Correlating light-induced deep defects and phase segregation in mixed-halide perovskites
Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here, we combine Fourier-Transform photocurrent spectroscopy with photoluminescence and current density-voltage ( J - V ) measurements to study the...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 36; pp. 18928 - 18938 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
20.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here, we combine Fourier-Transform photocurrent spectroscopy with photoluminescence and current density-voltage (
J
-
V
) measurements to study the effect of light soaking on such materials and devices. At first, we observe a gradual formation of an I-rich phase, which correlates with an increase in deep defect level concentration. We attribute these deep defects to charged iodide interstitials and associate phase segregation with iodide migration through interstitial positions. Upon further light soaking, the second less I-rich phase forms, while the deep level concentration simultaneously decreases. An empirical model describing the phase segregation mechanism is proposed to rationalize these observations. Further, we point to an important role of grain size in determining the degree and terminal phase of segregation.
The correlation between rate of light-induced phase segregation and deep defect formation observed in mixed-halide perovskites. The importance of grain size in determining the rate and terminal phase of segregation was highlighted. |
---|---|
AbstractList | Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here, we combine Fourier-Transform photocurrent spectroscopy with photoluminescence and current density–voltage (J–V) measurements to study the effect of light soaking on such materials and devices. At first, we observe a gradual formation of an I-rich phase, which correlates with an increase in deep defect level concentration. We attribute these deep defects to charged iodide interstitials and associate phase segregation with iodide migration through interstitial positions. Upon further light soaking, the second less I-rich phase forms, while the deep level concentration simultaneously decreases. An empirical model describing the phase segregation mechanism is proposed to rationalize these observations. Further, we point to an important role of grain size in determining the degree and terminal phase of segregation. Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here, we combine Fourier-Transform photocurrent spectroscopy with photoluminescence and current density–voltage ( J – V ) measurements to study the effect of light soaking on such materials and devices. At first, we observe a gradual formation of an I-rich phase, which correlates with an increase in deep defect level concentration. We attribute these deep defects to charged iodide interstitials and associate phase segregation with iodide migration through interstitial positions. Upon further light soaking, the second less I-rich phase forms, while the deep level concentration simultaneously decreases. An empirical model describing the phase segregation mechanism is proposed to rationalize these observations. Further, we point to an important role of grain size in determining the degree and terminal phase of segregation. Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here, we combine Fourier-Transform photocurrent spectroscopy with photoluminescence and current density-voltage ( J - V ) measurements to study the effect of light soaking on such materials and devices. At first, we observe a gradual formation of an I-rich phase, which correlates with an increase in deep defect level concentration. We attribute these deep defects to charged iodide interstitials and associate phase segregation with iodide migration through interstitial positions. Upon further light soaking, the second less I-rich phase forms, while the deep level concentration simultaneously decreases. An empirical model describing the phase segregation mechanism is proposed to rationalize these observations. Further, we point to an important role of grain size in determining the degree and terminal phase of segregation. The correlation between rate of light-induced phase segregation and deep defect formation observed in mixed-halide perovskites. The importance of grain size in determining the rate and terminal phase of segregation was highlighted. |
Author | Chin, Xin Yu Dzur ák, Branislav Horák, Lukáš Holovský, Jakub Neykova, Neda Grill, Roman Peter Amalathas, Amalraj Ridzo ová, Katarína Fiala, Peter Wolff, Christian M Jeangros, Quentin |
AuthorAffiliation | Centre for Advanced Photovoltaics Charles University Faculty of Mathematics and Physics Faculty of Science Faculty of Electrical Engineering Czech Technical University in Prague Department of Physics Czech Academy of Sciences Institute of Electrical and Microengineering (IEM) University of Jaffna Photovoltaic and Thin-Film Electronics Laboratory Institute of Physics École Polytechnique Fédérale de Lausanne (EPFL) |
AuthorAffiliation_xml | – name: Faculty of Electrical Engineering – name: Faculty of Mathematics and Physics – name: Czech Technical University in Prague – name: Department of Physics – name: Faculty of Science – name: Photovoltaic and Thin-Film Electronics Laboratory – name: Centre for Advanced Photovoltaics – name: University of Jaffna – name: Institute of Electrical and Microengineering (IEM) – name: École Polytechnique Fédérale de Lausanne (EPFL) – name: Czech Academy of Sciences – name: Institute of Physics – name: Charles University |
Author_xml | – sequence: 1 givenname: Katarína surname: Ridzo ová fullname: Ridzo ová, Katarína – sequence: 2 givenname: Roman surname: Grill fullname: Grill, Roman – sequence: 3 givenname: Amalraj surname: Peter Amalathas fullname: Peter Amalathas, Amalraj – sequence: 4 givenname: Branislav surname: Dzur ák fullname: Dzur ák, Branislav – sequence: 5 givenname: Neda surname: Neykova fullname: Neykova, Neda – sequence: 6 givenname: Lukáš surname: Horák fullname: Horák, Lukáš – sequence: 7 givenname: Peter surname: Fiala fullname: Fiala, Peter – sequence: 8 givenname: Xin Yu surname: Chin fullname: Chin, Xin Yu – sequence: 9 givenname: Christian M surname: Wolff fullname: Wolff, Christian M – sequence: 10 givenname: Quentin surname: Jeangros fullname: Jeangros, Quentin – sequence: 11 givenname: Jakub surname: Holovský fullname: Holovský, Jakub |
BookMark | eNptkd9LwzAQx4NMcM69-C4UfBGhmjZL0zyO-hMGvkzwrWTJtcvs0pqkov-92SYThvdwdxyf73E_TtHAtAYQOk_wTYIJv1WpF5hQkssjNEwxxTGb8Gywz_P8BI2dW-FgOcYZ50P0VrTWQiO8NnXU6HrpY21UL0FFCqALrgLpXSSMirqlcBA5qC3UQdCaSJtorb9AxUvRaAVRB7b9dO_agztDx5VoHIx_4wi9PtzPi6d49vL4XExnsSQU-xiIyIkiDIsJYxOWM7GgpIKcSsUXPOMQnEirBc8zsSkmmGNG0lAnGWOSkhG62vXtbPvRg_PlWjsJTSMMtL0rU5aSJOGcbtDLA3TV9taE6QKVZDTFCSWBwjtK2tY5C1Uptd-u663QTZngcnPt8i6dT7fXLoLk-kDSWb0W9vt_-GIHWyf33N_ryA-huorm |
CitedBy_id | crossref_primary_10_1002_cssc_202301205 crossref_primary_10_1021_acs_chemmater_4c01402 crossref_primary_10_1021_acs_jpclett_4c03509 crossref_primary_10_1002_adma_202305567 crossref_primary_10_1039_D3QM00970J crossref_primary_10_1021_acsenergylett_4c00488 crossref_primary_10_1039_D4TA07266A crossref_primary_10_1002_solr_202400316 crossref_primary_10_1016_j_nucengdes_2024_113815 |
Cites_doi | 10.1039/D0EE00788A 10.1039/C9EE02162K 10.1021/acs.nanolett.8b00505 10.1002/adma.201902374 10.1039/C8EE00124C 10.1038/nnano.2016.110 10.1021/acsenergylett.0c02270 10.1021/acsaem.1c00707 10.1021/acsenergylett.9b01726 10.1039/D0TA10581C 10.1016/j.joule.2020.08.016 10.1016/j.trechm.2020.01.010 10.1021/acsenergylett.8b01369 10.1002/adma.201901183 10.1021/acs.jpclett.6b00226 10.1021/acsenergylett.8b02002 10.1039/C4SC03141E 10.1038/srep22481 10.1021/acsenergylett.6b00196 10.1021/acsenergylett.7b00282 10.1002/adma.201502969 10.1039/C6TA03599J 10.1021/acsami.7b06816 10.1016/j.solmat.2015.12.025 10.1126/science.1243982 10.1021/acs.nanolett.6b04453 10.1021/jz4020162 10.1021/jz500279b 10.1021/acs.chemmater.7b01609 10.1039/C6EE03014A 10.1002/anie.202005853 10.1021/acsenergylett.9b02080 10.1002/smtd.201900273 10.1002/anie.201701724 10.1126/science.aad5845 10.1038/s41467-018-07882-8 10.1063/1.1446207 10.1021/acsenergylett.9b01915 10.1002/aenm.201903488 10.1002/aenm.202002934 10.1021/acs.jpclett.0c01296 10.1038/s41467-017-01586-1 10.1039/C9EE00476A 10.1038/s41586-020-2184-1 10.1021/acsenergylett.1c00213 10.1021/acsenergylett.8b02207 10.1002/adma.201805047 10.1039/C8CP00280K 10.1021/acs.jpclett.6b02854 10.1007/s40820-020-00533-y 10.1021/acsenergylett.8b00764 10.1021/acsenergylett.7b00357 10.1021/ja905021c 10.1038/s41560-017-0060-5 10.1039/C9TA08848B 10.1038/s41566-019-0435-1 10.1039/C6EE01504B 10.1002/aenm.202000310 10.1126/science.aap8671 10.1021/acsenergylett.8b01562 10.1039/C5TA03331D 10.1021/acsenergylett.9b00840 10.1126/science.aaz5074 10.1063/5.0012384 10.1021/acsenergylett.7b00525 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d2ta03538c |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2050-7496 |
EndPage | 18938 |
ExternalDocumentID | 10_1039_D2TA03538C d2ta03538c |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFOGI AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GNO HZ~ H~N J3I O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c350t-e3a83d370a4774787ab53fe85cd9b969eb96a2fb986a85cd10907329eb3677c53 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 09:58:36 EDT 2025 Mon Jun 30 12:06:34 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Jul 01 01:13:30 EDT 2025 Fri Sep 23 04:21:16 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c350t-e3a83d370a4774787ab53fe85cd9b969eb96a2fb986a85cd10907329eb3677c53 |
Notes | https://doi.org/10.1039/d2ta03538c Electronic supplementary information (ESI) available. See ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6490-5293 0000-0003-2885-975X 0000-0002-4615-8909 0000-0002-9252-1975 0000-0001-9628-9520 0000-0002-9992-4988 0000-0002-1835-9850 |
OpenAccessLink | http://infoscience.epfl.ch/record/296667 |
PQID | 2716520153 |
PQPubID | 2047523 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2723119955 crossref_citationtrail_10_1039_D2TA03538C proquest_journals_2716520153 crossref_primary_10_1039_D2TA03538C rsc_primary_d2ta03538c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-20 |
PublicationDateYYYYMMDD | 2022-09-20 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Frolova (D2TA03538C/cit55/1) 2021; 11 Morawiec (D2TA03538C/cit70/1) 2016; 6 Holovský (D2TA03538C/cit45/1) 2022 Li (D2TA03538C/cit47/1) 2018; 9 Doherty (D2TA03538C/cit54/1) 2020; 580 Tan (D2TA03538C/cit63/1) 2020; 4 Vashishtha (D2TA03538C/cit11/1) 2017; 29 Knight (D2TA03538C/cit22/1) 2019; 4 Stranks (D2TA03538C/cit2/1) 2013; 342 Yoon (D2TA03538C/cit21/1) 2017; 2 Caprioglio (D2TA03538C/cit31/1) 2021; 6 Tian (D2TA03538C/cit56/1) 2022; 11 Mosconi (D2TA03538C/cit59/1) 2016; 9 Kim (D2TA03538C/cit60/1) 2021; 60 Steirer (D2TA03538C/cit4/1) 2016; 1 Holovský (D2TA03538C/cit23/1) 2019; 4 Wang (D2TA03538C/cit71/1) 2016; 147 Holovský (D2TA03538C/cit64/1) 2017; 8 Gualdrón-Reyes (D2TA03538C/cit67/1) 2019; 4 Wu (D2TA03538C/cit5/1) 2021; 13 Andaji-Garmaroudi (D2TA03538C/cit32/1) 2019; 31 Rehman (D2TA03538C/cit16/1) 2017; 10 Ruth (D2TA03538C/cit20/1) 2018; 3 Rehman (D2TA03538C/cit27/1) 2015; 27 Barker (D2TA03538C/cit19/1) 2017; 2 Senocrate (D2TA03538C/cit48/1) 2017; 56 De Wolf (D2TA03538C/cit3/1) 2014; 5 Brivio (D2TA03538C/cit17/1) 2016; 7 Braly (D2TA03538C/cit9/1) 2017; 2 Datta (D2TA03538C/cit25/1) 2021; 4 Park (D2TA03538C/cit40/1) 2019; 4 Chen (D2TA03538C/cit43/1) 2020; 128 McMeekin (D2TA03538C/cit34/1) 2016; 351 Tsai (D2TA03538C/cit33/1) 2018; 360 Liu (D2TA03538C/cit44/1) 2018; 20 Di Girolamo (D2TA03538C/cit35/1) 2020; 10 Snaith (D2TA03538C/cit1/1) 2013; 4 Gardner (D2TA03538C/cit65/1) 2009; 131 Brennan (D2TA03538C/cit7/1) 2020; 2 Meggiolaro (D2TA03538C/cit42/1) 2018; 11 Domanski (D2TA03538C/cit26/1) 2018; 3 Knight (D2TA03538C/cit8/1) 2020; 13 Motti (D2TA03538C/cit49/1) 2019; 13 Hoke (D2TA03538C/cit6/1) 2015; 6 Sun (D2TA03538C/cit41/1) 2015; 3 Tang (D2TA03538C/cit24/1) 2018; 18 Hu (D2TA03538C/cit14/1) 2015; 3 Shynkarenko (D2TA03538C/cit12/1) 2019; 4 Yu (D2TA03538C/cit57/1) 2019; 1 Li (D2TA03538C/cit52/1) 2017; 7 Thind (D2TA03538C/cit61/1) 2019; 31 Knight (D2TA03538C/cit28/1) 2020; 10 Yuan (D2TA03538C/cit30/1) 2016; 11 Walsh (D2TA03538C/cit46/1) 2018; 3 Hu (D2TA03538C/cit66/1) 2021; 6 Nie (D2TA03538C/cit58/1) 2016; 7 Yang (D2TA03538C/cit50/1) 2016; 4 García-Rodríguez (D2TA03538C/cit37/1) 2019; 7 Chen (D2TA03538C/cit51/1) 2019; 3 Mahesh (D2TA03538C/cit29/1) 2020; 13 Vanecek (D2TA03538C/cit69/1) 2002; 80 Bischak (D2TA03538C/cit18/1) 2017; 17 Zhang (D2TA03538C/cit68/1) 2019; 10 Ferdani (D2TA03538C/cit38/1) 2019; 12 Xu (D2TA03538C/cit15/1) 2020; 367 Guo (D2TA03538C/cit36/1) 2019; 4 Motti (D2TA03538C/cit39/1) 2019; 31 Belisle (D2TA03538C/cit13/1) 2018; 3 Kang (D2TA03538C/cit62/1) 2021; 9 Duong (D2TA03538C/cit10/1) 2017; 9 Funk (D2TA03538C/cit53/1) 2020; 11 |
References_xml | – issn: 2022 publication-title: Proceedings of the 8th World Conference on Photovoltaic Energy Conversion doi: Holovský Ridzo ová Amalathas Dzur ák Lucie Ji í ek Romanyuk – volume: 13 start-page: 2024 year: 2020 ident: D2TA03538C/cit8/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00788A – volume: 13 start-page: 258 year: 2020 ident: D2TA03538C/cit29/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02162K – volume: 18 start-page: 2172 year: 2018 ident: D2TA03538C/cit24/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00505 – volume: 31 start-page: 1902374 year: 2019 ident: D2TA03538C/cit32/1 publication-title: Adv. Mater. doi: 10.1002/adma.201902374 – volume: 11 start-page: 702 year: 2018 ident: D2TA03538C/cit42/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00124C – volume: 11 start-page: 872 year: 2016 ident: D2TA03538C/cit30/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.110 – volume: 6 start-page: 419 year: 2021 ident: D2TA03538C/cit31/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02270 – volume: 4 start-page: 6650 year: 2021 ident: D2TA03538C/cit25/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c00707 – volume: 7 start-page: 1 year: 2017 ident: D2TA03538C/cit52/1 publication-title: Adv. Energy Mater. – volume: 4 start-page: 2360 year: 2019 ident: D2TA03538C/cit36/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01726 – volume: 9 start-page: 3441 year: 2021 ident: D2TA03538C/cit62/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10581C – volume: 4 start-page: 2426 year: 2020 ident: D2TA03538C/cit63/1 publication-title: Joule doi: 10.1016/j.joule.2020.08.016 – volume: 2 start-page: 282 year: 2020 ident: D2TA03538C/cit7/1 publication-title: Trends Chem. doi: 10.1016/j.trechm.2020.01.010 – volume: 3 start-page: 2321 year: 2018 ident: D2TA03538C/cit20/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01369 – volume: 31 start-page: 1 year: 2019 ident: D2TA03538C/cit39/1 publication-title: Adv. Mater. doi: 10.1002/adma.201901183 – volume: 7 start-page: 1083 year: 2016 ident: D2TA03538C/cit17/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00226 – volume: 4 start-page: 75 year: 2019 ident: D2TA03538C/cit22/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02002 – volume: 6 start-page: 613 year: 2015 ident: D2TA03538C/cit6/1 publication-title: Chem. Sci. doi: 10.1039/C4SC03141E – volume: 6 start-page: 1 year: 2016 ident: D2TA03538C/cit70/1 publication-title: Sci. Rep. doi: 10.1038/srep22481 – volume: 1 start-page: 360 year: 2016 ident: D2TA03538C/cit4/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00196 – volume: 2 start-page: 1416 year: 2017 ident: D2TA03538C/cit19/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00282 – volume: 27 start-page: 7938 year: 2015 ident: D2TA03538C/cit27/1 publication-title: Adv. Mater. doi: 10.1002/adma.201502969 – volume: 4 start-page: 13105 year: 2016 ident: D2TA03538C/cit50/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03599J – volume: 9 start-page: 26859 year: 2017 ident: D2TA03538C/cit10/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06816 – volume: 147 start-page: 255 year: 2016 ident: D2TA03538C/cit71/1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.12.025 – volume: 342 start-page: 1 year: 2013 ident: D2TA03538C/cit2/1 publication-title: Science doi: 10.1126/science.1243982 – volume: 17 start-page: 1028 year: 2017 ident: D2TA03538C/cit18/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04453 – volume: 4 start-page: 3623 year: 2013 ident: D2TA03538C/cit1/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4020162 – volume: 5 start-page: 1035 year: 2014 ident: D2TA03538C/cit3/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500279b – volume: 29 start-page: 5965 year: 2017 ident: D2TA03538C/cit11/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01609 – volume: 10 start-page: 361 year: 2017 ident: D2TA03538C/cit16/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03014A – volume: 3 start-page: 6 year: 2015 ident: D2TA03538C/cit14/1 publication-title: Adv. Sci. – volume: 7 start-page: 1 year: 2016 ident: D2TA03538C/cit58/1 publication-title: Nat. Commun. – volume: 60 start-page: 820 year: 2021 ident: D2TA03538C/cit60/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005853 – volume: 4 start-page: 3011 year: 2019 ident: D2TA03538C/cit23/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02080 – volume: 3 start-page: 1900273 year: 2019 ident: D2TA03538C/cit51/1 publication-title: Small Methods doi: 10.1002/smtd.201900273 – volume: 56 start-page: 7755 year: 2017 ident: D2TA03538C/cit48/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701724 – volume-title: Proceedings of the 8th World Conference on Photovoltaic Energy Conversion year: 2022 ident: D2TA03538C/cit45/1 – volume: 351 start-page: 151 year: 2016 ident: D2TA03538C/cit34/1 publication-title: Science doi: 10.1126/science.aad5845 – volume: 10 start-page: 1 year: 2019 ident: D2TA03538C/cit68/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 80 start-page: 719 year: 2002 ident: D2TA03538C/cit69/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1446207 – volume: 4 start-page: 2703 year: 2019 ident: D2TA03538C/cit12/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01915 – volume: 10 start-page: 1 year: 2020 ident: D2TA03538C/cit28/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903488 – volume: 11 start-page: 1 year: 2021 ident: D2TA03538C/cit55/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002934 – volume: 11 start-page: 4945 year: 2020 ident: D2TA03538C/cit53/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01296 – volume: 9 start-page: 8 year: 2018 ident: D2TA03538C/cit47/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01586-1 – volume: 12 start-page: 2264 year: 2019 ident: D2TA03538C/cit38/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00476A – volume: 580 start-page: 360 year: 2020 ident: D2TA03538C/cit54/1 publication-title: Nature doi: 10.1038/s41586-020-2184-1 – volume: 6 start-page: 1649 year: 2021 ident: D2TA03538C/cit66/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00213 – volume: 4 start-page: 54 year: 2019 ident: D2TA03538C/cit67/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02207 – volume: 31 start-page: 1 year: 2019 ident: D2TA03538C/cit61/1 publication-title: Adv. Mater. doi: 10.1002/adma.201805047 – volume: 1 start-page: 30 year: 2019 ident: D2TA03538C/cit57/1 publication-title: JPhys Energy – volume: 20 start-page: 6800 year: 2018 ident: D2TA03538C/cit44/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP00280K – volume: 8 start-page: 838 year: 2017 ident: D2TA03538C/cit64/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02854 – volume: 13 start-page: 18 year: 2021 ident: D2TA03538C/cit5/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00533-y – volume: 3 start-page: 1983 year: 2018 ident: D2TA03538C/cit46/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00764 – volume: 2 start-page: 1507 year: 2017 ident: D2TA03538C/cit21/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00357 – volume: 131 start-page: 16206 year: 2009 ident: D2TA03538C/cit65/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905021c – volume: 3 start-page: 61 year: 2018 ident: D2TA03538C/cit26/1 publication-title: Nat. Energy doi: 10.1038/s41560-017-0060-5 – volume: 7 start-page: 22604 year: 2019 ident: D2TA03538C/cit37/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08848B – volume: 13 start-page: 532 year: 2019 ident: D2TA03538C/cit49/1 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0435-1 – volume: 9 start-page: 3180 year: 2016 ident: D2TA03538C/cit59/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01504B – volume: 10 start-page: 2000310 year: 2020 ident: D2TA03538C/cit35/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000310 – volume: 360 start-page: 67 year: 2018 ident: D2TA03538C/cit33/1 publication-title: Science doi: 10.1126/science.aap8671 – volume: 3 start-page: 2694 year: 2018 ident: D2TA03538C/cit13/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01562 – volume: 3 start-page: 18450 year: 2015 ident: D2TA03538C/cit41/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03331D – volume: 4 start-page: 1321 year: 2019 ident: D2TA03538C/cit40/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00840 – volume: 367 start-page: 1097 year: 2020 ident: D2TA03538C/cit15/1 publication-title: Science doi: 10.1126/science.aaz5074 – volume: 128 start-page: 060903 year: 2020 ident: D2TA03538C/cit43/1 publication-title: J. Appl. Phys. doi: 10.1063/5.0012384 – volume: 11 start-page: 2 year: 2022 ident: D2TA03538C/cit56/1 publication-title: Electronics – volume: 2 start-page: 1841 year: 2017 ident: D2TA03538C/cit9/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00525 |
SSID | ssj0000800699 |
Score | 2.4475687 |
Snippet | Mixed-halide perovskites are highly promising materials for tandem solar cells. The phenomenon of phase segregation, however hinders their application. Here,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18928 |
SubjectTerms | chemistry Crystal defects electric current empirical models Fourier transforms Grain size Interstitials Iodides Light effects Perovskites Photoelectric effect Photoluminescence Photons Photovoltaic cells Solar cells Spectroscopy |
Title | Correlating light-induced deep defects and phase segregation in mixed-halide perovskites |
URI | https://www.proquest.com/docview/2716520153 https://www.proquest.com/docview/2723119955 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67QF4QDCYKAwUBHtAVbrUzt_HKusYqAxpSqW-RU7isUKbVG1aoX42Phx3duJkYkiDF6u13Tj1_ey7853vCHmfsAzEYIubDG3rNggYJs-EbSaBlwJkKKfSgv_l0r2Y2J-nzrTT-dXyWtqUST_d3Xmv5H-oCnVAV7wl-w-U1Q-FCvgM9IUSKAzlvWgcYmoNdGYDdX8uI4KAhr1Bi34mxBIK5ashYwHcALvqrQWo19947eC4mP0UmXkDongmMIBxsV3jYe76LxIrCLfqX_XSOk1cvzdUN37qFhlBXN0nlEfy9f0sdMHVp_dXs2xXnITOie8XW2mqH1SeHVxZ7s9yzS0-rqqA21fFokGydCvuDRd8jmf_KqMyfFnx71oy321Wagg1wA-FZJ7PYBFs24cdoCej_cdq9kRqOZbp2SoJrt7ArRZQmdtb9gd-QEE5BlnMb23OsrbF6XX7H2zEYhiFNaMltxhwhLRhlrWDwOXX-HwyHsfRaBrtkQMKSgrssgfDUfRprM_4UBp3ZQpT_d51hFwWnDaPvy0TNYrO3qrOQiOlnegJeVwR3RgqzD0lHZEfkgdhTfZD8qgVyPIZmbaQaNxCooFINCokGgAJQyLRaCHRmOVGG4lGC4nPyeR8FIUXZpWzw0yZY5WmYNxnGYPVj-seuAFPHHYtfCfNgiRwAwEFp9dJ4LscK9Ev2GMU6pnreanDjsh-XuTiBUYT8BM3Af3dcwPbEgOfZ7ZNE-4JFvjc5V3yoZ61OK0C2mNelXksHStYEJ_RaChnOOySd7rvUoVxubPXcT35cbXM1zH1Bq4DYrLDuuStbobZRssaz0WxwT6gJmGwA6dLjoBoeoyGxi_v8eNX5GED-mOyX6424jXIvGXypoLWbw2hrGk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlating+light-induced+deep+defects+and+phase+segregation+in+mixed-halide+perovskites&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ridzo%C5%88ov%C3%A1%2C+Katar%C3%ADna&rft.au=Grill%2C+Roman&rft.au=Peter+Amalathas%2C+Amalraj&rft.au=Dzur%C5%88%C3%A1k%2C+Branislav&rft.date=2022-09-20&rft.issn=2050-7496&rft.volume=10&rft.issue=36+p.18928-18938&rft.spage=18928&rft.epage=18938&rft_id=info:doi/10.1039%2Fd2ta03538c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |