Torque-compensation for energy-efficient motion of robotic limbs in a stance

This paper addresses a new variable stiffness actuator (VSA) of a walking robot in a stance that can actively regulate a spring preload through correlation between spring reaction forces and joint variables. Here, VSA aims to realize energy-efficient stance motion of robotic limbs system from changi...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanical science and technology Vol. 32; no. 12; pp. 5907 - 5912
Main Authors Yun, Junghwan, Yi, Hak, Lee, Sangryong
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Mechanical Engineers 01.12.2018
Springer Nature B.V
대한기계학회
Subjects
Online AccessGet full text
ISSN1738-494X
1976-3824
DOI10.1007/s12206-018-1141-5

Cover

Loading…
More Information
Summary:This paper addresses a new variable stiffness actuator (VSA) of a walking robot in a stance that can actively regulate a spring preload through correlation between spring reaction forces and joint variables. Here, VSA aims to realize energy-efficient stance motion of robotic limbs system from changing working conditions of a walking robot. Compared to conventional spring-loaded structures, it can effectively control both a spring stiffness and a spring-clamping configuration on humanoid’s lower body responding on uncertainties. ADAMS / MATLAB co-simulation system and experiments on the proposed VSA system as an active torque compensator are investigated for realizing energy-efficient motion in a robot’s stance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-018-1141-5