SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties

Abstract Motivation Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glyc...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 35; no. 20; pp. 4140 - 4146
Main Authors Taherzadeh, Ghazaleh, Dehzangi, Abdollah, Golchin, Maryam, Zhou, Yaoqi, Campbell, Matthew P
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.10.2019
Online AccessGet full text

Cover

Loading…
Abstract Abstract Motivation Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively. Results The method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features. Availability and implementation http://sparks-lab.org/server/SPRINT-Gly/ Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation, and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively. The method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features. http://sparks-lab.org/server/SPRINT-Gly/. Supplementary data are available at Bioinformatics online.
Abstract Motivation Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively. Results The method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features. Availability and implementation http://sparks-lab.org/server/SPRINT-Gly/ Supplementary information Supplementary data are available at Bioinformatics online.
Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively.MOTIVATIONProtein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively.The method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features.RESULTSThe method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features.http://sparks-lab.org/server/SPRINT-Gly/.AVAILABILITY AND IMPLEMENTATIONhttp://sparks-lab.org/server/SPRINT-Gly/.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Author Golchin, Maryam
Campbell, Matthew P
Zhou, Yaoqi
Taherzadeh, Ghazaleh
Dehzangi, Abdollah
Author_xml – sequence: 1
  givenname: Ghazaleh
  surname: Taherzadeh
  fullname: Taherzadeh, Ghazaleh
  organization: School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
– sequence: 2
  givenname: Abdollah
  surname: Dehzangi
  fullname: Dehzangi, Abdollah
  organization: Department of Computer Science, Morgan State University, Baltimore, MD, USA
– sequence: 3
  givenname: Maryam
  surname: Golchin
  fullname: Golchin, Maryam
  organization: School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
– sequence: 4
  givenname: Yaoqi
  orcidid: 0000-0002-9958-5699
  surname: Zhou
  fullname: Zhou, Yaoqi
  email: yaoqi.zhou@griffith.edu.au
  organization: School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
– sequence: 5
  givenname: Matthew P
  orcidid: 0000-0002-9525-792X
  surname: Campbell
  fullname: Campbell, Matthew P
  email: m.campbell2@griffith.edu.au
  organization: Institute for Glycomics, Griffith University, Parklands Drive, Gold Coast, QLD, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30903686$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uFiEYhYmp6f8laFh2MxYGmBl01TRamzSt0XY9YeCdSsvAJzCL8Rq8aPl-NNGNrmDxnHPgnCO054MHhF5R8oYSyc4HG6wfQ5xUtjqdD_l7TcULdEh5Q6qaCLlX7qxpK94RdoCOUnoiRFDO-T46YEQS1nTNIfrx5dPn69v76sotb_EqgrE6W_-IbyusvMF3lbP-GQx-dIsOaXElLXicbIaEw4i_zpPyG3IKc4LiEDJYn_Cw4DmtjRJ8m8Fr2EC7gOKXcpx1nqNya80KYraQTtDLUbkEp7vzGD18eH9_-bG6ubu6vry4qTQTJFe646OkijWNlnXNZMs1Y6bhaiC0bTtDue6UlCCYEVpLU3OpDR0H1YqRUQrsGJ1tfUt0eV3K_WSTBueUh_KNvqayEXVb-iro6x06DxOYfhXtpOLS_2qwAGIL6BhSijD-Rijp10v1fy7Vb5cqund_6bTNm3ZzVNb9U0226jCv_jPwJ9TYtR4
CitedBy_id crossref_primary_10_1021_acs_chemrev_2c00110
crossref_primary_10_1016_j_sbi_2019_11_009
crossref_primary_10_1016_j_jmb_2025_168977
crossref_primary_10_1016_j_bbadis_2025_167659
crossref_primary_10_1109_ACCESS_2020_3022629
crossref_primary_10_1038_s41598_019_52341_z
crossref_primary_10_1039_D2CP02883B
crossref_primary_10_3389_fmolb_2021_784303
crossref_primary_10_3390_molecules26237314
crossref_primary_10_1002_pmic_201900335
crossref_primary_10_3389_fbioe_2022_788300
crossref_primary_10_3390_axioms11090469
crossref_primary_10_1007_s00109_023_02415_3
crossref_primary_10_1016_j_biotechadv_2022_108008
crossref_primary_10_1038_s41598_022_15403_3
crossref_primary_10_3390_pathogens12030407
crossref_primary_10_1002_pmic_202400210
crossref_primary_10_1093_bioinformatics_btaf034
crossref_primary_10_1002_btpr_3291
crossref_primary_10_1016_j_compbiomed_2021_104212
crossref_primary_10_1016_j_ab_2023_115318
crossref_primary_10_3390_ijms22010229
crossref_primary_10_1016_j_compchemeng_2024_108937
crossref_primary_10_1016_j_ymeth_2024_05_002
crossref_primary_10_1021_acs_jproteome_0c00435
crossref_primary_10_1016_j_bpj_2021_11_009
crossref_primary_10_1093_glycob_cwad033
crossref_primary_10_3390_ijms21249336
crossref_primary_10_3390_v15030611
crossref_primary_10_1093_bioinformatics_btad650
crossref_primary_10_1016_j_cofs_2022_100850
crossref_primary_10_1093_bioinformatics_btae643
crossref_primary_10_1016_j_biopha_2023_114217
crossref_primary_10_1016_j_compbiomed_2024_108859
crossref_primary_10_1016_j_sbi_2019_12_020
crossref_primary_10_3390_ijms23095180
crossref_primary_10_1002_ijch_202200097
crossref_primary_10_1109_ACCESS_2022_3146395
crossref_primary_10_1002_btpr_3283
crossref_primary_10_1128_JVI_00876_21
crossref_primary_10_1126_sciadv_abm8757
crossref_primary_10_7717_peerj_cs_1069
crossref_primary_10_1109_ACCESS_2019_2929237
crossref_primary_10_1371_journal_pcbi_1011939
crossref_primary_10_1016_j_biotechadv_2023_108174
crossref_primary_10_1142_S0219720023500245
crossref_primary_10_1016_j_ijbiomac_2023_124761
Cites_doi 10.1016/j.cell.2018.01.016
10.1101/gr.849004
10.1007/s008940100038
10.1096/fj.14-267096
10.1093/bioinformatics/btu703
10.1093/nar/25.17.3389
10.1093/bioinformatics/btg477
10.1038/nrm3383
10.1016/j.sbi.2009.06.004
10.1093/glycob/cwh004
10.1093/bioinformatics/btu852
10.1186/1471-2105-8-438
10.1371/journal.pone.0067008
10.1080/10409239891204198
10.1007/s00726-016-2362-5
10.1016/j.chembiol.2015.06.017
10.1016/j.bbagen.2012.09.014
10.1093/glycob/cwh151
10.1002/jcc.25353
10.1002/prot.20379
10.1007/s00216-016-9970-5
10.1093/bioinformatics/btx614
10.1186/1471-2105-9-500
10.1002/pro.5560040419
10.1093/nar/gkt1128
10.1371/journal.pone.0040155
10.1093/bioinformatics/btx218
10.1016/j.artmed.2017.02.007
10.1016/S0031-3203(99)00041-2
10.1021/acs.jcim.6b00320
10.1002/pmic.200300771
10.1038/srep11476
10.1007/978-4-431-56454-6_11
10.1016/j.tibs.2009.10.001
10.1145/1961189.1961199
10.1002/prot.25489
10.1093/glycob/cwj099
10.1016/j.neucom.2016.12.038
10.1093/bioinformatics/btl151
10.1093/bioinformatics/btw678
10.1093/nar/gkh131
10.1038/srep18962
10.1186/gb-2006-7-8-r73
10.1093/nar/gkv1240
10.1007/978-3-540-37256-1_89
10.1093/glycob/cwh008
10.1093/glycob/cws110
10.1023/A:1006960004440
10.1038/nchembio.437
10.1002/msb.201304521
10.1093/glycob/cwy059
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019
The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019
– notice: The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1093/bioinformatics/btz215
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 4146
ExternalDocumentID 30903686
10_1093_bioinformatics_btz215
10.1093/bioinformatics/btz215
Genre Journal Article
GrantInformation_xml – fundername: Australia Research Council
  grantid: DP180102060
– fundername: Australian Government Research Training Program Scholarship
– fundername: National Health and Medical Research Council
  grantid: 1121629
  funderid: 10.13039/501100000925
– fundername: Institute for Glycomics
GroupedDBID -~X
.2P
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
F5P
HW0
Q5Y
RD5
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
EJD
M49
NPM
7X8
ID FETCH-LOGICAL-c350t-c84f91a366c9223974c33d64ab01778d14c8a99e53d5cc9d249cd1fba75f311e3
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 03:10:57 EDT 2025
Thu Apr 03 07:09:38 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Tue Jul 01 02:33:48 EDT 2025
Wed Apr 02 07:01:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-c84f91a366c9223974c33d64ab01778d14c8a99e53d5cc9d249cd1fba75f311e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9958-5699
0000-0002-9525-792X
PMID 30903686
PQID 2196527005
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2196527005
pubmed_primary_30903686
crossref_primary_10_1093_bioinformatics_btz215
crossref_citationtrail_10_1093_bioinformatics_btz215
oup_primary_10_1093_bioinformatics_btz215
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Vacic (2023013108282645500_btz215-B47) 2006; 22
Liu (2023013108282645500_btz215-B29) 2017; 234
Julenius (2023013108282645500_btz215-B23) 2005; 15
Caragea (2023013108282645500_btz215-B9) 2007; 8
Kaji (2023013108282645500_btz215-B24) 2017
Mariño (2023013108282645500_btz215-B30) 2010; 6
Yang (2023013108282645500_btz215-B52) 2004; 20
Suga (2023013108282645500_btz215-B42) 2018; 8
Weerapana (2023013108282645500_btz215-B51) 2006; 16
Heffernan (2023013108282645500_btz215-B20) 2017; 33
Yen (2023013108282645500_btz215-B54) 2006
Kudo (2023013108282645500_btz215-B26) 2000; 33
Quang (2023013108282645500_btz215-B37) 2015; 31
Zhang (2023013108282645500_btz215-B55) 2006; 7
Gupta (2023013108282645500_btz215-B14) 2004
Li (2023013108282645500_btz215-B28) 2015; 31
Altschul (2023013108282645500_btz215-B3) 1997; 25
Moremen (2023013108282645500_btz215-B32) 2012; 13
Chauhan (2023013108282645500_btz215-B11) 2012; 7
O'Connell (2023013108282645500_btz215-B34) 2018; 86
Schindler (2023013108282645500_btz215-B39) 1995; 4
Steen (2023013108282645500_btz215-B41) 1998; 33
Ruiz-Blanco (2023013108282645500_btz215-B38) 2017; 49
Heffernan (2023013108282645500_btz215-B19) 2015; 5
Taherzadeh (2023013108282645500_btz215-B43) 2016; 56
Aebi (2023013108282645500_btz215-B2) 2010; 35
Apweiler (2023013108282645500_btz215-B4) 2004; 32
Campbell (2023013108282645500_btz215-B8) 2014; 42
Khatri (2023013108282645500_btz215-B25) 2017; 409
Petrescu (2023013108282645500_btz215-B35) 2004; 14
Vapnik (2023013108282645500_btz215-B48) 2013
Thaysen-Andersen (2023013108282645500_btz215-B46) 2012; 22
Joshi (2023013108282645500_btz215-B22) 2018; 172
Meiler (2023013108282645500_btz215-B31) 2001; 7
Murray (2023013108282645500_btz215-B33) 2015; 22
Taherzadeh (2023013108282645500_btz215-B44) 2017; 34
Chang (2023013108282645500_btz215-B10) 2011; 2
Varki (2023013108282645500_btz215-B49) 2009
Taherzadeh (2023013108282645500_btz215-B45) 2018; 39
Beltrao (2023013108282645500_btz215-B5) 2013; 9
Ben-Dor (2023013108282645500_btz215-B6) 2004; 14
Hamelryck (2023013108282645500_btz215-B16) 2005; 59
Crooks (2023013108282645500_btz215-B13) 2004; 14
Schjoldager (2023013108282645500_btz215-B40) 2012; 1820
Chauhan (2023013108282645500_btz215-B12) 2013; 8
Huang (2023013108282645500_btz215-B21) 2016; 44
Abadi (2023013108282645500_btz215-B1) 2016
Lederkremer (2023013108282645500_btz215-B27) 2009; 19
Wang (2023013108282645500_btz215-B50) 2016; 6
Blom (2023013108282645500_btz215-B7) 2004; 4
Yasuda (2023013108282645500_btz215-B53) 2015; 29
Hansen (2023013108282645500_btz215-B17) 1998; 15
Hanson (2023013108282645500_btz215-B18) 2016; 33
Hamby (2023013108282645500_btz215-B15) 2008; 9
Qiu (2023013108282645500_btz215-B36) 2017; 83
References_xml – volume: 172
  start-page: 632
  year: 2018
  ident: 2023013108282645500_btz215-B22
  article-title: SnapShot: o -glycosylation pathways across kingdoms
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.016
– volume-title: Essentials of Glycobiology
  year: 2009
  ident: 2023013108282645500_btz215-B49
– volume: 14
  start-page: 1188
  year: 2004
  ident: 2023013108282645500_btz215-B13
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Res
  doi: 10.1101/gr.849004
– volume: 7
  start-page: 360
  year: 2001
  ident: 2023013108282645500_btz215-B31
  article-title: Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks
  publication-title: Mol. Model. Annu
  doi: 10.1007/s008940100038
– volume: 29
  start-page: 2412
  year: 2015
  ident: 2023013108282645500_btz215-B53
  article-title: The atypical N-glycosylation motif, Asn-Cys-Cys, in human GPR109A is required for normal cell surface expression and intracellular signaling
  publication-title: FASEB J
  doi: 10.1096/fj.14-267096
– volume: 31
  start-page: 761
  year: 2015
  ident: 2023013108282645500_btz215-B37
  article-title: DANN: a deep learning approach for annotating the pathogenicity of genetic variants
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu703
– volume: 25
  start-page: 3389
  year: 1997
  ident: 2023013108282645500_btz215-B3
  article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 20
  start-page: 735
  year: 2004
  ident: 2023013108282645500_btz215-B52
  article-title: Bio-support vector machines for computational proteomics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg477
– volume: 13
  start-page: 448.
  year: 2012
  ident: 2023013108282645500_btz215-B32
  article-title: Vertebrate protein glycosylation: diversity, synthesis and function
  publication-title: Nat. Rev. Mol. Cell Biol
  doi: 10.1038/nrm3383
– volume: 19
  start-page: 515
  year: 2009
  ident: 2023013108282645500_btz215-B27
  article-title: Glycoprotein folding, quality control and ER-associated degradation
  publication-title: Curr. Opin. Struct. Biol
  doi: 10.1016/j.sbi.2009.06.004
– volume: 14
  start-page: 95
  year: 2004
  ident: 2023013108282645500_btz215-B6
  article-title: Biases and complex patterns in the residues flanking protein N-glycosylation sites
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwh004
– volume: 31
  start-page: 1411
  year: 2015
  ident: 2023013108282645500_btz215-B28
  article-title: GlycoMine: a machine learning-based approach for predicting N-, C-and O-linked glycosylation in the human proteome
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu852
– volume: 8
  start-page: 438.
  year: 2007
  ident: 2023013108282645500_btz215-B9
  article-title: Glycosylation site prediction using ensembles of support vector machine classifiers
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-438
– volume: 8
  start-page: e67008.
  year: 2013
  ident: 2023013108282645500_btz215-B12
  article-title: In silico platform for prediction of N-, O-and C-glycosites in eukaryotic protein sequences
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0067008
– volume: 33
  start-page: 151
  year: 1998
  ident: 2023013108282645500_btz215-B41
  article-title: Concepts and principles of O-linked glycosylation
  publication-title: Crit. Rev. Biochem. Mol. Biol
  doi: 10.1080/10409239891204198
– volume: 49
  start-page: 317
  year: 2017
  ident: 2023013108282645500_btz215-B38
  article-title: Novel “extended sequons” of human N-glycosylation sites improve the precision of qualitative predictions: an alignment-free study of pattern recognition using ProtDCal protein features
  publication-title: Amino Acids
  doi: 10.1007/s00726-016-2362-5
– volume: 22
  start-page: 1052
  year: 2015
  ident: 2023013108282645500_btz215-B33
  article-title: Enhanced aromatic sequons increase oligosaccharyltransferase glycosylation efficiency and glycan homogeneity
  publication-title: Chem. Biol
  doi: 10.1016/j.chembiol.2015.06.017
– volume: 1820
  start-page: 2079
  year: 2012
  ident: 2023013108282645500_btz215-B40
  article-title: Site-specific protein O-glycosylation modulates proprotein processing-deciphering specific functions of the large polypeptide GalNAc-transferase gene family
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2012.09.014
– volume: 15
  start-page: 153
  year: 2005
  ident: 2023013108282645500_btz215-B23
  article-title: Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwh151
– volume: 39
  start-page: 1757
  year: 2018
  ident: 2023013108282645500_btz215-B45
  article-title: Predicting lysine-malonylation sites of proteins using sequence and predicted structural features
  publication-title: J. Comput. Chem
  doi: 10.1002/jcc.25353
– volume: 59
  start-page: 38
  year: 2005
  ident: 2023013108282645500_btz215-B16
  article-title: An amino acid has two sides: a new 2D measure provides a different view of solvent exposure
  publication-title: Proteins
  doi: 10.1002/prot.20379
– volume: 409
  start-page: 607
  year: 2017
  ident: 2023013108282645500_btz215-B25
  article-title: Use of an informed search space maximizes confidence of site-specific assignment of glycoprotein glycosylation
  publication-title: Anal. Bioanal. Chem
  doi: 10.1007/s00216-016-9970-5
– volume: 34
  start-page: 477
  year: 2017
  ident: 2023013108282645500_btz215-B44
  article-title: Structure-based prediction of protein-peptide binding regions using Random Forest
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx614
– year: 2004
  ident: 2023013108282645500_btz215-B14
– volume: 9
  start-page: 500.
  year: 2008
  ident: 2023013108282645500_btz215-B15
  article-title: Prediction of glycosylation sites using random forests
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-500
– volume: 4
  start-page: 791
  year: 1995
  ident: 2023013108282645500_btz215-B39
  article-title: Site-specific detection and structural characterization of the glycosylation of human plasma proteins lecithin: cholesterol acyltransferase and apolipoprotein D using HPLC/electrospray mass spectrometry and sequential glycosidase digestion
  publication-title: Protein Sci
  doi: 10.1002/pro.5560040419
– volume: 42
  start-page: D215
  year: 2014
  ident: 2023013108282645500_btz215-B8
  article-title: UniCarbKB: building a knowledge platform for glycoproteomics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1128
– volume: 7
  start-page: e40155.
  year: 2012
  ident: 2023013108282645500_btz215-B11
  article-title: GlycoPP: a webserver for prediction of N-and O-glycosites in prokaryotic protein sequences
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040155
– volume: 33
  start-page: 2842
  year: 2017
  ident: 2023013108282645500_btz215-B20
  article-title: Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx218
– volume: 83
  start-page: 75
  year: 2017
  ident: 2023013108282645500_btz215-B36
  article-title: Identify and analysis crotonylation sites in histone by using support vector machines
  publication-title: Artif. Intell. Med
  doi: 10.1016/j.artmed.2017.02.007
– volume: 33
  start-page: 25
  year: 2000
  ident: 2023013108282645500_btz215-B26
  article-title: Comparison of algorithms that select features for pattern classifiers
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(99)00041-2
– volume: 56
  start-page: 2115
  year: 2016
  ident: 2023013108282645500_btz215-B43
  article-title: Sequence-based prediction of protein-carbohydrate binding sites using support vector machines
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.6b00320
– volume: 4
  start-page: 1633
  year: 2004
  ident: 2023013108282645500_btz215-B7
  article-title: Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence
  publication-title: Proteomics
  doi: 10.1002/pmic.200300771
– volume-title: The Nature of Statistical Learning Theory
  year: 2013
  ident: 2023013108282645500_btz215-B48
– volume: 5
  start-page: 11476
  year: 2015
  ident: 2023013108282645500_btz215-B19
  article-title: Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
  publication-title: Sci. Rep
  doi: 10.1038/srep11476
– start-page: 215
  volume-title: A Practical Guide to Using Glycomics Databases
  year: 2017
  ident: 2023013108282645500_btz215-B24
  doi: 10.1007/978-4-431-56454-6_11
– volume: 35
  start-page: 74
  year: 2010
  ident: 2023013108282645500_btz215-B2
  article-title: N-glycan structures: recognition and processing in the ER
  publication-title: Trends Biochem. Sci
  doi: 10.1016/j.tibs.2009.10.001
– volume: 2
  start-page: 27.
  year: 2011
  ident: 2023013108282645500_btz215-B10
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol
  doi: 10.1145/1961189.1961199
– volume: 86
  start-page: 629
  year: 2018
  ident: 2023013108282645500_btz215-B34
  article-title: SPIN2: predicting sequence profiles from protein structures using deep neural networks
  publication-title: Proteins
  doi: 10.1002/prot.25489
– volume: 16
  start-page: 91R
  year: 2006
  ident: 2023013108282645500_btz215-B51
  article-title: Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwj099
– volume: 234
  start-page: 11
  year: 2017
  ident: 2023013108282645500_btz215-B29
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 22
  start-page: 1536
  year: 2006
  ident: 2023013108282645500_btz215-B47
  article-title: Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl151
– volume: 33
  start-page: 685
  year: 2016
  ident: 2023013108282645500_btz215-B18
  article-title: Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw678
– start-page: 265
  volume-title: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16)
  year: 2016
  ident: 2023013108282645500_btz215-B1
– volume: 32
  start-page: D115
  year: 2004
  ident: 2023013108282645500_btz215-B4
  article-title: UniProt: the universal protein knowledgebase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh131
– volume: 6
  start-page: 18962.
  year: 2016
  ident: 2023013108282645500_btz215-B50
  article-title: Protein secondary structure prediction using deep convolutional neural fields
  publication-title: Sci. Rep
  doi: 10.1038/srep18962
– volume: 7
  start-page: R73.
  year: 2006
  ident: 2023013108282645500_btz215-B55
  article-title: UniPep-a database for human N-linked glycosites: a resource for biomarker discovery
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-8-r73
– volume: 44
  start-page: D435
  year: 2016
  ident: 2023013108282645500_btz215-B21
  article-title: dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1240
– start-page: 731
  volume-title: Intelligent Control and Automation
  year: 2006
  ident: 2023013108282645500_btz215-B54
  doi: 10.1007/978-3-540-37256-1_89
– volume: 14
  start-page: 103
  year: 2004
  ident: 2023013108282645500_btz215-B35
  article-title: Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwh008
– volume: 22
  start-page: 1440
  year: 2012
  ident: 2023013108282645500_btz215-B46
  article-title: Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching
  publication-title: Glycobiology
  doi: 10.1093/glycob/cws110
– volume: 15
  start-page: 115
  year: 1998
  ident: 2023013108282645500_btz215-B17
  article-title: NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility
  publication-title: Glycoconj. J
  doi: 10.1023/A:1006960004440
– volume: 6
  start-page: 713.
  year: 2010
  ident: 2023013108282645500_btz215-B30
  article-title: A systematic approach to protein glycosylation analysis: a path through the maze
  publication-title: Nat. Chem. Biol
  doi: 10.1038/nchembio.437
– volume: 9
  start-page: 714
  year: 2013
  ident: 2023013108282645500_btz215-B5
  article-title: Evolution and functional cross-talk of protein post-translational modifications
  publication-title: Mol. Syst. Biol
  doi: 10.1002/msb.201304521
– volume: 8
  start-page: 774
  year: 2018
  ident: 2023013108282645500_btz215-B42
  article-title: Analysis of protein landscapes around N-glycosylation sites from the PDB repository for understanding the structural basis of N-glycoprotein processing and maturation
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwy059
SSID ssj0051444
ssj0005056
Score 2.5459034
Snippet Abstract Motivation Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses,...
Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling,...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4140
Title SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties
URI https://www.ncbi.nlm.nih.gov/pubmed/30903686
https://www.proquest.com/docview/2196527005
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9jIPgifju_iOCLD3Ft02atbyLOIbi9bLC3kibpGIx22L3Uv8E_2rumnUwR9a2BSwL5Ndxd7u53hFyDyyGVdhRLwbYGB0UZBmPBPBk4xk9dTwqsHX4ZisHEf54G0xZxmlqYryH8iHeTeV6TiCJxcTdZvXlVVTkoYiTLH4-mnzkdDjLD2AFYAr5taYvM3qHDm_qdn5bc0Ewb1W7fjM5K-fR3yU5tNdJ7C_MeaZlsn2zZPpLlAXmvkhrG7GlR3tHlK8ZeMJuZDhmVmaYjhmFao-lsUaq8KG36G8W4cUHzlFZ9-ipJfAcwtOJumGcFTUqKefEz2iRcV0L1BrCeJZ9F4g6cs8QUbVMckkn_cfwwYHWbBaZ44KyYCv00ciUXQkVgLICDoTjXwpcJ3NZeqF1fhTKKTMB1oFSkwWFT2k0T2QtS7rqGH5F2lmfmhNBUOsh7rEMF2ARuT2phVJga-AQzzZMd4jdHHKuagxxbYSxiGwvn8SYysUWmQ27X05aWhOO3CTeA319lrxqUY7haGC-RmYHjjj1kW8TAPMgcW_jXS3J83xKhOP3HTmdkG8ytCDWfG5yTNmBkLsCkWSWX1W_8AbWW-ts
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPRINT-Gly%3A+predicting+N-+and+O-linked+glycosylation+sites+of+human+and+mouse+proteins+by+using+sequence+and+predicted+structural+properties&rft.jtitle=Bioinformatics&rft.au=Taherzadeh%2C+Ghazaleh&rft.au=Dehzangi%2C+Abdollah&rft.au=Golchin%2C+Maryam&rft.au=Zhou%2C+Yaoqi&rft.date=2019-10-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=35&rft.issue=20&rft.spage=4140&rft.epage=4146&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz215&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtz215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon