Influences of Floater Motion on Gap Resonance Triggered by Focused Wave Groups
The current study investigates the hydrodynamic characteristics of gap resonance within a narrow gap formed by two adjacent boxes subjected to incident focused transient wave groups. A two-dimensional (2D) numerical wave tank based on the OpenFOAM package is utilized for this purpose. The weather-si...
Saved in:
Published in | China ocean engineering Vol. 37; no. 4; pp. 685 - 697 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources,Guangzhou 510611,China%School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China%Centre for Infrastructure,Geotechnical and Water Engineering(IGWE),Department of Architecture and Civil Engineering,University of Bath,BA2 7AY,UK Key Laboratory of Port,Waterway and Sedimentation Engineering of MOT,Nanjing Hydraulic Research Institute,Nanjing 210029,China School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China |
Subjects | |
Online Access | Get full text |
ISSN | 0890-5487 2191-8945 |
DOI | 10.1007/s13344-023-0057-8 |
Cover
Loading…
Abstract | The current study investigates the hydrodynamic characteristics of gap resonance within a narrow gap formed by two adjacent boxes subjected to incident focused transient wave groups. A two-dimensional (2D) numerical wave tank based on the OpenFOAM package is utilized for this purpose. The weather-side box is fixed while the lee-side box is allowed to heave freely under wave actions. The effects of the focused wave amplitude and spectral peak period on the wave amplification within the gap, motion of the lee-side box, and wave forces (including horizontal and vertical wave forces) acting on each box are systematically examined. For comparison, another structural layout consisting of two fixed boxes is also considered. The results reveal that the release of the heave degree of freedom (DoF) of the leeside box results in remarkably distinct resonance features. In the heave-box system, both its fluid resonant period and the period corresponding to the maximum heave displacement of the lee-side box are significantly larger (i.e., 1.6–1.7 times) than the fluid resonant period of the fixed-box system. However, the wave amplification factor inside the gap in the heave-box system is significantly lower than that in the fixed-box one. Both the variations of the maximum horizontal and vertical wave forces with the spectral peak period and their magnitudes are also significantly different between the two structural systems. |
---|---|
AbstractList | The current study investigates the hydrodynamic characteristics of gap resonance within a narrow gap formed by two adjacent boxes subjected to incident focused transient wave groups.A two-dimensional(2D)numerical wave tank based on the OpenFOAM package is utilized for this purpose.The weather-side box is fixed while the lee-side box is allowed to heave freely under wave actions.The effects of the focused wave amplitude and spectral peak period on the wave amplification within the gap,motion of the lee-side box,and wave forces(including horizontal and vertical wave forces)acting on each box are systematically examined.For comparison,another structural layout consisting of two fixed boxes is also considered.The results reveal that the release of the heave degree of freedom(DoF)of the lee-side box results in remarkably distinct resonance features.In the heave-box system,both its fluid resonant period and the period corresponding to the maximum heave displacement of the lee-side box are significantly larger(i.e.,1.6-1.7 times)than the fluid resonant period of the fixed-box system.However,the wave amplification factor inside the gap in the heave-box system is significantly lower than that in the fixed-box one.Both the variations of the maximum horizontal and vertical wave forces with the spectral peak period and their magnitudes are also significantly different between the two structural systems. The current study investigates the hydrodynamic characteristics of gap resonance within a narrow gap formed by two adjacent boxes subjected to incident focused transient wave groups. A two-dimensional (2D) numerical wave tank based on the OpenFOAM package is utilized for this purpose. The weather-side box is fixed while the lee-side box is allowed to heave freely under wave actions. The effects of the focused wave amplitude and spectral peak period on the wave amplification within the gap, motion of the lee-side box, and wave forces (including horizontal and vertical wave forces) acting on each box are systematically examined. For comparison, another structural layout consisting of two fixed boxes is also considered. The results reveal that the release of the heave degree of freedom (DoF) of the leeside box results in remarkably distinct resonance features. In the heave-box system, both its fluid resonant period and the period corresponding to the maximum heave displacement of the lee-side box are significantly larger (i.e., 1.6–1.7 times) than the fluid resonant period of the fixed-box system. However, the wave amplification factor inside the gap in the heave-box system is significantly lower than that in the fixed-box one. Both the variations of the maximum horizontal and vertical wave forces with the spectral peak period and their magnitudes are also significantly different between the two structural systems. |
Author | Gao, Jun-liang Zang, Jun Zhang, Jian Lyu, Jing |
AuthorAffiliation | School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China;Key Laboratory of Port,Waterway and Sedimentation Engineering of MOT,Nanjing Hydraulic Research Institute,Nanjing 210029,China;Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources,Guangzhou 510611,China%School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China%Centre for Infrastructure,Geotechnical and Water Engineering(IGWE),Department of Architecture and Civil Engineering,University of Bath,BA2 7AY,UK |
AuthorAffiliation_xml | – name: School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China;Key Laboratory of Port,Waterway and Sedimentation Engineering of MOT,Nanjing Hydraulic Research Institute,Nanjing 210029,China;Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources,Guangzhou 510611,China%School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China%Centre for Infrastructure,Geotechnical and Water Engineering(IGWE),Department of Architecture and Civil Engineering,University of Bath,BA2 7AY,UK |
Author_xml | – sequence: 1 givenname: Jun-liang surname: Gao fullname: Gao, Jun-liang organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Key Laboratory of Port, Waterway and Sedimentation Engineering of MOT, Nanjing Hydraulic Research Institute, Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources – sequence: 2 givenname: Jing surname: Lyu fullname: Lyu, Jing organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology – sequence: 3 givenname: Jian surname: Zhang fullname: Zhang, Jian email: justzj@126.com organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology – sequence: 4 givenname: Jun surname: Zang fullname: Zang, Jun organization: Centre for Infrastructure, Geotechnical and Water Engineering (IGWE), Department of Architecture and Civil Engineering, University of Bath |
BookMark | eNp9kE1LxDAQhoMouK7-AG8BTx6qk69texRxV8EPEMVjSNNprazJmrTK-uvNUkEQFAKTw_O-Mzx7ZNt5h4QcMjhhAPlpZEJImQEXGYDKs2KLTDgrWVaUUm2TCRQlZEoW-S7Zi_ElMUxJNiG3V65ZDugsRuobOl9602OgN77vvKPpLcyK3mP0ziSGPoSubTFgTas1nXs7xPR9Mu9IF8EPq7hPdhqzjHjwPafkcX7xcH6ZXd8trs7PrjMrFPRZjbYupKgQZ1WNfIYcKgaWCasarlRZVIyrGTcGytyYhFUgBaqqgpyLUtRiSo7H3g_jGuNa_eKH4NJG_dk-r1urUyMXIIHJxB6N7Cr4twFj_wPzYqZEalRlovKRssHHGLDRtuvNxkIfTLfUDPRGtB5F69SuN6J1kZLsV3IVulcT1v9m-JiJiXXJ6M9Nf4e-AKqBkPo |
CitedBy_id | crossref_primary_10_1007_s13344_025_0081_y crossref_primary_10_3390_w15152771 crossref_primary_10_1007_s13344_023_0080_9 crossref_primary_10_1007_s13344_024_0073_3 crossref_primary_10_1016_j_oceaneng_2024_116981 crossref_primary_10_3390_jmse12112068 crossref_primary_10_1016_j_oceaneng_2025_120649 crossref_primary_10_1007_s13344_024_0078_y crossref_primary_10_1016_j_oceaneng_2024_120056 crossref_primary_10_3390_en17102313 crossref_primary_10_1016_j_oceaneng_2025_120362 crossref_primary_10_1016_j_oceaneng_2024_119941 crossref_primary_10_1016_j_oceaneng_2024_118986 crossref_primary_10_1016_j_oceaneng_2024_117938 |
Cites_doi | 10.1016/j.coastaleng.2020.103670 10.1016/j.oceaneng.2021.108753 10.1016/j.oceaneng.2006.06.005 10.1017/jfm.2016.824 10.1007/s42241-019-0060-y 10.1007/s13344-023-0038-y 10.1016/j.oceaneng.2022.112835 10.1063/5.0017947 10.1016/S1001-6058(08)60102-X 10.1016/S1001-6058(16)60679-0 10.1016/j.oceaneng.2018.12.052 10.1007/s13344-022-0036-5 10.1016/j.apor.2021.102892 10.1007/s13344-022-0087-7 10.1063/5.0124470 10.1016/j.oceaneng.2022.111726 10.1016/j.enganabound.2019.05.002 10.1142/S0578563401000268 10.1016/j.coastaleng.2014.07.003 10.1016/j.oceaneng.2023.114923 10.3389/fmars.2023.1150896 10.1016/j.oceaneng.2020.107323 10.1002/fld.2726 10.1016/j.apor.2015.01.010 10.1016/j.oceaneng.2021.108936 10.1016/j.oceaneng.2020.107628 10.1063/5.0089564 10.1016/j.oceaneng.2019.03.040 10.1007/s13344-021-0045-9 10.1016/j.apor.2021.102966 10.1016/j.oceaneng.2014.06.003 10.1016/j.apor.2009.10.001 10.1016/j.oceaneng.2022.112430 10.1016/j.oceaneng.2018.01.056 10.1017/S0022112000002871 10.1098/rsta.2014.0109 10.1016/j.oceaneng.2017.08.060 10.1007/s13344-021-0063-7 10.3390/jmse11020448 10.1103/PhysRevFluids.5.084801 10.1061/(ASCE)EM.1943-7889.0000935 10.1016/j.oceaneng.2019.106552 10.1115/1.4045623 10.1017/flo.2022.14 10.1016/j.apor.2018.05.010 10.1016/j.oceaneng.2022.113518 10.1016/j.oceaneng.2021.110513 10.1016/j.oceaneng.2022.113376 10.1016/j.apor.2021.102581 10.1016/j.apor.2021.102628 10.1016/j.oceaneng.2020.107698 10.1007/s42241-022-0054-z 10.1016/j.oceaneng.2022.111305 10.1016/j.oceaneng.2022.112192 10.1016/j.oceaneng.2022.113415 |
ContentType | Journal Article |
Copyright | Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023 Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023 – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7TN F1W H96 L.G 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s13344-023-0057-8 |
DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 2191-8945 |
EndPage | 697 |
ExternalDocumentID | zghygc_e202304014 10_1007_s13344_023_0057_8 |
GroupedDBID | -01 -0A -EM -SA -S~ 06D 0R~ 0VY 188 29B 29~ 2B. 2C. 2KG 2KM 30V 4.4 406 408 5GY 5VR 5XA 5XB 8RM 92E 92I 92M 92Q 93N 96X 9D9 9DA AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA CAJEA CCEZO CCVFK CHBEP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR J-C JBSCW JUIAU JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 Q-- Q-0 R-A R9I RLLFE ROL RSV RT1 S.. S1Z S27 S3B SCL SEG SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T8Q TCJ TGP TSG U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z7R ZMTXR ~A9 ~LH AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7TN ABRTQ F1W H96 L.G 4A8 PSX |
ID | FETCH-LOGICAL-c350t-decd843bee6bde26e20b10c13c5f25598b12562aa097aabeeb043e5bb072393d3 |
IEDL.DBID | U2A |
ISSN | 0890-5487 |
IngestDate | Thu May 29 03:55:51 EDT 2025 Wed Aug 13 03:22:03 EDT 2025 Thu Apr 24 22:51:19 EDT 2025 Tue Jul 01 01:29:49 EDT 2025 Fri Feb 21 02:41:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | OpenFOAM gap resonance wave forces wave amplification focused waves |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-decd843bee6bde26e20b10c13c5f25598b12562aa097aabeeb043e5bb072393d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2865323959 |
PQPubID | 2043672 |
PageCount | 13 |
ParticipantIDs | wanfang_journals_zghygc_e202304014 proquest_journals_2865323959 crossref_citationtrail_10_1007_s13344_023_0057_8 crossref_primary_10_1007_s13344_023_0057_8 springer_journals_10_1007_s13344_023_0057_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | China ocean engineering |
PublicationTitleAbbrev | China Ocean Eng |
PublicationTitle_FL | China Ocean Engineering |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources,Guangzhou 510611,China%School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China%Centre for Infrastructure,Geotechnical and Water Engineering(IGWE),Department of Architecture and Civil Engineering,University of Bath,BA2 7AY,UK Key Laboratory of Port,Waterway and Sedimentation Engineering of MOT,Nanjing Hydraulic Research Institute,Nanjing 210029,China School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources,Guangzhou 510611,China%School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China%Centre for Infrastructure,Geotechnical and Water Engineering(IGWE),Department of Architecture and Civil Engineering,University of Bath,BA2 7AY,UK – name: Key Laboratory of Port,Waterway and Sedimentation Engineering of MOT,Nanjing Hydraulic Research Institute,Nanjing 210029,China – name: School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China |
References | Chen, Zang, Hillis, Morgan, Plummer (CR1) 2014; 88 Gao, He, Zang, Chen, Ding, Wang (CR17) 2019; 180 Zhu, Zhu, Miao (CR60) 2008; 20 Jiang, Liu, Sun, Gu (CR31) 2020; 214 Miao, Saitoh, Ishida (CR43) 2001; 43 Song, Lu, Li, Lou, Tang, Liu (CR50) 2021; 117 Gao, Lyu, Wang, Zhang, Liu, Zang, Zou (CR19) 2022; 36 Wang, Liu, Lu (CR56) 2022; 253 Lu, Tan, Zhou, Zhao, Ikoma (CR41) 2020; 32 Wang, Zou (CR54) 2007; 34 Zhao, Wolgamot, Taylor, Eatock Taylor (CR58) 2017; 812 Fu, Ma, Dong, Perlin (CR12) 2021; 229 Gao, He, Huang, Liu, Zang, Wang (CR16) 2021; 224 Tan, Lu, Liu, Sabodas, Teng (CR51) 2014 Jing, He, Luan, Liu, Yang (CR33) 2022; 34 Ding, Walther, Shao (CR4) 2022; 34 Ning, Su, Zhao, Teng (CR45) 2015; 141 CR6 Fredriksen, Kristiansen, Faltinsen (CR11) 2015; 373 Perić, Swan (CR47) 2015; 51 CR5 He, Gao, Zang, Chen, Liu, Wang (CR27) 2021; 35 Jasak, Tuković (CR29) 2006; 30 CR48 CR42 He, Gao, Chen, Zang, Liu, Wang (CR25) 2021; 35 Gao, Gong, He, Shi, Zang, Zou, Bai (CR15) 2023; 11 Liang, Liu, Chua, De Mello, Choo (CR38) 2022; 2 He, Wu, Mao, Chen, Lin, Dong (CR24) 2023; 10 Gao, Shi, Zang, Liu (CR21) 2023; 281 Wang, Qiao, Jin, Yan, Wang, Li, Ou (CR55) 2023; 268 Zhao, Pan, Lin, Li, Taylor, Efthymiou (CR59) 2018; 153 He, Gao, Shi, Zang, Chen, Liu (CR26) 2022; 36 Molin (CR44) 2001; 430 Gao, Bi, Zhang, Zang (CR13) 2023; 37 Gao, Chen, Zang, Chen, Wang, Zhu (CR14) 2020; 212 Vineesh, Sriram (CR53) 2021; 116 Kristiansen, Faltinsen (CR34) 2010; 32 Liu, Gao, Shi, Zang, Liu (CR40) 2022; 263 Jiang, Sun, Feng, Zhang (CR32) 2019; 192 Gao, Ma, Zang, Dong, Ma, Zhu, Zhou (CR20) 2020; 158 Feng, Magee, Price (CR8) 2020; 142 Li (CR36) 2019; 106 Liang, Chua, Wang, Choo (CR37) 2021; 111 Liang, Santo, Shao, Law, Chan (CR39) 2020; 5 Fernández, Sriram, Schimmels, Oumeraci (CR10) 2014; 93 Feng, Bai, Chen, Qian, Ma (CR9) 2017; 145 Gao, He, Zang, Chen, Ding, Wang (CR18) 2020; 206 Tan, Lu, Tang, Cheng (CR52) 2020; 32 Jiang, Feng, Yan (CR30) 2022; 250 Li, Xu, Yang (CR35) 2016; 28 Fan, Tao, Xie, Wu, Wang (CR7) 2023; 268 Ding, Walther, Shao (CR3) 2022; 266 He, Jing, Jin, Zhang, Zhang, Liu (CR23) 2021; 110 Cong, Teng, Gou, Tan, Liu (CR2) 2022; 260 Song, Lu, Cheng, Liu, Tang, Lou (CR49) 2022; 34 Gao, Zang, Chen, Chen, Ding, Liu (CR22) 2019; 173 Ning, Zhu, Zhang, Zhao (CR46) 2018; 77 Zou, Chen, Zhu, Li, Zhao (CR61) 2023; 268 Yin, Jiang, Geng (CR57) 2022; 258 Jacobsen, Fuhrman, Fredsøe (CR28) 2012; 70 W Zhao (57_CR58) 2017; 812 DZ Ning (57_CR45) 2015; 141 LF Chen (57_CR1) 2014; 88 YF Ding (57_CR3) 2022; 266 SC Jiang (57_CR30) 2022; 250 AG Fredriksen (57_CR11) 2015; 373 L Lu (57_CR41) 2020; 32 JL Gao (57_CR20) 2020; 158 H Liang (57_CR38) 2022; 2 JL Gao (57_CR21) 2023; 281 GP Miao (57_CR43) 2001; 43 JL Gao (57_CR18) 2020; 206 J Fan (57_CR7) 2023; 268 H Fernández (57_CR10) 2014; 93 JL Gao (57_CR14) 2020; 212 PL Jing (57_CR33) 2022; 34 H Liang (57_CR39) 2020; 5 ZW He (57_CR26) 2022; 36 JL Gao (57_CR15) 2023; 11 JS Liu (57_CR40) 2022; 263 H Liang (57_CR37) 2021; 111 L Tan (57_CR52) 2020; 32 SC Jiang (57_CR31) 2020; 214 GH He (57_CR23) 2021; 110 JL Gao (57_CR13) 2023; 37 YL He (57_CR24) 2023; 10 57_CR5 57_CR6 X Feng (57_CR9) 2017; 145 P Vineesh (57_CR53) 2021; 116 ZW He (57_CR27) 2021; 35 ZW Song (57_CR49) 2022; 34 SC Jiang (57_CR32) 2019; 192 T Kristiansen (57_CR34) 2010; 32 X Li (57_CR35) 2016; 28 XL Wang (57_CR55) 2023; 268 B Molin (57_CR44) 2001; 430 M Perić (57_CR47) 2015; 51 L Tan (57_CR51) 2014 PW Cong (57_CR2) 2022; 260 AC Feng (57_CR8) 2020; 142 DG Wang (57_CR54) 2007; 34 NG Jacobsen (57_CR28) 2012; 70 Y Yin (57_CR57) 2022; 258 HR Zhu (57_CR60) 2008; 20 WH Zhao (57_CR59) 2018; 153 JL Gao (57_CR19) 2022; 36 YF Ding (57_CR4) 2022; 34 ZW He (57_CR25) 2021; 35 JL Gao (57_CR22) 2019; 173 MY Zou (57_CR61) 2023; 268 57_CR48 ZW Song (57_CR50) 2021; 117 JL Gao (57_CR17) 2019; 180 H Jasak (57_CR29) 2006; 30 57_CR42 XY Wang (57_CR56) 2022; 253 YJ Li (57_CR36) 2019; 106 JL Gao (57_CR16) 2021; 224 DZ Ning (57_CR46) 2018; 77 RL Fu (57_CR12) 2021; 229 |
References_xml | – volume: 158 start-page: 103670 year: 2020 ident: CR20 article-title: Numerical investigation of harbor oscillations induced by focused transient wave groups publication-title: Coastal Engineering doi: 10.1016/j.coastaleng.2020.103670 – volume: 224 start-page: 108753 year: 2021 ident: CR16 article-title: Effects of free heave motion on wave resonance inside a narrow gap between two boxes under wave actions publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.108753 – year: 2014 ident: CR51 publication-title: Dissipative effects of resonant waves in confined space formed by floating box in front of vertical wall – volume: 34 start-page: 1245 issue: 8–9 year: 2007 end-page: 1256 ident: CR54 article-title: Study of non-linear wave motions and wave forces on ship sections against vertical quay in a harbor publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2006.06.005 – volume: 812 start-page: 905 year: 2017 end-page: 939 ident: CR58 article-title: Gap resonance and higher harmonics driven by focused transient wave groups publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2016.824 – volume: 32 start-page: 54 issue: 1 year: 2020 end-page: 69 ident: CR52 article-title: A dynamic solution for predicting resonant frequency of piston mode fluid oscillation in moonpools/narrow gaps publication-title: Journal of Hydrodynamics doi: 10.1007/s42241-019-0060-y – volume: 37 start-page: 458 issue: 3 year: 2023 end-page: 470 ident: CR13 article-title: Numerical investigations on harbor oscillations induced by falling objects publication-title: China Ocean Engineering doi: 10.1007/s13344-023-0038-y – volume: 266 start-page: 112835 year: 2022 ident: CR3 article-title: Higher-order gap resonance and heave response of two side-by-side barges under Stokes and cnoidal waves publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.112835 – volume: 32 start-page: 092101 issue: 9 year: 2020 ident: CR41 article-title: Two-dimensional numerical study of gap resonance coupling with motions of floating body moored close to a bottom-mounted wall publication-title: Physics of Fluids doi: 10.1063/5.0017947 – volume: 20 start-page: 611 issue: 5 year: 2008 end-page: 616 ident: CR60 article-title: A time domain investigation on the hydrodynamic resonance phenomena of 3-D multiple floating structures publication-title: Journal of Hydrodynamics, Ser. B doi: 10.1016/S1001-6058(08)60102-X – volume: 28 start-page: 767 issue: 5 year: 2016 end-page: 777 ident: CR35 article-title: Study of fluid resonance between two side-by-side floating barges publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(16)60679-0 – volume: 173 start-page: 28 year: 2019 end-page: 44 ident: CR22 article-title: On hydrodynamic characteristics of gap resonance between two fixed bodies in close proximity publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2018.12.052 – volume: 36 start-page: 403 issue: 3 year: 2022 end-page: 412 ident: CR26 article-title: Investigation on effects of vertical degree of freedom on gap resonance between two side-by-side boxes under wave actions publication-title: China Ocean Engineering doi: 10.1007/s13344-022-0036-5 – volume: 116 start-page: 102892 year: 2021 ident: CR53 article-title: Numerical investigation of wave actions on two side by side boxes in close proximity using IMLPG_R method publication-title: Applied Ocean Research doi: 10.1016/j.apor.2021.102892 – volume: 36 start-page: 994 issue: 6 year: 2022 end-page: 1006 ident: CR19 article-title: Study on transient gap resonance with consideration of the motion of floating body publication-title: China Ocean Engineering doi: 10.1007/s13344-022-0087-7 – ident: CR42 – volume: 34 start-page: 122106 issue: 12 year: 2022 ident: CR49 article-title: Fully nonlinear numerical investigations on the dynamics of fluid resonance between multiple bodies in close proximity publication-title: Physics of Fluids doi: 10.1063/5.0124470 – volume: 258 start-page: 111726 year: 2022 ident: CR57 article-title: Fluid resonance in the narrow gap for a box close to a bottom-mounted wall with permeable bed publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.111726 – volume: 106 start-page: 1 year: 2019 end-page: 19 ident: CR36 article-title: Fully nonlinear analysis of second-order gap resonance between two floating barges publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2019.05.002 – volume: 43 start-page: 39 issue: 1 year: 2001 end-page: 58 ident: CR43 article-title: Water wave interaction of twin large scale caissons with a small gap between publication-title: Coastal Engineering Journal doi: 10.1142/S0578563401000268 – volume: 93 start-page: 15 year: 2014 end-page: 31 ident: CR10 article-title: Extreme wave generation using self correcting method-Revisited publication-title: Coastal Engineering doi: 10.1016/j.coastaleng.2014.07.003 – volume: 281 start-page: 114923 year: 2023 ident: CR21 article-title: Mechanism analysis on the mitigation of harbor resonance by periodic undulating topography publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2023.114923 – volume: 10 start-page: 1150896 year: 2023 ident: CR24 article-title: An experimental study on nonlinear wave dynamics for freak waves over an uneven bottom publication-title: Frontiers in Marine Science doi: 10.3389/fmars.2023.1150896 – volume: 206 start-page: 107323 year: 2020 ident: CR18 article-title: Numerical investigations of wave loads on fixed box in front of vertical wall with a narrow gap under wave actions publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2020.107323 – volume: 70 start-page: 1073 issue: 9 year: 2012 end-page: 1088 ident: CR28 article-title: A wave generation toolbox for the open-source CFD library: OpenFoam® publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.2726 – volume: 51 start-page: 320 year: 2015 end-page: 330 ident: CR47 article-title: An experimental study of the wave excitation in the gap between two closely spaced bodies, with implications for LNG offloading publication-title: Applied Ocean Research doi: 10.1016/j.apor.2015.01.010 – volume: 229 start-page: 108936 year: 2021 ident: CR12 article-title: A wavelet-based wave group detector and predictor of extreme events over unidirectional sloping bathymetry publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.108936 – volume: 212 start-page: 107628 year: 2020 ident: CR14 article-title: Numerical investigations of gap resonance excited by focused transient wave groups publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2020.107628 – ident: CR5 – volume: 34 start-page: 052113 issue: 5 year: 2022 ident: CR4 article-title: Higher-order gap resonance between two identical fixed barges: A study on the effect of water depth publication-title: Physics of Fluids doi: 10.1063/5.0089564 – volume: 180 start-page: 97 year: 2019 end-page: 107 ident: CR17 article-title: Topographic effects on wave resonance in the narrow gap between fixed box and vertical wall publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2019.03.040 – volume: 35 start-page: 490 issue: 4 year: 2021 end-page: 503 ident: CR27 article-title: Effects of free heave motion on wave forces on two side-by-side boxes in close proximity under wave actions publication-title: China Ocean Engineering doi: 10.1007/s13344-021-0045-9 – volume: 117 start-page: 102966 year: 2021 ident: CR50 article-title: An effective resonant wave absorber for long regular water waves publication-title: Applied Ocean Research doi: 10.1016/j.apor.2021.102966 – volume: 88 start-page: 91 year: 2014 end-page: 109 ident: CR1 article-title: Numerical investigation of wave-structure interaction using OpenFOAM publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2014.06.003 – volume: 32 start-page: 158 issue: 2 year: 2010 end-page: 176 ident: CR34 article-title: A two-dimensional numerical and experimental study of resonant coupled ship and piston-mode motion publication-title: Applied Ocean Research doi: 10.1016/j.apor.2009.10.001 – volume: 263 start-page: 112430 year: 2022 ident: CR40 article-title: Investigations on the second-order transient gap resonance induced by focused wave groups publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.112430 – volume: 153 start-page: 1 year: 2018 end-page: 9 ident: CR59 article-title: Estimation of gap resonance relevant to side-by-side offloading publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2018.01.056 – volume: 430 start-page: 27 year: 2001 end-page: 50 ident: CR44 article-title: On the piston and sloshing modes in moonpools publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112000002871 – volume: 373 start-page: 20140109 issue: 2033 year: 2015 ident: CR11 article-title: Wave-induced response of a floating two-dimensional body with a moon-pool publication-title: Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2014.0109 – volume: 145 start-page: 44 year: 2017 end-page: 58 ident: CR9 article-title: Numerical investigation of viscous effects on the gap resonance between side-by-side barges publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2017.08.060 – volume: 35 start-page: 712 issue: 5 year: 2021 end-page: 723 ident: CR25 article-title: Harmonic analyses of hydrodynamic characteristics for gap resonance between fixed box and vertical wall publication-title: China Ocean Engineering doi: 10.1007/s13344-021-0063-7 – volume: 11 start-page: 448 issue: 2 year: 2023 ident: CR15 article-title: Study on wave loads during steady-state gap resonance with free heave motion of floating structure publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse11020448 – ident: CR6 – volume: 5 start-page: 084801 issue: 8 year: 2020 ident: CR39 article-title: Liquid sloshing in an upright circular tank under periodic and transient excitations publication-title: Physical Review Fluids doi: 10.1103/PhysRevFluids.5.084801 – volume: 141 start-page: 04015023 issue: 8 year: 2015 ident: CR45 article-title: Hydrodynamic difference of rectangular-box systems with and without narrow gaps publication-title: Journal of Engineering Mechanics doi: 10.1061/(ASCE)EM.1943-7889.0000935 – volume: 192 start-page: 106552 year: 2019 ident: CR32 article-title: On hydrodynamic behavior of fluid resonance in moonpool and its suppression by using various convex appendages publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2019.106552 – volume: 142 start-page: 021205 issue: 2 year: 2020 ident: CR8 article-title: Experimental and numerical study for drillship moonpool gap resonances in stationary and transit conditions in wave flume publication-title: Journal of Offshore Mechanics and Arctic Engineering doi: 10.1115/1.4045623 – volume: 2 start-page: E20 year: 2022 ident: CR38 article-title: Wave actions on side-by-side barges with sloshing effects: fixed-free arrangement publication-title: Flow doi: 10.1017/flo.2022.14 – volume: 77 start-page: 14 year: 2018 end-page: 25 ident: CR46 article-title: Experimental and numerical study on wave response at the gap between two barges of different draughts publication-title: Applied Ocean Research doi: 10.1016/j.apor.2018.05.010 – ident: CR48 – volume: 268 start-page: 113518 year: 2023 ident: CR7 article-title: Numerical investigation on nonlinear evolution behavior and water particle velocity of wave crests for narrow-band wave field with Gaussian spectrum publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.113518 – volume: 250 start-page: 110513 year: 2022 ident: CR30 article-title: Numerical simulation for internal baffle effect on suppressing sway-sloshing coupled motion response publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.110513 – volume: 268 start-page: 113376 year: 2023 ident: CR61 article-title: A constant parameter time domain model for dynamic modelling of multi-body system with strong hydrodynamic interactions publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.113376 – volume: 111 start-page: 102581 year: 2021 ident: CR37 article-title: Numerical and experimental investigations into fluid resonance in a gap between two side-by-side vessels publication-title: Applied Ocean Research doi: 10.1016/j.apor.2021.102581 – volume: 110 start-page: 102628 year: 2021 ident: CR23 article-title: Two-dimensional numerical study on fluid resonance in the narrow gap between two rigid-connected heave boxes in waves publication-title: Applied Ocean Research doi: 10.1016/j.apor.2021.102628 – volume: 30 start-page: 1 issue: 2 year: 2006 end-page: 20 ident: CR29 article-title: Automatic mesh motion for the unstructured finite volume method publication-title: Transactions of FAMENA – volume: 214 start-page: 107698 year: 2020 ident: CR31 article-title: Numerical simulation for hydrodynamic behavior of box-systems with and without narrow gaps publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2020.107698 – volume: 34 start-page: 647 issue: 4 year: 2022 end-page: 664 ident: CR33 article-title: Numerical study of fluid resonance of a two-dimensional heaving-free moonpool in a wide range of incident waves publication-title: Journal of Hydrodynamics doi: 10.1007/s42241-022-0054-z – volume: 253 start-page: 111305 year: 2022 ident: CR56 article-title: Three-dimensional (3D) semi-analytical solution of wave-induced fluid resonance in narrow gaps of caisson-type breakwaters publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.111305 – volume: 260 start-page: 112192 year: 2022 ident: CR2 article-title: Hydrodynamic analysis of resonant waves within the gap between a vessel and a vertical quay wall publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.112192 – volume: 268 start-page: 113415 year: 2023 ident: CR55 article-title: Numerical investigation of wave run-up and load on heaving cylinder subjected to regular waves publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.113415 – volume: 28 start-page: 767 issue: 5 year: 2016 ident: 57_CR35 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(16)60679-0 – volume: 32 start-page: 092101 issue: 9 year: 2020 ident: 57_CR41 publication-title: Physics of Fluids doi: 10.1063/5.0017947 – volume: 145 start-page: 44 year: 2017 ident: 57_CR9 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2017.08.060 – volume: 37 start-page: 458 issue: 3 year: 2023 ident: 57_CR13 publication-title: China Ocean Engineering doi: 10.1007/s13344-023-0038-y – volume: 250 start-page: 110513 year: 2022 ident: 57_CR30 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.110513 – volume: 116 start-page: 102892 year: 2021 ident: 57_CR53 publication-title: Applied Ocean Research doi: 10.1016/j.apor.2021.102892 – volume: 812 start-page: 905 year: 2017 ident: 57_CR58 publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2016.824 – volume: 34 start-page: 647 issue: 4 year: 2022 ident: 57_CR33 publication-title: Journal of Hydrodynamics doi: 10.1007/s42241-022-0054-z – ident: 57_CR42 – volume: 173 start-page: 28 year: 2019 ident: 57_CR22 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2018.12.052 – volume: 158 start-page: 103670 year: 2020 ident: 57_CR20 publication-title: Coastal Engineering doi: 10.1016/j.coastaleng.2020.103670 – volume: 263 start-page: 112430 year: 2022 ident: 57_CR40 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.112430 – volume: 36 start-page: 994 issue: 6 year: 2022 ident: 57_CR19 publication-title: China Ocean Engineering doi: 10.1007/s13344-022-0087-7 – volume: 224 start-page: 108753 year: 2021 ident: 57_CR16 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.108753 – volume: 268 start-page: 113518 year: 2023 ident: 57_CR7 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.113518 – volume: 253 start-page: 111305 year: 2022 ident: 57_CR56 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.111305 – volume: 20 start-page: 611 issue: 5 year: 2008 ident: 57_CR60 publication-title: Journal of Hydrodynamics, Ser. B doi: 10.1016/S1001-6058(08)60102-X – volume: 93 start-page: 15 year: 2014 ident: 57_CR10 publication-title: Coastal Engineering doi: 10.1016/j.coastaleng.2014.07.003 – volume: 35 start-page: 712 issue: 5 year: 2021 ident: 57_CR25 publication-title: China Ocean Engineering doi: 10.1007/s13344-021-0063-7 – volume: 260 start-page: 112192 year: 2022 ident: 57_CR2 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.112192 – volume: 36 start-page: 403 issue: 3 year: 2022 ident: 57_CR26 publication-title: China Ocean Engineering doi: 10.1007/s13344-022-0036-5 – volume: 268 start-page: 113376 year: 2023 ident: 57_CR61 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.113376 – volume: 266 start-page: 112835 year: 2022 ident: 57_CR3 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.112835 – ident: 57_CR5 – volume: 30 start-page: 1 issue: 2 year: 2006 ident: 57_CR29 publication-title: Transactions of FAMENA – volume: 268 start-page: 113415 year: 2023 ident: 57_CR55 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.113415 – volume: 70 start-page: 1073 issue: 9 year: 2012 ident: 57_CR28 publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.2726 – volume: 106 start-page: 1 year: 2019 ident: 57_CR36 publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2019.05.002 – volume: 373 start-page: 20140109 issue: 2033 year: 2015 ident: 57_CR11 publication-title: Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2014.0109 – volume: 141 start-page: 04015023 issue: 8 year: 2015 ident: 57_CR45 publication-title: Journal of Engineering Mechanics doi: 10.1061/(ASCE)EM.1943-7889.0000935 – volume: 142 start-page: 021205 issue: 2 year: 2020 ident: 57_CR8 publication-title: Journal of Offshore Mechanics and Arctic Engineering doi: 10.1115/1.4045623 – volume: 11 start-page: 448 issue: 2 year: 2023 ident: 57_CR15 publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse11020448 – volume: 34 start-page: 052113 issue: 5 year: 2022 ident: 57_CR4 publication-title: Physics of Fluids doi: 10.1063/5.0089564 – volume: 206 start-page: 107323 year: 2020 ident: 57_CR18 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2020.107323 – volume: 212 start-page: 107628 year: 2020 ident: 57_CR14 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2020.107628 – ident: 57_CR6 – ident: 57_CR48 – volume: 110 start-page: 102628 year: 2021 ident: 57_CR23 publication-title: Applied Ocean Research doi: 10.1016/j.apor.2021.102628 – volume: 111 start-page: 102581 year: 2021 ident: 57_CR37 publication-title: Applied Ocean Research doi: 10.1016/j.apor.2021.102581 – volume: 430 start-page: 27 year: 2001 ident: 57_CR44 publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112000002871 – volume: 88 start-page: 91 year: 2014 ident: 57_CR1 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2014.06.003 – volume: 229 start-page: 108936 year: 2021 ident: 57_CR12 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.108936 – volume-title: Dissipative effects of resonant waves in confined space formed by floating box in front of vertical wall year: 2014 ident: 57_CR51 – volume: 34 start-page: 122106 issue: 12 year: 2022 ident: 57_CR49 publication-title: Physics of Fluids doi: 10.1063/5.0124470 – volume: 153 start-page: 1 year: 2018 ident: 57_CR59 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2018.01.056 – volume: 35 start-page: 490 issue: 4 year: 2021 ident: 57_CR27 publication-title: China Ocean Engineering doi: 10.1007/s13344-021-0045-9 – volume: 10 start-page: 1150896 year: 2023 ident: 57_CR24 publication-title: Frontiers in Marine Science doi: 10.3389/fmars.2023.1150896 – volume: 2 start-page: E20 year: 2022 ident: 57_CR38 publication-title: Flow doi: 10.1017/flo.2022.14 – volume: 51 start-page: 320 year: 2015 ident: 57_CR47 publication-title: Applied Ocean Research doi: 10.1016/j.apor.2015.01.010 – volume: 77 start-page: 14 year: 2018 ident: 57_CR46 publication-title: Applied Ocean Research doi: 10.1016/j.apor.2018.05.010 – volume: 258 start-page: 111726 year: 2022 ident: 57_CR57 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.111726 – volume: 32 start-page: 54 issue: 1 year: 2020 ident: 57_CR52 publication-title: Journal of Hydrodynamics doi: 10.1007/s42241-019-0060-y – volume: 281 start-page: 114923 year: 2023 ident: 57_CR21 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2023.114923 – volume: 180 start-page: 97 year: 2019 ident: 57_CR17 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2019.03.040 – volume: 43 start-page: 39 issue: 1 year: 2001 ident: 57_CR43 publication-title: Coastal Engineering Journal doi: 10.1142/S0578563401000268 – volume: 5 start-page: 084801 issue: 8 year: 2020 ident: 57_CR39 publication-title: Physical Review Fluids doi: 10.1103/PhysRevFluids.5.084801 – volume: 32 start-page: 158 issue: 2 year: 2010 ident: 57_CR34 publication-title: Applied Ocean Research doi: 10.1016/j.apor.2009.10.001 – volume: 192 start-page: 106552 year: 2019 ident: 57_CR32 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2019.106552 – volume: 214 start-page: 107698 year: 2020 ident: 57_CR31 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2020.107698 – volume: 34 start-page: 1245 issue: 8–9 year: 2007 ident: 57_CR54 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2006.06.005 – volume: 117 start-page: 102966 year: 2021 ident: 57_CR50 publication-title: Applied Ocean Research doi: 10.1016/j.apor.2021.102966 |
SSID | ssj0051541 |
Score | 2.3578386 |
Snippet | The current study investigates the hydrodynamic characteristics of gap resonance within a narrow gap formed by two adjacent boxes subjected to incident focused... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 685 |
SubjectTerms | Boxes Coastal Sciences Degrees of freedom Engineering Fluid- and Aerodynamics Heaving Marine & Freshwater Sciences Mathematical analysis Numerical and Computational Physics Oceanography Offshore Engineering Resonance Simulation Vertical forces Wave amplification Wave amplitude Wave forces Wave groups Wave tanks |
Title | Influences of Floater Motion on Gap Resonance Triggered by Focused Wave Groups |
URI | https://link.springer.com/article/10.1007/s13344-023-0057-8 https://www.proquest.com/docview/2865323959 https://d.wanfangdata.com.cn/periodical/zghygc-e202304014 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9qKC6FSclxHEJyWQNUkvj0PcprL5suF8KkmazAfpxE5h_nqTrrUTZCD0odDTUM5Jc75czvcBXBJPEN02GnPFA-w6CZZMSRzwRBjP-GHIXHHyYOj3x-x-widFHXdWnnYvtyTzkboqdqOUMWxzDHYVlDjchDq3U3d3jm_sdcrh1-bnXK6ShBHBDo6XW5l_NfE7GVUI82dTNC_lSY1IpytZp7sHuwVcRJ1lfPdhQ6cN2F4hEWzAzqPSIi2Ypw9geFfKjmRoZlD3dWbR5Dsa5Go9yF498Ybcor1j2tBoZGfnU6fXieQCdWfqI7O3T-JTo3xVKjuEcfd2dNPHhWgCVpSTOU60SkJGpda-TLTna4_INlFtqrjJ2dilhTS-JwSJAiGsmSSMai4lCRwbWkKPoJbOUn0MKAptrAiNTOITJo2IAs79xBHMRMbiAt0EUnovVgWjuBO2eI0rLmTn8Ng6PHYOj8MmXP288rak01hnfFaGJC7-rCx2lbTUfimPmnBdhql6vKaxiyKSlfHX9GUxVbF2EvJ2MGuzk381eQpbXt6X3HHAM6jN3z_0uYUoc9mCeqf3_HDbyrvmNyCY3I4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4a5QGGtAsw0Y0Na-IJZOTGdi6PaKKUS7uXIuDJsh27k4ZSRFqk9tdjpzEBhJCQ8hApjuXYJz6ffXy-D2CXRJKYjjWYa55gbyRYMa1wwnNpIxunKfPJyf1B3Ltgp1f8qs7jLsNp9xCSrGbqJtmNUsaw8zHYZ1DidAmWmVuCsxYsHx5fnx2FCdh56EqwkqQZwR6Qh2Dma5U8d0cNxnwMi1bJPIWVxeiJ3-l-hmFo8eK4yf-D6UQd6PkLMsd3ftIX-FTjUHS4MJyv8MEU6_DxCTvhOqz91UYWNaX1BgxOgp5JicYWdW_GDqbeoX4lA4TcdSxvkY8GeAoPg4Zu2T_yQqBIzVB3rKelu72U9wZV213lJlx0j4Z_erhWY8CacjLBudF5yqgyJla5iWITEdUhukM1txXNu3JYKY6kJFkipSumCKOGK0UST7OW02_QKsaF2QKUpc4ICM1sHhOmrMwSzuPcM9dk1gEO0wYSBkXomqrcK2bciIZk2feccD0nfM-JtA17j6_cLng63iq8HUZa1L9sKXyKLnUt5Vkb9sNwNY_fqOx3bSBN4fno32ykhfHa9G6W7LDv76pyB1Z6w_65OD8ZnP2A1agyEH_mcBtak7up-elw0ET9qu3-AY3l-qw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9UwFD7BS2LURBE1XkVpDE-SQu_a7scjUQaIXH2AgE-17dppJLs3d7sm8Nfb7q4MiCExJntYsrOma097vuz0fB_ABokkMSNrMNc8wd5JsGJa4YQX0kY2TlPmi5OPxvH-Cft0xs86ndM6nHYPKclFTYNnaaqa7Wlht_vCN0oZwy7eYF9NidN7sMw8N_sAlnf2vh3uhs3YRetWvJKkGcEenIfE5t8auRmaerx5lSJtC3sqK6vyWgzKn8D30PvF0ZNfW_NGbenLW8SO__F5K_C4w6doZ-FQT2HJVKvw8Bpr4So8-qKNrDqq62cwPgg6JzWaWJSfTxx8naGjVh4IuWtPTpHPEnhqD4OOZz_L0guEInWB8ome1-72VP42qP0NVj-Hk3z3-MM-7lQasKacNLgwukgZVcbEqjBRbCKiRkSPqOa2pX9XDkPFkZQkS6R0ZoowarhSJPH0awV9AYNqUpmXgLLUOQehmS1iwpSVWcJ5XHhGm8w6IGKGQMIECd1RmHsljXPRky_7kRNu5IQfOZEO4f3VK9MFf8ddxmth1kW3lGvhS3ep6ynPhrAZpq5_fEdj7zpn6Y0vyx8XpRbGa9a73XPEXv1Tk-tw_-vHXHw-GB--hgdR6x_-KOIaDJrZ3Lxx8KhRb7sl8AfJLwOf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+Floater+Motion+on+Gap+Resonance+Triggered+by+Focused+Wave+Groups&rft.jtitle=China+ocean+engineering&rft.au=Jun-liang%2C+Gao&rft.au=Lyu+Jing&rft.au=Zhang%2C+Jian&rft.au=Zang%2C+Jun&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=37&rft.issue=4&rft.spage=685&rft.epage=697&rft_id=info:doi/10.1007%2Fs13344-023-0057-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg |