Influences of Floater Motion on Gap Resonance Triggered by Focused Wave Groups

The current study investigates the hydrodynamic characteristics of gap resonance within a narrow gap formed by two adjacent boxes subjected to incident focused transient wave groups. A two-dimensional (2D) numerical wave tank based on the OpenFOAM package is utilized for this purpose. The weather-si...

Full description

Saved in:
Bibliographic Details
Published inChina ocean engineering Vol. 37; no. 4; pp. 685 - 697
Main Authors Gao, Jun-liang, Lyu, Jing, Zhang, Jian, Zang, Jun
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2023
Springer Nature B.V
Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources,Guangzhou 510611,China%School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China%Centre for Infrastructure,Geotechnical and Water Engineering(IGWE),Department of Architecture and Civil Engineering,University of Bath,BA2 7AY,UK
Key Laboratory of Port,Waterway and Sedimentation Engineering of MOT,Nanjing Hydraulic Research Institute,Nanjing 210029,China
School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China
Subjects
Online AccessGet full text
ISSN0890-5487
2191-8945
DOI10.1007/s13344-023-0057-8

Cover

Loading…
Abstract The current study investigates the hydrodynamic characteristics of gap resonance within a narrow gap formed by two adjacent boxes subjected to incident focused transient wave groups. A two-dimensional (2D) numerical wave tank based on the OpenFOAM package is utilized for this purpose. The weather-side box is fixed while the lee-side box is allowed to heave freely under wave actions. The effects of the focused wave amplitude and spectral peak period on the wave amplification within the gap, motion of the lee-side box, and wave forces (including horizontal and vertical wave forces) acting on each box are systematically examined. For comparison, another structural layout consisting of two fixed boxes is also considered. The results reveal that the release of the heave degree of freedom (DoF) of the leeside box results in remarkably distinct resonance features. In the heave-box system, both its fluid resonant period and the period corresponding to the maximum heave displacement of the lee-side box are significantly larger (i.e., 1.6–1.7 times) than the fluid resonant period of the fixed-box system. However, the wave amplification factor inside the gap in the heave-box system is significantly lower than that in the fixed-box one. Both the variations of the maximum horizontal and vertical wave forces with the spectral peak period and their magnitudes are also significantly different between the two structural systems.
AbstractList The current study investigates the hydrodynamic characteristics of gap resonance within a narrow gap formed by two adjacent boxes subjected to incident focused transient wave groups.A two-dimensional(2D)numerical wave tank based on the OpenFOAM package is utilized for this purpose.The weather-side box is fixed while the lee-side box is allowed to heave freely under wave actions.The effects of the focused wave amplitude and spectral peak period on the wave amplification within the gap,motion of the lee-side box,and wave forces(including horizontal and vertical wave forces)acting on each box are systematically examined.For comparison,another structural layout consisting of two fixed boxes is also considered.The results reveal that the release of the heave degree of freedom(DoF)of the lee-side box results in remarkably distinct resonance features.In the heave-box system,both its fluid resonant period and the period corresponding to the maximum heave displacement of the lee-side box are significantly larger(i.e.,1.6-1.7 times)than the fluid resonant period of the fixed-box system.However,the wave amplification factor inside the gap in the heave-box system is significantly lower than that in the fixed-box one.Both the variations of the maximum horizontal and vertical wave forces with the spectral peak period and their magnitudes are also significantly different between the two structural systems.
The current study investigates the hydrodynamic characteristics of gap resonance within a narrow gap formed by two adjacent boxes subjected to incident focused transient wave groups. A two-dimensional (2D) numerical wave tank based on the OpenFOAM package is utilized for this purpose. The weather-side box is fixed while the lee-side box is allowed to heave freely under wave actions. The effects of the focused wave amplitude and spectral peak period on the wave amplification within the gap, motion of the lee-side box, and wave forces (including horizontal and vertical wave forces) acting on each box are systematically examined. For comparison, another structural layout consisting of two fixed boxes is also considered. The results reveal that the release of the heave degree of freedom (DoF) of the leeside box results in remarkably distinct resonance features. In the heave-box system, both its fluid resonant period and the period corresponding to the maximum heave displacement of the lee-side box are significantly larger (i.e., 1.6–1.7 times) than the fluid resonant period of the fixed-box system. However, the wave amplification factor inside the gap in the heave-box system is significantly lower than that in the fixed-box one. Both the variations of the maximum horizontal and vertical wave forces with the spectral peak period and their magnitudes are also significantly different between the two structural systems.
Author Gao, Jun-liang
Zang, Jun
Zhang, Jian
Lyu, Jing
AuthorAffiliation School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China;Key Laboratory of Port,Waterway and Sedimentation Engineering of MOT,Nanjing Hydraulic Research Institute,Nanjing 210029,China;Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources,Guangzhou 510611,China%School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China%Centre for Infrastructure,Geotechnical and Water Engineering(IGWE),Department of Architecture and Civil Engineering,University of Bath,BA2 7AY,UK
AuthorAffiliation_xml – name: School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China;Key Laboratory of Port,Waterway and Sedimentation Engineering of MOT,Nanjing Hydraulic Research Institute,Nanjing 210029,China;Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources,Guangzhou 510611,China%School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China%Centre for Infrastructure,Geotechnical and Water Engineering(IGWE),Department of Architecture and Civil Engineering,University of Bath,BA2 7AY,UK
Author_xml – sequence: 1
  givenname: Jun-liang
  surname: Gao
  fullname: Gao, Jun-liang
  organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Key Laboratory of Port, Waterway and Sedimentation Engineering of MOT, Nanjing Hydraulic Research Institute, Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources
– sequence: 2
  givenname: Jing
  surname: Lyu
  fullname: Lyu, Jing
  organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology
– sequence: 3
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  email: justzj@126.com
  organization: School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology
– sequence: 4
  givenname: Jun
  surname: Zang
  fullname: Zang, Jun
  organization: Centre for Infrastructure, Geotechnical and Water Engineering (IGWE), Department of Architecture and Civil Engineering, University of Bath
BookMark eNp9kE1LxDAQhoMouK7-AG8BTx6qk69texRxV8EPEMVjSNNprazJmrTK-uvNUkEQFAKTw_O-Mzx7ZNt5h4QcMjhhAPlpZEJImQEXGYDKs2KLTDgrWVaUUm2TCRQlZEoW-S7Zi_ElMUxJNiG3V65ZDugsRuobOl9602OgN77vvKPpLcyK3mP0ziSGPoSubTFgTas1nXs7xPR9Mu9IF8EPq7hPdhqzjHjwPafkcX7xcH6ZXd8trs7PrjMrFPRZjbYupKgQZ1WNfIYcKgaWCasarlRZVIyrGTcGytyYhFUgBaqqgpyLUtRiSo7H3g_jGuNa_eKH4NJG_dk-r1urUyMXIIHJxB6N7Cr4twFj_wPzYqZEalRlovKRssHHGLDRtuvNxkIfTLfUDPRGtB5F69SuN6J1kZLsV3IVulcT1v9m-JiJiXXJ6M9Nf4e-AKqBkPo
CitedBy_id crossref_primary_10_1007_s13344_025_0081_y
crossref_primary_10_3390_w15152771
crossref_primary_10_1007_s13344_023_0080_9
crossref_primary_10_1007_s13344_024_0073_3
crossref_primary_10_1016_j_oceaneng_2024_116981
crossref_primary_10_3390_jmse12112068
crossref_primary_10_1016_j_oceaneng_2025_120649
crossref_primary_10_1007_s13344_024_0078_y
crossref_primary_10_1016_j_oceaneng_2024_120056
crossref_primary_10_3390_en17102313
crossref_primary_10_1016_j_oceaneng_2025_120362
crossref_primary_10_1016_j_oceaneng_2024_119941
crossref_primary_10_1016_j_oceaneng_2024_118986
crossref_primary_10_1016_j_oceaneng_2024_117938
Cites_doi 10.1016/j.coastaleng.2020.103670
10.1016/j.oceaneng.2021.108753
10.1016/j.oceaneng.2006.06.005
10.1017/jfm.2016.824
10.1007/s42241-019-0060-y
10.1007/s13344-023-0038-y
10.1016/j.oceaneng.2022.112835
10.1063/5.0017947
10.1016/S1001-6058(08)60102-X
10.1016/S1001-6058(16)60679-0
10.1016/j.oceaneng.2018.12.052
10.1007/s13344-022-0036-5
10.1016/j.apor.2021.102892
10.1007/s13344-022-0087-7
10.1063/5.0124470
10.1016/j.oceaneng.2022.111726
10.1016/j.enganabound.2019.05.002
10.1142/S0578563401000268
10.1016/j.coastaleng.2014.07.003
10.1016/j.oceaneng.2023.114923
10.3389/fmars.2023.1150896
10.1016/j.oceaneng.2020.107323
10.1002/fld.2726
10.1016/j.apor.2015.01.010
10.1016/j.oceaneng.2021.108936
10.1016/j.oceaneng.2020.107628
10.1063/5.0089564
10.1016/j.oceaneng.2019.03.040
10.1007/s13344-021-0045-9
10.1016/j.apor.2021.102966
10.1016/j.oceaneng.2014.06.003
10.1016/j.apor.2009.10.001
10.1016/j.oceaneng.2022.112430
10.1016/j.oceaneng.2018.01.056
10.1017/S0022112000002871
10.1098/rsta.2014.0109
10.1016/j.oceaneng.2017.08.060
10.1007/s13344-021-0063-7
10.3390/jmse11020448
10.1103/PhysRevFluids.5.084801
10.1061/(ASCE)EM.1943-7889.0000935
10.1016/j.oceaneng.2019.106552
10.1115/1.4045623
10.1017/flo.2022.14
10.1016/j.apor.2018.05.010
10.1016/j.oceaneng.2022.113518
10.1016/j.oceaneng.2021.110513
10.1016/j.oceaneng.2022.113376
10.1016/j.apor.2021.102581
10.1016/j.apor.2021.102628
10.1016/j.oceaneng.2020.107698
10.1007/s42241-022-0054-z
10.1016/j.oceaneng.2022.111305
10.1016/j.oceaneng.2022.112192
10.1016/j.oceaneng.2022.113415
ContentType Journal Article
Copyright Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023
Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023
– notice: Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s13344-023-0057-8
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 2191-8945
EndPage 697
ExternalDocumentID zghygc_e202304014
10_1007_s13344_023_0057_8
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
0R~
0VY
188
29B
29~
2B.
2C.
2KG
2KM
30V
4.4
406
408
5GY
5VR
5XA
5XB
8RM
92E
92I
92M
92Q
93N
96X
9D9
9DA
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAJEA
CCEZO
CCVFK
CHBEP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JUIAU
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PT4
Q--
Q-0
R-A
R9I
RLLFE
ROL
RSV
RT1
S..
S1Z
S27
S3B
SCL
SEG
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T8Q
TCJ
TGP
TSG
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
ZMTXR
~A9
~LH
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7TN
ABRTQ
F1W
H96
L.G
4A8
PSX
ID FETCH-LOGICAL-c350t-decd843bee6bde26e20b10c13c5f25598b12562aa097aabeeb043e5bb072393d3
IEDL.DBID U2A
ISSN 0890-5487
IngestDate Thu May 29 03:55:51 EDT 2025
Wed Aug 13 03:22:03 EDT 2025
Thu Apr 24 22:51:19 EDT 2025
Tue Jul 01 01:29:49 EDT 2025
Fri Feb 21 02:41:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords OpenFOAM
gap resonance
wave forces
wave amplification
focused waves
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-decd843bee6bde26e20b10c13c5f25598b12562aa097aabeeb043e5bb072393d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2865323959
PQPubID 2043672
PageCount 13
ParticipantIDs wanfang_journals_zghygc_e202304014
proquest_journals_2865323959
crossref_citationtrail_10_1007_s13344_023_0057_8
crossref_primary_10_1007_s13344_023_0057_8
springer_journals_10_1007_s13344_023_0057_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle China ocean engineering
PublicationTitleAbbrev China Ocean Eng
PublicationTitle_FL China Ocean Engineering
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources,Guangzhou 510611,China%School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China%Centre for Infrastructure,Geotechnical and Water Engineering(IGWE),Department of Architecture and Civil Engineering,University of Bath,BA2 7AY,UK
Key Laboratory of Port,Waterway and Sedimentation Engineering of MOT,Nanjing Hydraulic Research Institute,Nanjing 210029,China
School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources,Guangzhou 510611,China%School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China%Centre for Infrastructure,Geotechnical and Water Engineering(IGWE),Department of Architecture and Civil Engineering,University of Bath,BA2 7AY,UK
– name: Key Laboratory of Port,Waterway and Sedimentation Engineering of MOT,Nanjing Hydraulic Research Institute,Nanjing 210029,China
– name: School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China
References Chen, Zang, Hillis, Morgan, Plummer (CR1) 2014; 88
Gao, He, Zang, Chen, Ding, Wang (CR17) 2019; 180
Zhu, Zhu, Miao (CR60) 2008; 20
Jiang, Liu, Sun, Gu (CR31) 2020; 214
Miao, Saitoh, Ishida (CR43) 2001; 43
Song, Lu, Li, Lou, Tang, Liu (CR50) 2021; 117
Gao, Lyu, Wang, Zhang, Liu, Zang, Zou (CR19) 2022; 36
Wang, Liu, Lu (CR56) 2022; 253
Lu, Tan, Zhou, Zhao, Ikoma (CR41) 2020; 32
Wang, Zou (CR54) 2007; 34
Zhao, Wolgamot, Taylor, Eatock Taylor (CR58) 2017; 812
Fu, Ma, Dong, Perlin (CR12) 2021; 229
Gao, He, Huang, Liu, Zang, Wang (CR16) 2021; 224
Tan, Lu, Liu, Sabodas, Teng (CR51) 2014
Jing, He, Luan, Liu, Yang (CR33) 2022; 34
Ding, Walther, Shao (CR4) 2022; 34
Ning, Su, Zhao, Teng (CR45) 2015; 141
CR6
Fredriksen, Kristiansen, Faltinsen (CR11) 2015; 373
Perić, Swan (CR47) 2015; 51
CR5
He, Gao, Zang, Chen, Liu, Wang (CR27) 2021; 35
Jasak, Tuković (CR29) 2006; 30
CR48
CR42
He, Gao, Chen, Zang, Liu, Wang (CR25) 2021; 35
Gao, Gong, He, Shi, Zang, Zou, Bai (CR15) 2023; 11
Liang, Liu, Chua, De Mello, Choo (CR38) 2022; 2
He, Wu, Mao, Chen, Lin, Dong (CR24) 2023; 10
Gao, Shi, Zang, Liu (CR21) 2023; 281
Wang, Qiao, Jin, Yan, Wang, Li, Ou (CR55) 2023; 268
Zhao, Pan, Lin, Li, Taylor, Efthymiou (CR59) 2018; 153
He, Gao, Shi, Zang, Chen, Liu (CR26) 2022; 36
Molin (CR44) 2001; 430
Gao, Bi, Zhang, Zang (CR13) 2023; 37
Gao, Chen, Zang, Chen, Wang, Zhu (CR14) 2020; 212
Vineesh, Sriram (CR53) 2021; 116
Kristiansen, Faltinsen (CR34) 2010; 32
Liu, Gao, Shi, Zang, Liu (CR40) 2022; 263
Jiang, Sun, Feng, Zhang (CR32) 2019; 192
Gao, Ma, Zang, Dong, Ma, Zhu, Zhou (CR20) 2020; 158
Feng, Magee, Price (CR8) 2020; 142
Li (CR36) 2019; 106
Liang, Chua, Wang, Choo (CR37) 2021; 111
Liang, Santo, Shao, Law, Chan (CR39) 2020; 5
Fernández, Sriram, Schimmels, Oumeraci (CR10) 2014; 93
Feng, Bai, Chen, Qian, Ma (CR9) 2017; 145
Gao, He, Zang, Chen, Ding, Wang (CR18) 2020; 206
Tan, Lu, Tang, Cheng (CR52) 2020; 32
Jiang, Feng, Yan (CR30) 2022; 250
Li, Xu, Yang (CR35) 2016; 28
Fan, Tao, Xie, Wu, Wang (CR7) 2023; 268
Ding, Walther, Shao (CR3) 2022; 266
He, Jing, Jin, Zhang, Zhang, Liu (CR23) 2021; 110
Cong, Teng, Gou, Tan, Liu (CR2) 2022; 260
Song, Lu, Cheng, Liu, Tang, Lou (CR49) 2022; 34
Gao, Zang, Chen, Chen, Ding, Liu (CR22) 2019; 173
Ning, Zhu, Zhang, Zhao (CR46) 2018; 77
Zou, Chen, Zhu, Li, Zhao (CR61) 2023; 268
Yin, Jiang, Geng (CR57) 2022; 258
Jacobsen, Fuhrman, Fredsøe (CR28) 2012; 70
W Zhao (57_CR58) 2017; 812
DZ Ning (57_CR45) 2015; 141
LF Chen (57_CR1) 2014; 88
YF Ding (57_CR3) 2022; 266
SC Jiang (57_CR30) 2022; 250
AG Fredriksen (57_CR11) 2015; 373
L Lu (57_CR41) 2020; 32
JL Gao (57_CR20) 2020; 158
H Liang (57_CR38) 2022; 2
JL Gao (57_CR21) 2023; 281
GP Miao (57_CR43) 2001; 43
JL Gao (57_CR18) 2020; 206
J Fan (57_CR7) 2023; 268
H Fernández (57_CR10) 2014; 93
JL Gao (57_CR14) 2020; 212
PL Jing (57_CR33) 2022; 34
H Liang (57_CR39) 2020; 5
ZW He (57_CR26) 2022; 36
JL Gao (57_CR15) 2023; 11
JS Liu (57_CR40) 2022; 263
H Liang (57_CR37) 2021; 111
L Tan (57_CR52) 2020; 32
SC Jiang (57_CR31) 2020; 214
GH He (57_CR23) 2021; 110
JL Gao (57_CR13) 2023; 37
YL He (57_CR24) 2023; 10
57_CR5
57_CR6
X Feng (57_CR9) 2017; 145
P Vineesh (57_CR53) 2021; 116
ZW He (57_CR27) 2021; 35
ZW Song (57_CR49) 2022; 34
SC Jiang (57_CR32) 2019; 192
T Kristiansen (57_CR34) 2010; 32
X Li (57_CR35) 2016; 28
XL Wang (57_CR55) 2023; 268
B Molin (57_CR44) 2001; 430
M Perić (57_CR47) 2015; 51
L Tan (57_CR51) 2014
PW Cong (57_CR2) 2022; 260
AC Feng (57_CR8) 2020; 142
DG Wang (57_CR54) 2007; 34
NG Jacobsen (57_CR28) 2012; 70
Y Yin (57_CR57) 2022; 258
HR Zhu (57_CR60) 2008; 20
WH Zhao (57_CR59) 2018; 153
JL Gao (57_CR19) 2022; 36
YF Ding (57_CR4) 2022; 34
ZW He (57_CR25) 2021; 35
JL Gao (57_CR22) 2019; 173
MY Zou (57_CR61) 2023; 268
57_CR48
ZW Song (57_CR50) 2021; 117
JL Gao (57_CR17) 2019; 180
H Jasak (57_CR29) 2006; 30
57_CR42
XY Wang (57_CR56) 2022; 253
YJ Li (57_CR36) 2019; 106
JL Gao (57_CR16) 2021; 224
DZ Ning (57_CR46) 2018; 77
RL Fu (57_CR12) 2021; 229
References_xml – volume: 158
  start-page: 103670
  year: 2020
  ident: CR20
  article-title: Numerical investigation of harbor oscillations induced by focused transient wave groups
  publication-title: Coastal Engineering
  doi: 10.1016/j.coastaleng.2020.103670
– volume: 224
  start-page: 108753
  year: 2021
  ident: CR16
  article-title: Effects of free heave motion on wave resonance inside a narrow gap between two boxes under wave actions
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2021.108753
– year: 2014
  ident: CR51
  publication-title: Dissipative effects of resonant waves in confined space formed by floating box in front of vertical wall
– volume: 34
  start-page: 1245
  issue: 8–9
  year: 2007
  end-page: 1256
  ident: CR54
  article-title: Study of non-linear wave motions and wave forces on ship sections against vertical quay in a harbor
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2006.06.005
– volume: 812
  start-page: 905
  year: 2017
  end-page: 939
  ident: CR58
  article-title: Gap resonance and higher harmonics driven by focused transient wave groups
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2016.824
– volume: 32
  start-page: 54
  issue: 1
  year: 2020
  end-page: 69
  ident: CR52
  article-title: A dynamic solution for predicting resonant frequency of piston mode fluid oscillation in moonpools/narrow gaps
  publication-title: Journal of Hydrodynamics
  doi: 10.1007/s42241-019-0060-y
– volume: 37
  start-page: 458
  issue: 3
  year: 2023
  end-page: 470
  ident: CR13
  article-title: Numerical investigations on harbor oscillations induced by falling objects
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-023-0038-y
– volume: 266
  start-page: 112835
  year: 2022
  ident: CR3
  article-title: Higher-order gap resonance and heave response of two side-by-side barges under Stokes and cnoidal waves
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.112835
– volume: 32
  start-page: 092101
  issue: 9
  year: 2020
  ident: CR41
  article-title: Two-dimensional numerical study of gap resonance coupling with motions of floating body moored close to a bottom-mounted wall
  publication-title: Physics of Fluids
  doi: 10.1063/5.0017947
– volume: 20
  start-page: 611
  issue: 5
  year: 2008
  end-page: 616
  ident: CR60
  article-title: A time domain investigation on the hydrodynamic resonance phenomena of 3-D multiple floating structures
  publication-title: Journal of Hydrodynamics, Ser. B
  doi: 10.1016/S1001-6058(08)60102-X
– volume: 28
  start-page: 767
  issue: 5
  year: 2016
  end-page: 777
  ident: CR35
  article-title: Study of fluid resonance between two side-by-side floating barges
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(16)60679-0
– volume: 173
  start-page: 28
  year: 2019
  end-page: 44
  ident: CR22
  article-title: On hydrodynamic characteristics of gap resonance between two fixed bodies in close proximity
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2018.12.052
– volume: 36
  start-page: 403
  issue: 3
  year: 2022
  end-page: 412
  ident: CR26
  article-title: Investigation on effects of vertical degree of freedom on gap resonance between two side-by-side boxes under wave actions
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-022-0036-5
– volume: 116
  start-page: 102892
  year: 2021
  ident: CR53
  article-title: Numerical investigation of wave actions on two side by side boxes in close proximity using IMLPG_R method
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2021.102892
– volume: 36
  start-page: 994
  issue: 6
  year: 2022
  end-page: 1006
  ident: CR19
  article-title: Study on transient gap resonance with consideration of the motion of floating body
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-022-0087-7
– ident: CR42
– volume: 34
  start-page: 122106
  issue: 12
  year: 2022
  ident: CR49
  article-title: Fully nonlinear numerical investigations on the dynamics of fluid resonance between multiple bodies in close proximity
  publication-title: Physics of Fluids
  doi: 10.1063/5.0124470
– volume: 258
  start-page: 111726
  year: 2022
  ident: CR57
  article-title: Fluid resonance in the narrow gap for a box close to a bottom-mounted wall with permeable bed
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.111726
– volume: 106
  start-page: 1
  year: 2019
  end-page: 19
  ident: CR36
  article-title: Fully nonlinear analysis of second-order gap resonance between two floating barges
  publication-title: Engineering Analysis with Boundary Elements
  doi: 10.1016/j.enganabound.2019.05.002
– volume: 43
  start-page: 39
  issue: 1
  year: 2001
  end-page: 58
  ident: CR43
  article-title: Water wave interaction of twin large scale caissons with a small gap between
  publication-title: Coastal Engineering Journal
  doi: 10.1142/S0578563401000268
– volume: 93
  start-page: 15
  year: 2014
  end-page: 31
  ident: CR10
  article-title: Extreme wave generation using self correcting method-Revisited
  publication-title: Coastal Engineering
  doi: 10.1016/j.coastaleng.2014.07.003
– volume: 281
  start-page: 114923
  year: 2023
  ident: CR21
  article-title: Mechanism analysis on the mitigation of harbor resonance by periodic undulating topography
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2023.114923
– volume: 10
  start-page: 1150896
  year: 2023
  ident: CR24
  article-title: An experimental study on nonlinear wave dynamics for freak waves over an uneven bottom
  publication-title: Frontiers in Marine Science
  doi: 10.3389/fmars.2023.1150896
– volume: 206
  start-page: 107323
  year: 2020
  ident: CR18
  article-title: Numerical investigations of wave loads on fixed box in front of vertical wall with a narrow gap under wave actions
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2020.107323
– volume: 70
  start-page: 1073
  issue: 9
  year: 2012
  end-page: 1088
  ident: CR28
  article-title: A wave generation toolbox for the open-source CFD library: OpenFoam®
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.2726
– volume: 51
  start-page: 320
  year: 2015
  end-page: 330
  ident: CR47
  article-title: An experimental study of the wave excitation in the gap between two closely spaced bodies, with implications for LNG offloading
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2015.01.010
– volume: 229
  start-page: 108936
  year: 2021
  ident: CR12
  article-title: A wavelet-based wave group detector and predictor of extreme events over unidirectional sloping bathymetry
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2021.108936
– volume: 212
  start-page: 107628
  year: 2020
  ident: CR14
  article-title: Numerical investigations of gap resonance excited by focused transient wave groups
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2020.107628
– ident: CR5
– volume: 34
  start-page: 052113
  issue: 5
  year: 2022
  ident: CR4
  article-title: Higher-order gap resonance between two identical fixed barges: A study on the effect of water depth
  publication-title: Physics of Fluids
  doi: 10.1063/5.0089564
– volume: 180
  start-page: 97
  year: 2019
  end-page: 107
  ident: CR17
  article-title: Topographic effects on wave resonance in the narrow gap between fixed box and vertical wall
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2019.03.040
– volume: 35
  start-page: 490
  issue: 4
  year: 2021
  end-page: 503
  ident: CR27
  article-title: Effects of free heave motion on wave forces on two side-by-side boxes in close proximity under wave actions
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-021-0045-9
– volume: 117
  start-page: 102966
  year: 2021
  ident: CR50
  article-title: An effective resonant wave absorber for long regular water waves
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2021.102966
– volume: 88
  start-page: 91
  year: 2014
  end-page: 109
  ident: CR1
  article-title: Numerical investigation of wave-structure interaction using OpenFOAM
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2014.06.003
– volume: 32
  start-page: 158
  issue: 2
  year: 2010
  end-page: 176
  ident: CR34
  article-title: A two-dimensional numerical and experimental study of resonant coupled ship and piston-mode motion
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2009.10.001
– volume: 263
  start-page: 112430
  year: 2022
  ident: CR40
  article-title: Investigations on the second-order transient gap resonance induced by focused wave groups
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.112430
– volume: 153
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR59
  article-title: Estimation of gap resonance relevant to side-by-side offloading
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2018.01.056
– volume: 430
  start-page: 27
  year: 2001
  end-page: 50
  ident: CR44
  article-title: On the piston and sloshing modes in moonpools
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112000002871
– volume: 373
  start-page: 20140109
  issue: 2033
  year: 2015
  ident: CR11
  article-title: Wave-induced response of a floating two-dimensional body with a moon-pool
  publication-title: Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rsta.2014.0109
– volume: 145
  start-page: 44
  year: 2017
  end-page: 58
  ident: CR9
  article-title: Numerical investigation of viscous effects on the gap resonance between side-by-side barges
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2017.08.060
– volume: 35
  start-page: 712
  issue: 5
  year: 2021
  end-page: 723
  ident: CR25
  article-title: Harmonic analyses of hydrodynamic characteristics for gap resonance between fixed box and vertical wall
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-021-0063-7
– volume: 11
  start-page: 448
  issue: 2
  year: 2023
  ident: CR15
  article-title: Study on wave loads during steady-state gap resonance with free heave motion of floating structure
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse11020448
– ident: CR6
– volume: 5
  start-page: 084801
  issue: 8
  year: 2020
  ident: CR39
  article-title: Liquid sloshing in an upright circular tank under periodic and transient excitations
  publication-title: Physical Review Fluids
  doi: 10.1103/PhysRevFluids.5.084801
– volume: 141
  start-page: 04015023
  issue: 8
  year: 2015
  ident: CR45
  article-title: Hydrodynamic difference of rectangular-box systems with and without narrow gaps
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/(ASCE)EM.1943-7889.0000935
– volume: 192
  start-page: 106552
  year: 2019
  ident: CR32
  article-title: On hydrodynamic behavior of fluid resonance in moonpool and its suppression by using various convex appendages
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2019.106552
– volume: 142
  start-page: 021205
  issue: 2
  year: 2020
  ident: CR8
  article-title: Experimental and numerical study for drillship moonpool gap resonances in stationary and transit conditions in wave flume
  publication-title: Journal of Offshore Mechanics and Arctic Engineering
  doi: 10.1115/1.4045623
– volume: 2
  start-page: E20
  year: 2022
  ident: CR38
  article-title: Wave actions on side-by-side barges with sloshing effects: fixed-free arrangement
  publication-title: Flow
  doi: 10.1017/flo.2022.14
– volume: 77
  start-page: 14
  year: 2018
  end-page: 25
  ident: CR46
  article-title: Experimental and numerical study on wave response at the gap between two barges of different draughts
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2018.05.010
– ident: CR48
– volume: 268
  start-page: 113518
  year: 2023
  ident: CR7
  article-title: Numerical investigation on nonlinear evolution behavior and water particle velocity of wave crests for narrow-band wave field with Gaussian spectrum
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.113518
– volume: 250
  start-page: 110513
  year: 2022
  ident: CR30
  article-title: Numerical simulation for internal baffle effect on suppressing sway-sloshing coupled motion response
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2021.110513
– volume: 268
  start-page: 113376
  year: 2023
  ident: CR61
  article-title: A constant parameter time domain model for dynamic modelling of multi-body system with strong hydrodynamic interactions
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.113376
– volume: 111
  start-page: 102581
  year: 2021
  ident: CR37
  article-title: Numerical and experimental investigations into fluid resonance in a gap between two side-by-side vessels
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2021.102581
– volume: 110
  start-page: 102628
  year: 2021
  ident: CR23
  article-title: Two-dimensional numerical study on fluid resonance in the narrow gap between two rigid-connected heave boxes in waves
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2021.102628
– volume: 30
  start-page: 1
  issue: 2
  year: 2006
  end-page: 20
  ident: CR29
  article-title: Automatic mesh motion for the unstructured finite volume method
  publication-title: Transactions of FAMENA
– volume: 214
  start-page: 107698
  year: 2020
  ident: CR31
  article-title: Numerical simulation for hydrodynamic behavior of box-systems with and without narrow gaps
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2020.107698
– volume: 34
  start-page: 647
  issue: 4
  year: 2022
  end-page: 664
  ident: CR33
  article-title: Numerical study of fluid resonance of a two-dimensional heaving-free moonpool in a wide range of incident waves
  publication-title: Journal of Hydrodynamics
  doi: 10.1007/s42241-022-0054-z
– volume: 253
  start-page: 111305
  year: 2022
  ident: CR56
  article-title: Three-dimensional (3D) semi-analytical solution of wave-induced fluid resonance in narrow gaps of caisson-type breakwaters
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.111305
– volume: 260
  start-page: 112192
  year: 2022
  ident: CR2
  article-title: Hydrodynamic analysis of resonant waves within the gap between a vessel and a vertical quay wall
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.112192
– volume: 268
  start-page: 113415
  year: 2023
  ident: CR55
  article-title: Numerical investigation of wave run-up and load on heaving cylinder subjected to regular waves
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.113415
– volume: 28
  start-page: 767
  issue: 5
  year: 2016
  ident: 57_CR35
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(16)60679-0
– volume: 32
  start-page: 092101
  issue: 9
  year: 2020
  ident: 57_CR41
  publication-title: Physics of Fluids
  doi: 10.1063/5.0017947
– volume: 145
  start-page: 44
  year: 2017
  ident: 57_CR9
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2017.08.060
– volume: 37
  start-page: 458
  issue: 3
  year: 2023
  ident: 57_CR13
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-023-0038-y
– volume: 250
  start-page: 110513
  year: 2022
  ident: 57_CR30
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2021.110513
– volume: 116
  start-page: 102892
  year: 2021
  ident: 57_CR53
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2021.102892
– volume: 812
  start-page: 905
  year: 2017
  ident: 57_CR58
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2016.824
– volume: 34
  start-page: 647
  issue: 4
  year: 2022
  ident: 57_CR33
  publication-title: Journal of Hydrodynamics
  doi: 10.1007/s42241-022-0054-z
– ident: 57_CR42
– volume: 173
  start-page: 28
  year: 2019
  ident: 57_CR22
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2018.12.052
– volume: 158
  start-page: 103670
  year: 2020
  ident: 57_CR20
  publication-title: Coastal Engineering
  doi: 10.1016/j.coastaleng.2020.103670
– volume: 263
  start-page: 112430
  year: 2022
  ident: 57_CR40
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.112430
– volume: 36
  start-page: 994
  issue: 6
  year: 2022
  ident: 57_CR19
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-022-0087-7
– volume: 224
  start-page: 108753
  year: 2021
  ident: 57_CR16
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2021.108753
– volume: 268
  start-page: 113518
  year: 2023
  ident: 57_CR7
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.113518
– volume: 253
  start-page: 111305
  year: 2022
  ident: 57_CR56
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.111305
– volume: 20
  start-page: 611
  issue: 5
  year: 2008
  ident: 57_CR60
  publication-title: Journal of Hydrodynamics, Ser. B
  doi: 10.1016/S1001-6058(08)60102-X
– volume: 93
  start-page: 15
  year: 2014
  ident: 57_CR10
  publication-title: Coastal Engineering
  doi: 10.1016/j.coastaleng.2014.07.003
– volume: 35
  start-page: 712
  issue: 5
  year: 2021
  ident: 57_CR25
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-021-0063-7
– volume: 260
  start-page: 112192
  year: 2022
  ident: 57_CR2
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.112192
– volume: 36
  start-page: 403
  issue: 3
  year: 2022
  ident: 57_CR26
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-022-0036-5
– volume: 268
  start-page: 113376
  year: 2023
  ident: 57_CR61
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.113376
– volume: 266
  start-page: 112835
  year: 2022
  ident: 57_CR3
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.112835
– ident: 57_CR5
– volume: 30
  start-page: 1
  issue: 2
  year: 2006
  ident: 57_CR29
  publication-title: Transactions of FAMENA
– volume: 268
  start-page: 113415
  year: 2023
  ident: 57_CR55
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.113415
– volume: 70
  start-page: 1073
  issue: 9
  year: 2012
  ident: 57_CR28
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.2726
– volume: 106
  start-page: 1
  year: 2019
  ident: 57_CR36
  publication-title: Engineering Analysis with Boundary Elements
  doi: 10.1016/j.enganabound.2019.05.002
– volume: 373
  start-page: 20140109
  issue: 2033
  year: 2015
  ident: 57_CR11
  publication-title: Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rsta.2014.0109
– volume: 141
  start-page: 04015023
  issue: 8
  year: 2015
  ident: 57_CR45
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/(ASCE)EM.1943-7889.0000935
– volume: 142
  start-page: 021205
  issue: 2
  year: 2020
  ident: 57_CR8
  publication-title: Journal of Offshore Mechanics and Arctic Engineering
  doi: 10.1115/1.4045623
– volume: 11
  start-page: 448
  issue: 2
  year: 2023
  ident: 57_CR15
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse11020448
– volume: 34
  start-page: 052113
  issue: 5
  year: 2022
  ident: 57_CR4
  publication-title: Physics of Fluids
  doi: 10.1063/5.0089564
– volume: 206
  start-page: 107323
  year: 2020
  ident: 57_CR18
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2020.107323
– volume: 212
  start-page: 107628
  year: 2020
  ident: 57_CR14
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2020.107628
– ident: 57_CR6
– ident: 57_CR48
– volume: 110
  start-page: 102628
  year: 2021
  ident: 57_CR23
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2021.102628
– volume: 111
  start-page: 102581
  year: 2021
  ident: 57_CR37
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2021.102581
– volume: 430
  start-page: 27
  year: 2001
  ident: 57_CR44
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112000002871
– volume: 88
  start-page: 91
  year: 2014
  ident: 57_CR1
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2014.06.003
– volume: 229
  start-page: 108936
  year: 2021
  ident: 57_CR12
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2021.108936
– volume-title: Dissipative effects of resonant waves in confined space formed by floating box in front of vertical wall
  year: 2014
  ident: 57_CR51
– volume: 34
  start-page: 122106
  issue: 12
  year: 2022
  ident: 57_CR49
  publication-title: Physics of Fluids
  doi: 10.1063/5.0124470
– volume: 153
  start-page: 1
  year: 2018
  ident: 57_CR59
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2018.01.056
– volume: 35
  start-page: 490
  issue: 4
  year: 2021
  ident: 57_CR27
  publication-title: China Ocean Engineering
  doi: 10.1007/s13344-021-0045-9
– volume: 10
  start-page: 1150896
  year: 2023
  ident: 57_CR24
  publication-title: Frontiers in Marine Science
  doi: 10.3389/fmars.2023.1150896
– volume: 2
  start-page: E20
  year: 2022
  ident: 57_CR38
  publication-title: Flow
  doi: 10.1017/flo.2022.14
– volume: 51
  start-page: 320
  year: 2015
  ident: 57_CR47
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2015.01.010
– volume: 77
  start-page: 14
  year: 2018
  ident: 57_CR46
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2018.05.010
– volume: 258
  start-page: 111726
  year: 2022
  ident: 57_CR57
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.111726
– volume: 32
  start-page: 54
  issue: 1
  year: 2020
  ident: 57_CR52
  publication-title: Journal of Hydrodynamics
  doi: 10.1007/s42241-019-0060-y
– volume: 281
  start-page: 114923
  year: 2023
  ident: 57_CR21
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2023.114923
– volume: 180
  start-page: 97
  year: 2019
  ident: 57_CR17
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2019.03.040
– volume: 43
  start-page: 39
  issue: 1
  year: 2001
  ident: 57_CR43
  publication-title: Coastal Engineering Journal
  doi: 10.1142/S0578563401000268
– volume: 5
  start-page: 084801
  issue: 8
  year: 2020
  ident: 57_CR39
  publication-title: Physical Review Fluids
  doi: 10.1103/PhysRevFluids.5.084801
– volume: 32
  start-page: 158
  issue: 2
  year: 2010
  ident: 57_CR34
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2009.10.001
– volume: 192
  start-page: 106552
  year: 2019
  ident: 57_CR32
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2019.106552
– volume: 214
  start-page: 107698
  year: 2020
  ident: 57_CR31
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2020.107698
– volume: 34
  start-page: 1245
  issue: 8–9
  year: 2007
  ident: 57_CR54
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2006.06.005
– volume: 117
  start-page: 102966
  year: 2021
  ident: 57_CR50
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2021.102966
SSID ssj0051541
Score 2.3578386
Snippet The current study investigates the hydrodynamic characteristics of gap resonance within a narrow gap formed by two adjacent boxes subjected to incident focused...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 685
SubjectTerms Boxes
Coastal Sciences
Degrees of freedom
Engineering
Fluid- and Aerodynamics
Heaving
Marine & Freshwater Sciences
Mathematical analysis
Numerical and Computational Physics
Oceanography
Offshore Engineering
Resonance
Simulation
Vertical forces
Wave amplification
Wave amplitude
Wave forces
Wave groups
Wave tanks
Title Influences of Floater Motion on Gap Resonance Triggered by Focused Wave Groups
URI https://link.springer.com/article/10.1007/s13344-023-0057-8
https://www.proquest.com/docview/2865323959
https://d.wanfangdata.com.cn/periodical/zghygc-e202304014
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9qKC6FSclxHEJyWQNUkvj0PcprL5suF8KkmazAfpxE5h_nqTrrUTZCD0odDTUM5Jc75czvcBXBJPEN02GnPFA-w6CZZMSRzwRBjP-GHIXHHyYOj3x-x-widFHXdWnnYvtyTzkboqdqOUMWxzDHYVlDjchDq3U3d3jm_sdcrh1-bnXK6ShBHBDo6XW5l_NfE7GVUI82dTNC_lSY1IpytZp7sHuwVcRJ1lfPdhQ6cN2F4hEWzAzqPSIi2Ypw9geFfKjmRoZlD3dWbR5Dsa5Go9yF498Ybcor1j2tBoZGfnU6fXieQCdWfqI7O3T-JTo3xVKjuEcfd2dNPHhWgCVpSTOU60SkJGpda-TLTna4_INlFtqrjJ2dilhTS-JwSJAiGsmSSMai4lCRwbWkKPoJbOUn0MKAptrAiNTOITJo2IAs79xBHMRMbiAt0EUnovVgWjuBO2eI0rLmTn8Ng6PHYOj8MmXP288rak01hnfFaGJC7-rCx2lbTUfimPmnBdhql6vKaxiyKSlfHX9GUxVbF2EvJ2MGuzk381eQpbXt6X3HHAM6jN3z_0uYUoc9mCeqf3_HDbyrvmNyCY3I4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4a5QGGtAsw0Y0Na-IJZOTGdi6PaKKUS7uXIuDJsh27k4ZSRFqk9tdjpzEBhJCQ8hApjuXYJz6ffXy-D2CXRJKYjjWYa55gbyRYMa1wwnNpIxunKfPJyf1B3Ltgp1f8qs7jLsNp9xCSrGbqJtmNUsaw8zHYZ1DidAmWmVuCsxYsHx5fnx2FCdh56EqwkqQZwR6Qh2Dma5U8d0cNxnwMi1bJPIWVxeiJ3-l-hmFo8eK4yf-D6UQd6PkLMsd3ftIX-FTjUHS4MJyv8MEU6_DxCTvhOqz91UYWNaX1BgxOgp5JicYWdW_GDqbeoX4lA4TcdSxvkY8GeAoPg4Zu2T_yQqBIzVB3rKelu72U9wZV213lJlx0j4Z_erhWY8CacjLBudF5yqgyJla5iWITEdUhukM1txXNu3JYKY6kJFkipSumCKOGK0UST7OW02_QKsaF2QKUpc4ICM1sHhOmrMwSzuPcM9dk1gEO0wYSBkXomqrcK2bciIZk2feccD0nfM-JtA17j6_cLng63iq8HUZa1L9sKXyKLnUt5Vkb9sNwNY_fqOx3bSBN4fno32ykhfHa9G6W7LDv76pyB1Z6w_65OD8ZnP2A1agyEH_mcBtak7up-elw0ET9qu3-AY3l-qw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9UwFD7BS2LURBE1XkVpDE-SQu_a7scjUQaIXH2AgE-17dppJLs3d7sm8Nfb7q4MiCExJntYsrOma097vuz0fB_ABokkMSNrMNc8wd5JsGJa4YQX0kY2TlPmi5OPxvH-Cft0xs86ndM6nHYPKclFTYNnaaqa7Wlht_vCN0oZwy7eYF9NidN7sMw8N_sAlnf2vh3uhs3YRetWvJKkGcEenIfE5t8auRmaerx5lSJtC3sqK6vyWgzKn8D30PvF0ZNfW_NGbenLW8SO__F5K_C4w6doZ-FQT2HJVKvw8Bpr4So8-qKNrDqq62cwPgg6JzWaWJSfTxx8naGjVh4IuWtPTpHPEnhqD4OOZz_L0guEInWB8ome1-72VP42qP0NVj-Hk3z3-MM-7lQasKacNLgwukgZVcbEqjBRbCKiRkSPqOa2pX9XDkPFkZQkS6R0ZoowarhSJPH0awV9AYNqUpmXgLLUOQehmS1iwpSVWcJ5XHhGm8w6IGKGQMIECd1RmHsljXPRky_7kRNu5IQfOZEO4f3VK9MFf8ddxmth1kW3lGvhS3ep6ynPhrAZpq5_fEdj7zpn6Y0vyx8XpRbGa9a73XPEXv1Tk-tw_-vHXHw-GB--hgdR6x_-KOIaDJrZ3Lxx8KhRb7sl8AfJLwOf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+Floater+Motion+on+Gap+Resonance+Triggered+by+Focused+Wave+Groups&rft.jtitle=China+ocean+engineering&rft.au=Jun-liang%2C+Gao&rft.au=Lyu+Jing&rft.au=Zhang%2C+Jian&rft.au=Zang%2C+Jun&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0890-5487&rft.eissn=2191-8945&rft.volume=37&rft.issue=4&rft.spage=685&rft.epage=697&rft_id=info:doi/10.1007%2Fs13344-023-0057-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzghygc-e%2Fzghygc-e.jpg