Correlating light-induced deep defects and phase segregation in mixed-halide perovskites

Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here, we combine Fourier-Transform photocurrent spectroscopy with photoluminescence and current density-voltage ( J - V ) measurements to study the...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 36; pp. 18928 - 18938
Main Authors Ridzo ová, Katarína, Grill, Roman, Peter Amalathas, Amalraj, Dzur ák, Branislav, Neykova, Neda, Horák, Lukáš, Fiala, Peter, Chin, Xin Yu, Wolff, Christian M, Jeangros, Quentin, Holovský, Jakub
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 20.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here, we combine Fourier-Transform photocurrent spectroscopy with photoluminescence and current density-voltage ( J - V ) measurements to study the effect of light soaking on such materials and devices. At first, we observe a gradual formation of an I-rich phase, which correlates with an increase in deep defect level concentration. We attribute these deep defects to charged iodide interstitials and associate phase segregation with iodide migration through interstitial positions. Upon further light soaking, the second less I-rich phase forms, while the deep level concentration simultaneously decreases. An empirical model describing the phase segregation mechanism is proposed to rationalize these observations. Further, we point to an important role of grain size in determining the degree and terminal phase of segregation. The correlation between rate of light-induced phase segregation and deep defect formation observed in mixed-halide perovskites. The importance of grain size in determining the rate and terminal phase of segregation was highlighted.
AbstractList Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here, we combine Fourier-Transform photocurrent spectroscopy with photoluminescence and current density–voltage (J–V) measurements to study the effect of light soaking on such materials and devices. At first, we observe a gradual formation of an I-rich phase, which correlates with an increase in deep defect level concentration. We attribute these deep defects to charged iodide interstitials and associate phase segregation with iodide migration through interstitial positions. Upon further light soaking, the second less I-rich phase forms, while the deep level concentration simultaneously decreases. An empirical model describing the phase segregation mechanism is proposed to rationalize these observations. Further, we point to an important role of grain size in determining the degree and terminal phase of segregation.
Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here, we combine Fourier-Transform photocurrent spectroscopy with photoluminescence and current density–voltage ( J – V ) measurements to study the effect of light soaking on such materials and devices. At first, we observe a gradual formation of an I-rich phase, which correlates with an increase in deep defect level concentration. We attribute these deep defects to charged iodide interstitials and associate phase segregation with iodide migration through interstitial positions. Upon further light soaking, the second less I-rich phase forms, while the deep level concentration simultaneously decreases. An empirical model describing the phase segregation mechanism is proposed to rationalize these observations. Further, we point to an important role of grain size in determining the degree and terminal phase of segregation.
Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here, we combine Fourier-Transform photocurrent spectroscopy with photoluminescence and current density-voltage ( J - V ) measurements to study the effect of light soaking on such materials and devices. At first, we observe a gradual formation of an I-rich phase, which correlates with an increase in deep defect level concentration. We attribute these deep defects to charged iodide interstitials and associate phase segregation with iodide migration through interstitial positions. Upon further light soaking, the second less I-rich phase forms, while the deep level concentration simultaneously decreases. An empirical model describing the phase segregation mechanism is proposed to rationalize these observations. Further, we point to an important role of grain size in determining the degree and terminal phase of segregation. The correlation between rate of light-induced phase segregation and deep defect formation observed in mixed-halide perovskites. The importance of grain size in determining the rate and terminal phase of segregation was highlighted.
Author Chin, Xin Yu
Dzur ák, Branislav
Horák, Lukáš
Holovský, Jakub
Neykova, Neda
Grill, Roman
Peter Amalathas, Amalraj
Ridzo ová, Katarína
Fiala, Peter
Wolff, Christian M
Jeangros, Quentin
AuthorAffiliation Centre for Advanced Photovoltaics
Charles University
Faculty of Mathematics and Physics
Faculty of Science
Faculty of Electrical Engineering
Czech Technical University in Prague
Department of Physics
Czech Academy of Sciences
Institute of Electrical and Microengineering (IEM)
University of Jaffna
Photovoltaic and Thin-Film Electronics Laboratory
Institute of Physics
École Polytechnique Fédérale de Lausanne (EPFL)
AuthorAffiliation_xml – name: Faculty of Electrical Engineering
– name: Faculty of Mathematics and Physics
– name: Czech Technical University in Prague
– name: Department of Physics
– name: Faculty of Science
– name: Photovoltaic and Thin-Film Electronics Laboratory
– name: Centre for Advanced Photovoltaics
– name: University of Jaffna
– name: Institute of Electrical and Microengineering (IEM)
– name: École Polytechnique Fédérale de Lausanne (EPFL)
– name: Czech Academy of Sciences
– name: Institute of Physics
– name: Charles University
Author_xml – sequence: 1
  givenname: Katarína
  surname: Ridzo ová
  fullname: Ridzo ová, Katarína
– sequence: 2
  givenname: Roman
  surname: Grill
  fullname: Grill, Roman
– sequence: 3
  givenname: Amalraj
  surname: Peter Amalathas
  fullname: Peter Amalathas, Amalraj
– sequence: 4
  givenname: Branislav
  surname: Dzur ák
  fullname: Dzur ák, Branislav
– sequence: 5
  givenname: Neda
  surname: Neykova
  fullname: Neykova, Neda
– sequence: 6
  givenname: Lukáš
  surname: Horák
  fullname: Horák, Lukáš
– sequence: 7
  givenname: Peter
  surname: Fiala
  fullname: Fiala, Peter
– sequence: 8
  givenname: Xin Yu
  surname: Chin
  fullname: Chin, Xin Yu
– sequence: 9
  givenname: Christian M
  surname: Wolff
  fullname: Wolff, Christian M
– sequence: 10
  givenname: Quentin
  surname: Jeangros
  fullname: Jeangros, Quentin
– sequence: 11
  givenname: Jakub
  surname: Holovský
  fullname: Holovský, Jakub
BookMark eNptkd9LwzAQx4NMcM69-C4UfBGhmjZL0zyO-hMGvkzwrWTJtcvs0pqkov-92SYThvdwdxyf73E_TtHAtAYQOk_wTYIJv1WpF5hQkssjNEwxxTGb8Gywz_P8BI2dW-FgOcYZ50P0VrTWQiO8NnXU6HrpY21UL0FFCqALrgLpXSSMirqlcBA5qC3UQdCaSJtorb9AxUvRaAVRB7b9dO_agztDx5VoHIx_4wi9PtzPi6d49vL4XExnsSQU-xiIyIkiDIsJYxOWM7GgpIKcSsUXPOMQnEirBc8zsSkmmGNG0lAnGWOSkhG62vXtbPvRg_PlWjsJTSMMtL0rU5aSJOGcbtDLA3TV9taE6QKVZDTFCSWBwjtK2tY5C1Uptd-u663QTZngcnPt8i6dT7fXLoLk-kDSWb0W9vt_-GIHWyf33N_ryA-huorm
CitedBy_id crossref_primary_10_1002_cssc_202301205
crossref_primary_10_1021_acs_chemmater_4c01402
crossref_primary_10_1021_acs_jpclett_4c03509
crossref_primary_10_1002_adma_202305567
crossref_primary_10_1039_D3QM00970J
crossref_primary_10_1021_acsenergylett_4c00488
crossref_primary_10_1039_D4TA07266A
crossref_primary_10_1002_solr_202400316
crossref_primary_10_1016_j_nucengdes_2024_113815
Cites_doi 10.1039/D0EE00788A
10.1039/C9EE02162K
10.1021/acs.nanolett.8b00505
10.1002/adma.201902374
10.1039/C8EE00124C
10.1038/nnano.2016.110
10.1021/acsenergylett.0c02270
10.1021/acsaem.1c00707
10.1021/acsenergylett.9b01726
10.1039/D0TA10581C
10.1016/j.joule.2020.08.016
10.1016/j.trechm.2020.01.010
10.1021/acsenergylett.8b01369
10.1002/adma.201901183
10.1021/acs.jpclett.6b00226
10.1021/acsenergylett.8b02002
10.1039/C4SC03141E
10.1038/srep22481
10.1021/acsenergylett.6b00196
10.1021/acsenergylett.7b00282
10.1002/adma.201502969
10.1039/C6TA03599J
10.1021/acsami.7b06816
10.1016/j.solmat.2015.12.025
10.1126/science.1243982
10.1021/acs.nanolett.6b04453
10.1021/jz4020162
10.1021/jz500279b
10.1021/acs.chemmater.7b01609
10.1039/C6EE03014A
10.1002/anie.202005853
10.1021/acsenergylett.9b02080
10.1002/smtd.201900273
10.1002/anie.201701724
10.1126/science.aad5845
10.1038/s41467-018-07882-8
10.1063/1.1446207
10.1021/acsenergylett.9b01915
10.1002/aenm.201903488
10.1002/aenm.202002934
10.1021/acs.jpclett.0c01296
10.1038/s41467-017-01586-1
10.1039/C9EE00476A
10.1038/s41586-020-2184-1
10.1021/acsenergylett.1c00213
10.1021/acsenergylett.8b02207
10.1002/adma.201805047
10.1039/C8CP00280K
10.1021/acs.jpclett.6b02854
10.1007/s40820-020-00533-y
10.1021/acsenergylett.8b00764
10.1021/acsenergylett.7b00357
10.1021/ja905021c
10.1038/s41560-017-0060-5
10.1039/C9TA08848B
10.1038/s41566-019-0435-1
10.1039/C6EE01504B
10.1002/aenm.202000310
10.1126/science.aap8671
10.1021/acsenergylett.8b01562
10.1039/C5TA03331D
10.1021/acsenergylett.9b00840
10.1126/science.aaz5074
10.1063/5.0012384
10.1021/acsenergylett.7b00525
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d2ta03538c
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2050-7496
EndPage 18938
ExternalDocumentID 10_1039_D2TA03538C
d2ta03538c
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GNO
HZ~
H~N
J3I
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c350t-e3a83d370a4774787ab53fe85cd9b969eb96a2fb986a85cd10907329eb3677c53
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 09:58:36 EDT 2025
Mon Jun 30 12:06:34 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jul 01 01:13:30 EDT 2025
Fri Sep 23 04:21:16 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-e3a83d370a4774787ab53fe85cd9b969eb96a2fb986a85cd10907329eb3677c53
Notes https://doi.org/10.1039/d2ta03538c
Electronic supplementary information (ESI) available. See
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6490-5293
0000-0003-2885-975X
0000-0002-4615-8909
0000-0002-9252-1975
0000-0001-9628-9520
0000-0002-9992-4988
0000-0002-1835-9850
OpenAccessLink http://infoscience.epfl.ch/record/296667
PQID 2716520153
PQPubID 2047523
PageCount 11
ParticipantIDs proquest_miscellaneous_2723119955
crossref_citationtrail_10_1039_D2TA03538C
proquest_journals_2716520153
crossref_primary_10_1039_D2TA03538C
rsc_primary_d2ta03538c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Frolova (D2TA03538C/cit55/1) 2021; 11
Morawiec (D2TA03538C/cit70/1) 2016; 6
Holovský (D2TA03538C/cit45/1) 2022
Li (D2TA03538C/cit47/1) 2018; 9
Doherty (D2TA03538C/cit54/1) 2020; 580
Tan (D2TA03538C/cit63/1) 2020; 4
Vashishtha (D2TA03538C/cit11/1) 2017; 29
Knight (D2TA03538C/cit22/1) 2019; 4
Stranks (D2TA03538C/cit2/1) 2013; 342
Yoon (D2TA03538C/cit21/1) 2017; 2
Caprioglio (D2TA03538C/cit31/1) 2021; 6
Tian (D2TA03538C/cit56/1) 2022; 11
Mosconi (D2TA03538C/cit59/1) 2016; 9
Kim (D2TA03538C/cit60/1) 2021; 60
Steirer (D2TA03538C/cit4/1) 2016; 1
Holovský (D2TA03538C/cit23/1) 2019; 4
Wang (D2TA03538C/cit71/1) 2016; 147
Holovský (D2TA03538C/cit64/1) 2017; 8
Gualdrón-Reyes (D2TA03538C/cit67/1) 2019; 4
Wu (D2TA03538C/cit5/1) 2021; 13
Andaji-Garmaroudi (D2TA03538C/cit32/1) 2019; 31
Rehman (D2TA03538C/cit16/1) 2017; 10
Ruth (D2TA03538C/cit20/1) 2018; 3
Rehman (D2TA03538C/cit27/1) 2015; 27
Barker (D2TA03538C/cit19/1) 2017; 2
Senocrate (D2TA03538C/cit48/1) 2017; 56
De Wolf (D2TA03538C/cit3/1) 2014; 5
Brivio (D2TA03538C/cit17/1) 2016; 7
Braly (D2TA03538C/cit9/1) 2017; 2
Datta (D2TA03538C/cit25/1) 2021; 4
Park (D2TA03538C/cit40/1) 2019; 4
Chen (D2TA03538C/cit43/1) 2020; 128
McMeekin (D2TA03538C/cit34/1) 2016; 351
Tsai (D2TA03538C/cit33/1) 2018; 360
Liu (D2TA03538C/cit44/1) 2018; 20
Di Girolamo (D2TA03538C/cit35/1) 2020; 10
Snaith (D2TA03538C/cit1/1) 2013; 4
Gardner (D2TA03538C/cit65/1) 2009; 131
Brennan (D2TA03538C/cit7/1) 2020; 2
Meggiolaro (D2TA03538C/cit42/1) 2018; 11
Domanski (D2TA03538C/cit26/1) 2018; 3
Knight (D2TA03538C/cit8/1) 2020; 13
Motti (D2TA03538C/cit49/1) 2019; 13
Hoke (D2TA03538C/cit6/1) 2015; 6
Sun (D2TA03538C/cit41/1) 2015; 3
Tang (D2TA03538C/cit24/1) 2018; 18
Hu (D2TA03538C/cit14/1) 2015; 3
Shynkarenko (D2TA03538C/cit12/1) 2019; 4
Yu (D2TA03538C/cit57/1) 2019; 1
Li (D2TA03538C/cit52/1) 2017; 7
Thind (D2TA03538C/cit61/1) 2019; 31
Knight (D2TA03538C/cit28/1) 2020; 10
Yuan (D2TA03538C/cit30/1) 2016; 11
Walsh (D2TA03538C/cit46/1) 2018; 3
Hu (D2TA03538C/cit66/1) 2021; 6
Nie (D2TA03538C/cit58/1) 2016; 7
Yang (D2TA03538C/cit50/1) 2016; 4
García-Rodríguez (D2TA03538C/cit37/1) 2019; 7
Chen (D2TA03538C/cit51/1) 2019; 3
Mahesh (D2TA03538C/cit29/1) 2020; 13
Vanecek (D2TA03538C/cit69/1) 2002; 80
Bischak (D2TA03538C/cit18/1) 2017; 17
Zhang (D2TA03538C/cit68/1) 2019; 10
Ferdani (D2TA03538C/cit38/1) 2019; 12
Xu (D2TA03538C/cit15/1) 2020; 367
Guo (D2TA03538C/cit36/1) 2019; 4
Motti (D2TA03538C/cit39/1) 2019; 31
Belisle (D2TA03538C/cit13/1) 2018; 3
Kang (D2TA03538C/cit62/1) 2021; 9
Duong (D2TA03538C/cit10/1) 2017; 9
Funk (D2TA03538C/cit53/1) 2020; 11
References_xml – issn: 2022
  publication-title: Proceedings of the 8th World Conference on Photovoltaic Energy Conversion
  doi: Holovský Ridzo ová Amalathas Dzur ák Lucie Ji í ek Romanyuk
– volume: 13
  start-page: 2024
  year: 2020
  ident: D2TA03538C/cit8/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00788A
– volume: 13
  start-page: 258
  year: 2020
  ident: D2TA03538C/cit29/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02162K
– volume: 18
  start-page: 2172
  year: 2018
  ident: D2TA03538C/cit24/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00505
– volume: 31
  start-page: 1902374
  year: 2019
  ident: D2TA03538C/cit32/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902374
– volume: 11
  start-page: 702
  year: 2018
  ident: D2TA03538C/cit42/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00124C
– volume: 11
  start-page: 872
  year: 2016
  ident: D2TA03538C/cit30/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.110
– volume: 6
  start-page: 419
  year: 2021
  ident: D2TA03538C/cit31/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02270
– volume: 4
  start-page: 6650
  year: 2021
  ident: D2TA03538C/cit25/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c00707
– volume: 7
  start-page: 1
  year: 2017
  ident: D2TA03538C/cit52/1
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 2360
  year: 2019
  ident: D2TA03538C/cit36/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01726
– volume: 9
  start-page: 3441
  year: 2021
  ident: D2TA03538C/cit62/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10581C
– volume: 4
  start-page: 2426
  year: 2020
  ident: D2TA03538C/cit63/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.08.016
– volume: 2
  start-page: 282
  year: 2020
  ident: D2TA03538C/cit7/1
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2020.01.010
– volume: 3
  start-page: 2321
  year: 2018
  ident: D2TA03538C/cit20/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01369
– volume: 31
  start-page: 1
  year: 2019
  ident: D2TA03538C/cit39/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901183
– volume: 7
  start-page: 1083
  year: 2016
  ident: D2TA03538C/cit17/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00226
– volume: 4
  start-page: 75
  year: 2019
  ident: D2TA03538C/cit22/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02002
– volume: 6
  start-page: 613
  year: 2015
  ident: D2TA03538C/cit6/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC03141E
– volume: 6
  start-page: 1
  year: 2016
  ident: D2TA03538C/cit70/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep22481
– volume: 1
  start-page: 360
  year: 2016
  ident: D2TA03538C/cit4/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00196
– volume: 2
  start-page: 1416
  year: 2017
  ident: D2TA03538C/cit19/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00282
– volume: 27
  start-page: 7938
  year: 2015
  ident: D2TA03538C/cit27/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502969
– volume: 4
  start-page: 13105
  year: 2016
  ident: D2TA03538C/cit50/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03599J
– volume: 9
  start-page: 26859
  year: 2017
  ident: D2TA03538C/cit10/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06816
– volume: 147
  start-page: 255
  year: 2016
  ident: D2TA03538C/cit71/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.12.025
– volume: 342
  start-page: 1
  year: 2013
  ident: D2TA03538C/cit2/1
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 17
  start-page: 1028
  year: 2017
  ident: D2TA03538C/cit18/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04453
– volume: 4
  start-page: 3623
  year: 2013
  ident: D2TA03538C/cit1/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4020162
– volume: 5
  start-page: 1035
  year: 2014
  ident: D2TA03538C/cit3/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500279b
– volume: 29
  start-page: 5965
  year: 2017
  ident: D2TA03538C/cit11/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01609
– volume: 10
  start-page: 361
  year: 2017
  ident: D2TA03538C/cit16/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03014A
– volume: 3
  start-page: 6
  year: 2015
  ident: D2TA03538C/cit14/1
  publication-title: Adv. Sci.
– volume: 7
  start-page: 1
  year: 2016
  ident: D2TA03538C/cit58/1
  publication-title: Nat. Commun.
– volume: 60
  start-page: 820
  year: 2021
  ident: D2TA03538C/cit60/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005853
– volume: 4
  start-page: 3011
  year: 2019
  ident: D2TA03538C/cit23/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02080
– volume: 3
  start-page: 1900273
  year: 2019
  ident: D2TA03538C/cit51/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201900273
– volume: 56
  start-page: 7755
  year: 2017
  ident: D2TA03538C/cit48/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701724
– volume-title: Proceedings of the 8th World Conference on Photovoltaic Energy Conversion
  year: 2022
  ident: D2TA03538C/cit45/1
– volume: 351
  start-page: 151
  year: 2016
  ident: D2TA03538C/cit34/1
  publication-title: Science
  doi: 10.1126/science.aad5845
– volume: 10
  start-page: 1
  year: 2019
  ident: D2TA03538C/cit68/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 80
  start-page: 719
  year: 2002
  ident: D2TA03538C/cit69/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1446207
– volume: 4
  start-page: 2703
  year: 2019
  ident: D2TA03538C/cit12/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01915
– volume: 10
  start-page: 1
  year: 2020
  ident: D2TA03538C/cit28/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903488
– volume: 11
  start-page: 1
  year: 2021
  ident: D2TA03538C/cit55/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002934
– volume: 11
  start-page: 4945
  year: 2020
  ident: D2TA03538C/cit53/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01296
– volume: 9
  start-page: 8
  year: 2018
  ident: D2TA03538C/cit47/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01586-1
– volume: 12
  start-page: 2264
  year: 2019
  ident: D2TA03538C/cit38/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00476A
– volume: 580
  start-page: 360
  year: 2020
  ident: D2TA03538C/cit54/1
  publication-title: Nature
  doi: 10.1038/s41586-020-2184-1
– volume: 6
  start-page: 1649
  year: 2021
  ident: D2TA03538C/cit66/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00213
– volume: 4
  start-page: 54
  year: 2019
  ident: D2TA03538C/cit67/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02207
– volume: 31
  start-page: 1
  year: 2019
  ident: D2TA03538C/cit61/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805047
– volume: 1
  start-page: 30
  year: 2019
  ident: D2TA03538C/cit57/1
  publication-title: JPhys Energy
– volume: 20
  start-page: 6800
  year: 2018
  ident: D2TA03538C/cit44/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP00280K
– volume: 8
  start-page: 838
  year: 2017
  ident: D2TA03538C/cit64/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02854
– volume: 13
  start-page: 18
  year: 2021
  ident: D2TA03538C/cit5/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00533-y
– volume: 3
  start-page: 1983
  year: 2018
  ident: D2TA03538C/cit46/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00764
– volume: 2
  start-page: 1507
  year: 2017
  ident: D2TA03538C/cit21/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00357
– volume: 131
  start-page: 16206
  year: 2009
  ident: D2TA03538C/cit65/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905021c
– volume: 3
  start-page: 61
  year: 2018
  ident: D2TA03538C/cit26/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0060-5
– volume: 7
  start-page: 22604
  year: 2019
  ident: D2TA03538C/cit37/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08848B
– volume: 13
  start-page: 532
  year: 2019
  ident: D2TA03538C/cit49/1
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0435-1
– volume: 9
  start-page: 3180
  year: 2016
  ident: D2TA03538C/cit59/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01504B
– volume: 10
  start-page: 2000310
  year: 2020
  ident: D2TA03538C/cit35/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000310
– volume: 360
  start-page: 67
  year: 2018
  ident: D2TA03538C/cit33/1
  publication-title: Science
  doi: 10.1126/science.aap8671
– volume: 3
  start-page: 2694
  year: 2018
  ident: D2TA03538C/cit13/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01562
– volume: 3
  start-page: 18450
  year: 2015
  ident: D2TA03538C/cit41/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03331D
– volume: 4
  start-page: 1321
  year: 2019
  ident: D2TA03538C/cit40/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00840
– volume: 367
  start-page: 1097
  year: 2020
  ident: D2TA03538C/cit15/1
  publication-title: Science
  doi: 10.1126/science.aaz5074
– volume: 128
  start-page: 060903
  year: 2020
  ident: D2TA03538C/cit43/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0012384
– volume: 11
  start-page: 2
  year: 2022
  ident: D2TA03538C/cit56/1
  publication-title: Electronics
– volume: 2
  start-page: 1841
  year: 2017
  ident: D2TA03538C/cit9/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00525
SSID ssj0000800699
Score 2.4475687
Snippet Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here,...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18928
SubjectTerms chemistry
Crystal defects
electric current
empirical models
Fourier transforms
Grain size
Interstitials
Iodides
Light effects
Perovskites
Photoelectric effect
Photoluminescence
Photons
Photovoltaic cells
Solar cells
Spectroscopy
Title Correlating light-induced deep defects and phase segregation in mixed-halide perovskites
URI https://www.proquest.com/docview/2716520153
https://www.proquest.com/docview/2723119955
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67QF4QDCYKAwUBHtAVbrUzt_HKusYqAxpSqW-RU7isUKbVG1aoX42Phx3duJkYkiDF6u13Tj1_ey7853vCHmfsAzEYIubDG3rNggYJs-EbSaBlwJkKKfSgv_l0r2Y2J-nzrTT-dXyWtqUST_d3Xmv5H-oCnVAV7wl-w-U1Q-FCvgM9IUSKAzlvWgcYmoNdGYDdX8uI4KAhr1Bi34mxBIK5ashYwHcALvqrQWo19947eC4mP0UmXkDongmMIBxsV3jYe76LxIrCLfqX_XSOk1cvzdUN37qFhlBXN0nlEfy9f0sdMHVp_dXs2xXnITOie8XW2mqH1SeHVxZ7s9yzS0-rqqA21fFokGydCvuDRd8jmf_KqMyfFnx71oy321Wagg1wA-FZJ7PYBFs24cdoCej_cdq9kRqOZbp2SoJrt7ArRZQmdtb9gd-QEE5BlnMb23OsrbF6XX7H2zEYhiFNaMltxhwhLRhlrWDwOXX-HwyHsfRaBrtkQMKSgrssgfDUfRprM_4UBp3ZQpT_d51hFwWnDaPvy0TNYrO3qrOQiOlnegJeVwR3RgqzD0lHZEfkgdhTfZD8qgVyPIZmbaQaNxCooFINCokGgAJQyLRaCHRmOVGG4lGC4nPyeR8FIUXZpWzw0yZY5WmYNxnGYPVj-seuAFPHHYtfCfNgiRwAwEFp9dJ4LscK9Ev2GMU6pnreanDjsh-XuTiBUYT8BM3Af3dcwPbEgOfZ7ZNE-4JFvjc5V3yoZ61OK0C2mNelXksHStYEJ_RaChnOOySd7rvUoVxubPXcT35cbXM1zH1Bq4DYrLDuuStbobZRssaz0WxwT6gJmGwA6dLjoBoeoyGxi_v8eNX5GED-mOyX6424jXIvGXypoLWbw2hrGk
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlating+light-induced+deep+defects+and+phase+segregation+in+mixed-halide+perovskites&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ridzo%C5%88ov%C3%A1%2C+Katar%C3%ADna&rft.au=Grill%2C+Roman&rft.au=Peter+Amalathas%2C+Amalraj&rft.au=Dzur%C5%88%C3%A1k%2C+Branislav&rft.date=2022-09-20&rft.issn=2050-7496&rft.volume=10&rft.issue=36+p.18928-18938&rft.spage=18928&rft.epage=18938&rft_id=info:doi/10.1039%2Fd2ta03538c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon