-title: Green exposure of walking routes and residential areas using smartphone tracking data and GIS in a Mediterranean city
  publication-title: Urban Forestry and Urban Greening
– volume: 147
  start-page: 04021032
  issue: 3
  year: 2021
  article-title: Pedestrian satisfaction-based methodology for prioritization of critical sidewalk and crosswalk attributes influencing walkability
  publication-title: Journal of Urban Planning and Development
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit-learn: machine learning in python
  publication-title: Journal of Machine Learning Research
– volume: 18
  start-page: 6268
  issue: 12
  year: 2021
  article-title: Environmental preferences and concerns of recreational road runners
  publication-title: International Journal of Environmental Research and Public Health
– volume: 83
  start-page: 101518
  year: 2020
  article-title: Quality of location-based crowdsourced speed data on surface streets: A case study of waze and bluetooth speed data in Sevierville, TN
  publication-title: Computers, Environment and Urban Systems
– volume: 63
  start-page: 537
  issue: 3
  year: 2020
  end-page: 548
  article-title: Association of moderate and vigorous physical activity with incidence of type 2 diabetes and subsequent mortality: 27 year follow-up of the Whitehall II study
  publication-title: Diabetologia
– volume: 44
  start-page: 668
  issue: 4
  year: 2017
  end-page: 692
  article-title: Streetscape skeleton measurement and classification
  publication-title: Environment and Planning B: Urban Analytics and City Science
– volume: 52
  start-page: 163
  issue: 1
  year: 2013
  end-page: 178
  article-title: Spatially characterizing visitor use and its association with informal trails in yosemite valley Meadows
  publication-title: Environmental Management
– ident: bibr19-23998083231185589
  doi: 10.1016/j.ypmed.2012.04.018
– ident: bibr32-23998083231185589
  doi: 10.1016/j.envint.2019.105016
– ident: bibr9-23998083231185589
  doi: 10.1214/aos/1013203451
– ident: bibr31-23998083231185589
  doi: 10.1016/j.amepre.2004.03.006
– ident: bibr27-23998083231185589
  doi: 10.1061/(ASCE)UP.1943-5444.0000718
– volume: 2021
  start-page: 44
  issue: 01
  year: 2021
  ident: bibr3-23998083231185589
  publication-title: Time+Architrcture
– ident: bibr11-23998083231185589
  doi: 10.1016/j.compenvurbsys.2020.101518
– ident: bibr42-23998083231185589
  doi: 10.1016/j.apgeog.2016.09.024
– ident: bibr12-23998083231185589
  doi: 10.1016/j.ufug.2022.127480
– volume: 33
  start-page: 68
  issue: 02
  year: 2017
  ident: bibr37-23998083231185589
  publication-title: Planners
– volume: 26
  start-page: 55
  issue: 10
  year: 2019
  ident: bibr40-23998083231185589
  publication-title: Urban Development Studies
– ident: bibr2-23998083231185589
  doi: 10.1016/S1469-0292(01)00038-3
– ident: bibr10-23998083231185589
  doi: 10.1177/0265813515624688
– ident: bibr18-23998083231185589
  doi: 10.1016/j.scs.2022.103724
– ident: bibr38-23998083231185589
  doi: 10.1016/j.ufug.2018.08.008
– ident: bibr16-23998083231185589
  doi: 10.1249/JES.0000000000000035
– ident: bibr28-23998083231185589
– volume: 12
  start-page: 2825
  year: 2011
  ident: bibr33-23998083231185589
  publication-title: Journal of Machine Learning Research
– ident: bibr36-23998083231185589
  doi: 10.1016/j.ufug.2020.126947
– ident: bibr44-23998083231185589
  doi: 10.1016/j.ufug.2012.11.001
– ident: bibr1-23998083231185589
  doi: 10.1016/j.compenvurbsys.2021.101650
– ident: bibr15-23998083231185589
  doi: 10.4278/0890-1171-18.3.239
– ident: bibr39-23998083231185589
  doi: 10.1007/s00267-013-0066-0
– ident: bibr13-23998083231185589
  doi: 10.1016/j.scs.2022.104336
– ident: bibr20-23998083231185589
  doi: 10.1016/j.landurbplan.2016.08.005
– ident: bibr22-23998083231185589
  doi: 10.1016/j.compenvurbsys.2017.09.012
– ident: bibr35-23998083231185589
  doi: 10.1016/j.ypmed.2014.06.001
– volume: 2017
  start-page: 88
  issue: 01
  year: 2017
  ident: bibr46-23998083231185589
  publication-title: Shanghai Urban Planning Review
– ident: bibr25-23998083231185589
  doi: 10.1016/j.landurbplan.2018.08.029
– ident: bibr26-23998083231185589
  doi: 10.1016/j.socscimed.2018.05.022
– ident: bibr41-23998083231185589
  doi: 10.1007/s00125-019-05050-1
– ident: bibr43-23998083231185589
  doi: 10.1123/jpah.2013-0126
– ident: bibr5-23998083231185589
– ident: bibr34-23998083231185589
  doi: 10.3390/ijerph18126268
– ident: bibr23-23998083231185589
  doi: 10.3390/buildings12081167
– ident: bibr29-23998083231185589
  doi: 10.1016/j.healthplace.2020.102428
– ident: bibr24-23998083231185589
  doi: 10.1016/j.landurbplan.2016.04.001
– ident: bibr21-23998083231185589
  doi: 10.1145/1964897.1964918
– ident: bibr7-23998083231185589
  doi: 10.1080/13574800802451155
– ident: bibr4-23998083231185589
  doi: 10.1371/journal.pone.0260570
– ident: bibr8-23998083231185589
  doi: 10.1001/jamanetworkopen.2018.2421
– ident: bibr30-23998083231185589
  doi: 10.1093/eurheartj/ehab580
– ident: bibr6-23998083231185589
  doi: 10.1068/b3406
– ident: bibr14-23998083231185589
  doi: 10.1016/j.healthplace.2009.03.002
– ident: bibr17-23998083231185589
  doi: 10.3390/ijerph17072276
– ident: bibr45-23998083231185589
  doi: 10.1016/j.scs.2019.101605
SSID ssj0001843831
Score 2.401019
Snippet Urban streets provide environment for road running. The study proposes a non-parametric approach that uses machine learning models to predict road running...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
StartPage 529
Title The effects of street environment features on road running: An analysis using crowdsourced fitness tracker data and machine learning
URI https://journals.sagepub.com/doi/full/10.1177/23998083231185589
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9n-6JCqVWxrUoeBMFlj9uP7Idvp1SKcKLQg_p0JNmsXah7st2F6rP_pf-Mk2R2L8dWqb4cR5hNuJ3fTSYzk98Q8kLmWVyCq-rLknE_Lljm8zAVflKAmRSJZqTSl5MXH5LTZfz-nJ1PJr-cqqWuFVP548Z7Jf-jVRgDvepbsv-g2WFSGIDvoF_4BA3D56117BRkXNkMs3N3zSuVIe40OYFmzQuv6UyPIowH8p6SpLOXb-FMXthwfuGVVWvMYNtwXXrh6VpSk2r4auovVd9w4stWcN9Z21AQYE-kqfdGK3PZCI6rDvTQUp8DcCMeh7Evuu8cl9BlQ1Vn4cvra3irw_jCNpBWVV0NZgwjuxdd01VubCOM-3LoraTajeFLfSUXdlfbBGeq3DHb_au37khnWzmHbGuqGUZa7K7PLKnleEMxKW09s14MnGHwb1iWb3bPoaYRpVcj2TtkN4QzDBjh3fnnj58WmxBgpnliA9P-EH8N5t01Jdhoni3PySk7NJ7Q2T7ZwyMMnVs8PiATVR-Q-3MnI3VA7jk8lw_JTwAqRaDSdUktUKkDVNoDla5rqoFKEaiv6bymPUypgSl1YUoRphRhSjVM4YGCIkxpD9NHZPnu5OztqY_tP3wZsVnrKxUkItHOU5oXKg9YokSSRVKA4zWLCqYixlPGwKgk4KhynnLOMpEHoUpBOlLRY7JTr2v1hNAwVkwFZZBlpYwZTAH7VsGYlHEkZJqJQzLrX-1KIje-btFyuQqQDn-kjUPyanjkmyWG-ZvwS62vFdqOqz9LHt1a8pjc3fxlnpKdtunUM3CQW_EcgfYbU-K3cA
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-NQEB7c9sFV8LaKd-dBEIRo0-QkJ74VUeqloqCg7EM5txRRU6kpgs_-cOckp7Vedln2OXMO5zKZmWS--QZgUyU8TClU9VTKhBdqxj1Rj6UXaTKTMrKMVLY4uXUWNa_C42t27VCVthbGneDTjoVV0YoKYz18u-N419ZicoobKC4hV8N48gOq3LJiVqDauDm_aL3_YeGWhtMvussliWcHubTmt_N8cEwjqK7C0RxOw-_BEkt8yd1OP6fVvXxib_y_PczAlIs_sVEqzCyMmWwOJhsj6YQ5mBghKfwFr6RJ6GAf2E3xqchj40iFHKamoAelxxn2ukJjr190QtrDRobC0Z6ghdh3kHb_rMuUgcb0NremFvOesPAOtHhVGqDxocB4GnRNLTrzcHV4cLnf9FzvBk8FrJZ7xviRjKznixNtEvpKNDLigZLkNWuBZiZgImaMNCKiKEOIWAjGZeLXTUzSgQkWoJJ1M7MIWA8NM37qc56qkNEUZHQ0Y0qFgVQxl0tQG1xcWzlic9tf477tOy7zL-e9BNvDIY8lq8ffhLfsRbYH1_pnyeV_ltyA8eZl67R9enR2sgI_6xQplVDwVajkvb5Zo0gnl-tOpd8AdorwpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5aG0oSaFOnIe5zDoFAQI5laaVVb6atcR82LsTgnMS-ZEoS2dgygZzzwzsrrRunbUroWbPLanc0M9r55huAQ5XwMKNQ1VMZE16oGfdEJ5ZepMlMysgyUtni5MEw6o_DLxM2cRduthbG7eCyZWFVtKLSWNuve66zE5djPLH1mJxiB4pNyN0wnjyGOjkqGyDVu2ej74PbWxZuqTj9ssNcknh2kEtt_nWeO85pA9lVOpveM0jXy6wwJuetVUErvP6NwfH_32MXnro4FLuV4jyHRyZvwE53I63QgO0NssI9uCGNQgf_wFmGyzKfjRuVcpiZkiaUHue4mAmNi1XZEek9dnMUjv4ELdR-irQDV7pKHWjMfhTW5GKxEBbmgRa3SgM0XpZYT4OuucX0BYx7n04_9D3Xw8FTAWsXnjF-JCPrAeNEm4T-Fo2MeKAkec92oJkJmIgZI82IKNoQIhaCcZn4HROTdGCCfajls9wcAHZCw4yf-ZxnKmQ0BRkfzZhSYSBVzGUT2uvDS5UjOLd9Ni5S33Ga_7HfTTj-NWResXv8S_jIHma6Ptr7JV8-WPIdPBl97KXfPg-_voKtDgVMFSL8NdSKxcq8oYCnkG-dVv8EaeXzGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+street+environment+features+on+road+running%3A+An+analysis+using+crowdsourced+fitness+tracker+data+and+machine+learning&rft.jtitle=Environment+and+planning.+B%2C+Urban+analytics+and+city+science&rft.au=Zhang%2C+Shuyang&rft.au=Liu%2C+Nianxiong&rft.au=Ma%2C+Beini&rft.au=Yan%2C+Shurui&rft.date=2024-02-01&rft.pub=SAGE+Publications&rft.issn=2399-8083&rft.eissn=2399-8091&rft.volume=51&rft.issue=2&rft.spage=529&rft.epage=545&rft_id=info:doi/10.1177%2F23998083231185589&rft.externalDocID=10.1177_23998083231185589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-8083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-8083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-8083&client=summon