SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties
Abstract Motivation Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glyc...
Saved in:
Published in | Bioinformatics Vol. 35; no. 20; pp. 4140 - 4146 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.10.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Motivation
Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively.
Results
The method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features.
Availability and implementation
http://sparks-lab.org/server/SPRINT-Gly/
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation, and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively.
The method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features.
http://sparks-lab.org/server/SPRINT-Gly/.
Supplementary data are available at Bioinformatics online. Abstract Motivation Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively. Results The method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features. Availability and implementation http://sparks-lab.org/server/SPRINT-Gly/ Supplementary information Supplementary data are available at Bioinformatics online. Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively.MOTIVATIONProtein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively.The method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features.RESULTSThe method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features.http://sparks-lab.org/server/SPRINT-Gly/.AVAILABILITY AND IMPLEMENTATIONhttp://sparks-lab.org/server/SPRINT-Gly/.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. |
Author | Golchin, Maryam Campbell, Matthew P Zhou, Yaoqi Taherzadeh, Ghazaleh Dehzangi, Abdollah |
Author_xml | – sequence: 1 givenname: Ghazaleh surname: Taherzadeh fullname: Taherzadeh, Ghazaleh organization: School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia – sequence: 2 givenname: Abdollah surname: Dehzangi fullname: Dehzangi, Abdollah organization: Department of Computer Science, Morgan State University, Baltimore, MD, USA – sequence: 3 givenname: Maryam surname: Golchin fullname: Golchin, Maryam organization: School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia – sequence: 4 givenname: Yaoqi orcidid: 0000-0002-9958-5699 surname: Zhou fullname: Zhou, Yaoqi email: yaoqi.zhou@griffith.edu.au organization: School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia – sequence: 5 givenname: Matthew P orcidid: 0000-0002-9525-792X surname: Campbell fullname: Campbell, Matthew P email: m.campbell2@griffith.edu.au organization: Institute for Glycomics, Griffith University, Parklands Drive, Gold Coast, QLD, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30903686$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1uFiEYhYmp6f8laFh2MxYGmBl01TRamzSt0XY9YeCdSsvAJzCL8Rq8aPl-NNGNrmDxnHPgnCO054MHhF5R8oYSyc4HG6wfQ5xUtjqdD_l7TcULdEh5Q6qaCLlX7qxpK94RdoCOUnoiRFDO-T46YEQS1nTNIfrx5dPn69v76sotb_EqgrE6W_-IbyusvMF3lbP-GQx-dIsOaXElLXicbIaEw4i_zpPyG3IKc4LiEDJYn_Cw4DmtjRJ8m8Fr2EC7gOKXcpx1nqNya80KYraQTtDLUbkEp7vzGD18eH9_-bG6ubu6vry4qTQTJFe646OkijWNlnXNZMs1Y6bhaiC0bTtDue6UlCCYEVpLU3OpDR0H1YqRUQrsGJ1tfUt0eV3K_WSTBueUh_KNvqayEXVb-iro6x06DxOYfhXtpOLS_2qwAGIL6BhSijD-Rijp10v1fy7Vb5cqund_6bTNm3ZzVNb9U0226jCv_jPwJ9TYtR4 |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_2c00110 crossref_primary_10_1016_j_sbi_2019_11_009 crossref_primary_10_1016_j_jmb_2025_168977 crossref_primary_10_1016_j_bbadis_2025_167659 crossref_primary_10_1109_ACCESS_2020_3022629 crossref_primary_10_1038_s41598_019_52341_z crossref_primary_10_1039_D2CP02883B crossref_primary_10_3389_fmolb_2021_784303 crossref_primary_10_3390_molecules26237314 crossref_primary_10_1002_pmic_201900335 crossref_primary_10_3389_fbioe_2022_788300 crossref_primary_10_3390_axioms11090469 crossref_primary_10_1007_s00109_023_02415_3 crossref_primary_10_1016_j_biotechadv_2022_108008 crossref_primary_10_1038_s41598_022_15403_3 crossref_primary_10_3390_pathogens12030407 crossref_primary_10_1002_pmic_202400210 crossref_primary_10_1093_bioinformatics_btaf034 crossref_primary_10_1002_btpr_3291 crossref_primary_10_1016_j_compbiomed_2021_104212 crossref_primary_10_1016_j_ab_2023_115318 crossref_primary_10_3390_ijms22010229 crossref_primary_10_1016_j_compchemeng_2024_108937 crossref_primary_10_1016_j_ymeth_2024_05_002 crossref_primary_10_1021_acs_jproteome_0c00435 crossref_primary_10_1016_j_bpj_2021_11_009 crossref_primary_10_1093_glycob_cwad033 crossref_primary_10_3390_ijms21249336 crossref_primary_10_3390_v15030611 crossref_primary_10_1093_bioinformatics_btad650 crossref_primary_10_1016_j_cofs_2022_100850 crossref_primary_10_1093_bioinformatics_btae643 crossref_primary_10_1016_j_biopha_2023_114217 crossref_primary_10_1016_j_compbiomed_2024_108859 crossref_primary_10_1016_j_sbi_2019_12_020 crossref_primary_10_3390_ijms23095180 crossref_primary_10_1002_ijch_202200097 crossref_primary_10_1109_ACCESS_2022_3146395 crossref_primary_10_1002_btpr_3283 crossref_primary_10_1128_JVI_00876_21 crossref_primary_10_1126_sciadv_abm8757 crossref_primary_10_7717_peerj_cs_1069 crossref_primary_10_1109_ACCESS_2019_2929237 crossref_primary_10_1371_journal_pcbi_1011939 crossref_primary_10_1016_j_biotechadv_2023_108174 crossref_primary_10_1142_S0219720023500245 crossref_primary_10_1016_j_ijbiomac_2023_124761 |
Cites_doi | 10.1016/j.cell.2018.01.016 10.1101/gr.849004 10.1007/s008940100038 10.1096/fj.14-267096 10.1093/bioinformatics/btu703 10.1093/nar/25.17.3389 10.1093/bioinformatics/btg477 10.1038/nrm3383 10.1016/j.sbi.2009.06.004 10.1093/glycob/cwh004 10.1093/bioinformatics/btu852 10.1186/1471-2105-8-438 10.1371/journal.pone.0067008 10.1080/10409239891204198 10.1007/s00726-016-2362-5 10.1016/j.chembiol.2015.06.017 10.1016/j.bbagen.2012.09.014 10.1093/glycob/cwh151 10.1002/jcc.25353 10.1002/prot.20379 10.1007/s00216-016-9970-5 10.1093/bioinformatics/btx614 10.1186/1471-2105-9-500 10.1002/pro.5560040419 10.1093/nar/gkt1128 10.1371/journal.pone.0040155 10.1093/bioinformatics/btx218 10.1016/j.artmed.2017.02.007 10.1016/S0031-3203(99)00041-2 10.1021/acs.jcim.6b00320 10.1002/pmic.200300771 10.1038/srep11476 10.1007/978-4-431-56454-6_11 10.1016/j.tibs.2009.10.001 10.1145/1961189.1961199 10.1002/prot.25489 10.1093/glycob/cwj099 10.1016/j.neucom.2016.12.038 10.1093/bioinformatics/btl151 10.1093/bioinformatics/btw678 10.1093/nar/gkh131 10.1038/srep18962 10.1186/gb-2006-7-8-r73 10.1093/nar/gkv1240 10.1007/978-3-540-37256-1_89 10.1093/glycob/cwh008 10.1093/glycob/cws110 10.1023/A:1006960004440 10.1038/nchembio.437 10.1002/msb.201304521 10.1093/glycob/cwy059 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019 The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019 – notice: The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1093/bioinformatics/btz215 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1460-2059 1367-4811 |
EndPage | 4146 |
ExternalDocumentID | 30903686 10_1093_bioinformatics_btz215 10.1093/bioinformatics/btz215 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Australia Research Council grantid: DP180102060 – fundername: Australian Government Research Training Program Scholarship – fundername: National Health and Medical Research Council grantid: 1121629 funderid: 10.13039/501100000925 – fundername: Institute for Glycomics |
GroupedDBID | -~X .2P 5GY AAMVS ABJNI ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS F5P HW0 Q5Y RD5 TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM EJD M49 NPM 7X8 |
ID | FETCH-LOGICAL-c350t-c84f91a366c9223974c33d64ab01778d14c8a99e53d5cc9d249cd1fba75f311e3 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Fri Jul 11 03:10:57 EDT 2025 Thu Apr 03 07:09:38 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Tue Jul 01 02:33:48 EDT 2025 Wed Apr 02 07:01:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-c84f91a366c9223974c33d64ab01778d14c8a99e53d5cc9d249cd1fba75f311e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9958-5699 0000-0002-9525-792X |
PMID | 30903686 |
PQID | 2196527005 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2196527005 pubmed_primary_30903686 crossref_primary_10_1093_bioinformatics_btz215 crossref_citationtrail_10_1093_bioinformatics_btz215 oup_primary_10_1093_bioinformatics_btz215 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-15 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Vacic (2023013108282645500_btz215-B47) 2006; 22 Liu (2023013108282645500_btz215-B29) 2017; 234 Julenius (2023013108282645500_btz215-B23) 2005; 15 Caragea (2023013108282645500_btz215-B9) 2007; 8 Kaji (2023013108282645500_btz215-B24) 2017 Mariño (2023013108282645500_btz215-B30) 2010; 6 Yang (2023013108282645500_btz215-B52) 2004; 20 Suga (2023013108282645500_btz215-B42) 2018; 8 Weerapana (2023013108282645500_btz215-B51) 2006; 16 Heffernan (2023013108282645500_btz215-B20) 2017; 33 Yen (2023013108282645500_btz215-B54) 2006 Kudo (2023013108282645500_btz215-B26) 2000; 33 Quang (2023013108282645500_btz215-B37) 2015; 31 Zhang (2023013108282645500_btz215-B55) 2006; 7 Gupta (2023013108282645500_btz215-B14) 2004 Li (2023013108282645500_btz215-B28) 2015; 31 Altschul (2023013108282645500_btz215-B3) 1997; 25 Moremen (2023013108282645500_btz215-B32) 2012; 13 Chauhan (2023013108282645500_btz215-B11) 2012; 7 O'Connell (2023013108282645500_btz215-B34) 2018; 86 Schindler (2023013108282645500_btz215-B39) 1995; 4 Steen (2023013108282645500_btz215-B41) 1998; 33 Ruiz-Blanco (2023013108282645500_btz215-B38) 2017; 49 Heffernan (2023013108282645500_btz215-B19) 2015; 5 Taherzadeh (2023013108282645500_btz215-B43) 2016; 56 Aebi (2023013108282645500_btz215-B2) 2010; 35 Apweiler (2023013108282645500_btz215-B4) 2004; 32 Campbell (2023013108282645500_btz215-B8) 2014; 42 Khatri (2023013108282645500_btz215-B25) 2017; 409 Petrescu (2023013108282645500_btz215-B35) 2004; 14 Vapnik (2023013108282645500_btz215-B48) 2013 Thaysen-Andersen (2023013108282645500_btz215-B46) 2012; 22 Joshi (2023013108282645500_btz215-B22) 2018; 172 Meiler (2023013108282645500_btz215-B31) 2001; 7 Murray (2023013108282645500_btz215-B33) 2015; 22 Taherzadeh (2023013108282645500_btz215-B44) 2017; 34 Chang (2023013108282645500_btz215-B10) 2011; 2 Varki (2023013108282645500_btz215-B49) 2009 Taherzadeh (2023013108282645500_btz215-B45) 2018; 39 Beltrao (2023013108282645500_btz215-B5) 2013; 9 Ben-Dor (2023013108282645500_btz215-B6) 2004; 14 Hamelryck (2023013108282645500_btz215-B16) 2005; 59 Crooks (2023013108282645500_btz215-B13) 2004; 14 Schjoldager (2023013108282645500_btz215-B40) 2012; 1820 Chauhan (2023013108282645500_btz215-B12) 2013; 8 Huang (2023013108282645500_btz215-B21) 2016; 44 Abadi (2023013108282645500_btz215-B1) 2016 Lederkremer (2023013108282645500_btz215-B27) 2009; 19 Wang (2023013108282645500_btz215-B50) 2016; 6 Blom (2023013108282645500_btz215-B7) 2004; 4 Yasuda (2023013108282645500_btz215-B53) 2015; 29 Hansen (2023013108282645500_btz215-B17) 1998; 15 Hanson (2023013108282645500_btz215-B18) 2016; 33 Hamby (2023013108282645500_btz215-B15) 2008; 9 Qiu (2023013108282645500_btz215-B36) 2017; 83 |
References_xml | – volume: 172 start-page: 632 year: 2018 ident: 2023013108282645500_btz215-B22 article-title: SnapShot: o -glycosylation pathways across kingdoms publication-title: Cell doi: 10.1016/j.cell.2018.01.016 – volume-title: Essentials of Glycobiology year: 2009 ident: 2023013108282645500_btz215-B49 – volume: 14 start-page: 1188 year: 2004 ident: 2023013108282645500_btz215-B13 article-title: WebLogo: a sequence logo generator publication-title: Genome Res doi: 10.1101/gr.849004 – volume: 7 start-page: 360 year: 2001 ident: 2023013108282645500_btz215-B31 article-title: Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks publication-title: Mol. Model. Annu doi: 10.1007/s008940100038 – volume: 29 start-page: 2412 year: 2015 ident: 2023013108282645500_btz215-B53 article-title: The atypical N-glycosylation motif, Asn-Cys-Cys, in human GPR109A is required for normal cell surface expression and intracellular signaling publication-title: FASEB J doi: 10.1096/fj.14-267096 – volume: 31 start-page: 761 year: 2015 ident: 2023013108282645500_btz215-B37 article-title: DANN: a deep learning approach for annotating the pathogenicity of genetic variants publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu703 – volume: 25 start-page: 3389 year: 1997 ident: 2023013108282645500_btz215-B3 article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res doi: 10.1093/nar/25.17.3389 – volume: 20 start-page: 735 year: 2004 ident: 2023013108282645500_btz215-B52 article-title: Bio-support vector machines for computational proteomics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg477 – volume: 13 start-page: 448. year: 2012 ident: 2023013108282645500_btz215-B32 article-title: Vertebrate protein glycosylation: diversity, synthesis and function publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm3383 – volume: 19 start-page: 515 year: 2009 ident: 2023013108282645500_btz215-B27 article-title: Glycoprotein folding, quality control and ER-associated degradation publication-title: Curr. Opin. Struct. Biol doi: 10.1016/j.sbi.2009.06.004 – volume: 14 start-page: 95 year: 2004 ident: 2023013108282645500_btz215-B6 article-title: Biases and complex patterns in the residues flanking protein N-glycosylation sites publication-title: Glycobiology doi: 10.1093/glycob/cwh004 – volume: 31 start-page: 1411 year: 2015 ident: 2023013108282645500_btz215-B28 article-title: GlycoMine: a machine learning-based approach for predicting N-, C-and O-linked glycosylation in the human proteome publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu852 – volume: 8 start-page: 438. year: 2007 ident: 2023013108282645500_btz215-B9 article-title: Glycosylation site prediction using ensembles of support vector machine classifiers publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-438 – volume: 8 start-page: e67008. year: 2013 ident: 2023013108282645500_btz215-B12 article-title: In silico platform for prediction of N-, O-and C-glycosites in eukaryotic protein sequences publication-title: PLoS One doi: 10.1371/journal.pone.0067008 – volume: 33 start-page: 151 year: 1998 ident: 2023013108282645500_btz215-B41 article-title: Concepts and principles of O-linked glycosylation publication-title: Crit. Rev. Biochem. Mol. Biol doi: 10.1080/10409239891204198 – volume: 49 start-page: 317 year: 2017 ident: 2023013108282645500_btz215-B38 article-title: Novel “extended sequons” of human N-glycosylation sites improve the precision of qualitative predictions: an alignment-free study of pattern recognition using ProtDCal protein features publication-title: Amino Acids doi: 10.1007/s00726-016-2362-5 – volume: 22 start-page: 1052 year: 2015 ident: 2023013108282645500_btz215-B33 article-title: Enhanced aromatic sequons increase oligosaccharyltransferase glycosylation efficiency and glycan homogeneity publication-title: Chem. Biol doi: 10.1016/j.chembiol.2015.06.017 – volume: 1820 start-page: 2079 year: 2012 ident: 2023013108282645500_btz215-B40 article-title: Site-specific protein O-glycosylation modulates proprotein processing-deciphering specific functions of the large polypeptide GalNAc-transferase gene family publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2012.09.014 – volume: 15 start-page: 153 year: 2005 ident: 2023013108282645500_btz215-B23 article-title: Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites publication-title: Glycobiology doi: 10.1093/glycob/cwh151 – volume: 39 start-page: 1757 year: 2018 ident: 2023013108282645500_btz215-B45 article-title: Predicting lysine-malonylation sites of proteins using sequence and predicted structural features publication-title: J. Comput. Chem doi: 10.1002/jcc.25353 – volume: 59 start-page: 38 year: 2005 ident: 2023013108282645500_btz215-B16 article-title: An amino acid has two sides: a new 2D measure provides a different view of solvent exposure publication-title: Proteins doi: 10.1002/prot.20379 – volume: 409 start-page: 607 year: 2017 ident: 2023013108282645500_btz215-B25 article-title: Use of an informed search space maximizes confidence of site-specific assignment of glycoprotein glycosylation publication-title: Anal. Bioanal. Chem doi: 10.1007/s00216-016-9970-5 – volume: 34 start-page: 477 year: 2017 ident: 2023013108282645500_btz215-B44 article-title: Structure-based prediction of protein-peptide binding regions using Random Forest publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx614 – year: 2004 ident: 2023013108282645500_btz215-B14 – volume: 9 start-page: 500. year: 2008 ident: 2023013108282645500_btz215-B15 article-title: Prediction of glycosylation sites using random forests publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-500 – volume: 4 start-page: 791 year: 1995 ident: 2023013108282645500_btz215-B39 article-title: Site-specific detection and structural characterization of the glycosylation of human plasma proteins lecithin: cholesterol acyltransferase and apolipoprotein D using HPLC/electrospray mass spectrometry and sequential glycosidase digestion publication-title: Protein Sci doi: 10.1002/pro.5560040419 – volume: 42 start-page: D215 year: 2014 ident: 2023013108282645500_btz215-B8 article-title: UniCarbKB: building a knowledge platform for glycoproteomics publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1128 – volume: 7 start-page: e40155. year: 2012 ident: 2023013108282645500_btz215-B11 article-title: GlycoPP: a webserver for prediction of N-and O-glycosites in prokaryotic protein sequences publication-title: PLoS One doi: 10.1371/journal.pone.0040155 – volume: 33 start-page: 2842 year: 2017 ident: 2023013108282645500_btz215-B20 article-title: Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx218 – volume: 83 start-page: 75 year: 2017 ident: 2023013108282645500_btz215-B36 article-title: Identify and analysis crotonylation sites in histone by using support vector machines publication-title: Artif. Intell. Med doi: 10.1016/j.artmed.2017.02.007 – volume: 33 start-page: 25 year: 2000 ident: 2023013108282645500_btz215-B26 article-title: Comparison of algorithms that select features for pattern classifiers publication-title: Pattern Recognit doi: 10.1016/S0031-3203(99)00041-2 – volume: 56 start-page: 2115 year: 2016 ident: 2023013108282645500_btz215-B43 article-title: Sequence-based prediction of protein-carbohydrate binding sites using support vector machines publication-title: J. Chem. Inf. Model doi: 10.1021/acs.jcim.6b00320 – volume: 4 start-page: 1633 year: 2004 ident: 2023013108282645500_btz215-B7 article-title: Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence publication-title: Proteomics doi: 10.1002/pmic.200300771 – volume-title: The Nature of Statistical Learning Theory year: 2013 ident: 2023013108282645500_btz215-B48 – volume: 5 start-page: 11476 year: 2015 ident: 2023013108282645500_btz215-B19 article-title: Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning publication-title: Sci. Rep doi: 10.1038/srep11476 – start-page: 215 volume-title: A Practical Guide to Using Glycomics Databases year: 2017 ident: 2023013108282645500_btz215-B24 doi: 10.1007/978-4-431-56454-6_11 – volume: 35 start-page: 74 year: 2010 ident: 2023013108282645500_btz215-B2 article-title: N-glycan structures: recognition and processing in the ER publication-title: Trends Biochem. Sci doi: 10.1016/j.tibs.2009.10.001 – volume: 2 start-page: 27. year: 2011 ident: 2023013108282645500_btz215-B10 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol doi: 10.1145/1961189.1961199 – volume: 86 start-page: 629 year: 2018 ident: 2023013108282645500_btz215-B34 article-title: SPIN2: predicting sequence profiles from protein structures using deep neural networks publication-title: Proteins doi: 10.1002/prot.25489 – volume: 16 start-page: 91R year: 2006 ident: 2023013108282645500_btz215-B51 article-title: Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems publication-title: Glycobiology doi: 10.1093/glycob/cwj099 – volume: 234 start-page: 11 year: 2017 ident: 2023013108282645500_btz215-B29 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 22 start-page: 1536 year: 2006 ident: 2023013108282645500_btz215-B47 article-title: Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl151 – volume: 33 start-page: 685 year: 2016 ident: 2023013108282645500_btz215-B18 article-title: Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw678 – start-page: 265 volume-title: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16) year: 2016 ident: 2023013108282645500_btz215-B1 – volume: 32 start-page: D115 year: 2004 ident: 2023013108282645500_btz215-B4 article-title: UniProt: the universal protein knowledgebase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh131 – volume: 6 start-page: 18962. year: 2016 ident: 2023013108282645500_btz215-B50 article-title: Protein secondary structure prediction using deep convolutional neural fields publication-title: Sci. Rep doi: 10.1038/srep18962 – volume: 7 start-page: R73. year: 2006 ident: 2023013108282645500_btz215-B55 article-title: UniPep-a database for human N-linked glycosites: a resource for biomarker discovery publication-title: Genome Biol doi: 10.1186/gb-2006-7-8-r73 – volume: 44 start-page: D435 year: 2016 ident: 2023013108282645500_btz215-B21 article-title: dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1240 – start-page: 731 volume-title: Intelligent Control and Automation year: 2006 ident: 2023013108282645500_btz215-B54 doi: 10.1007/978-3-540-37256-1_89 – volume: 14 start-page: 103 year: 2004 ident: 2023013108282645500_btz215-B35 article-title: Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding publication-title: Glycobiology doi: 10.1093/glycob/cwh008 – volume: 22 start-page: 1440 year: 2012 ident: 2023013108282645500_btz215-B46 article-title: Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching publication-title: Glycobiology doi: 10.1093/glycob/cws110 – volume: 15 start-page: 115 year: 1998 ident: 2023013108282645500_btz215-B17 article-title: NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility publication-title: Glycoconj. J doi: 10.1023/A:1006960004440 – volume: 6 start-page: 713. year: 2010 ident: 2023013108282645500_btz215-B30 article-title: A systematic approach to protein glycosylation analysis: a path through the maze publication-title: Nat. Chem. Biol doi: 10.1038/nchembio.437 – volume: 9 start-page: 714 year: 2013 ident: 2023013108282645500_btz215-B5 article-title: Evolution and functional cross-talk of protein post-translational modifications publication-title: Mol. Syst. Biol doi: 10.1002/msb.201304521 – volume: 8 start-page: 774 year: 2018 ident: 2023013108282645500_btz215-B42 article-title: Analysis of protein landscapes around N-glycosylation sites from the PDB repository for understanding the structural basis of N-glycoprotein processing and maturation publication-title: Glycobiology doi: 10.1093/glycob/cwy059 |
SSID | ssj0051444 ssj0005056 |
Score | 2.5459034 |
Snippet | Abstract
Motivation
Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses,... Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling,... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4140 |
Title | SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30903686 https://www.proquest.com/docview/2196527005 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9jIPgifju_iOCLD3Ft02atbyLOIbi9bLC3kibpGIx22L3Uv8E_2rumnUwR9a2BSwL5Ndxd7u53hFyDyyGVdhRLwbYGB0UZBmPBPBk4xk9dTwqsHX4ZisHEf54G0xZxmlqYryH8iHeTeV6TiCJxcTdZvXlVVTkoYiTLH4-mnzkdDjLD2AFYAr5taYvM3qHDm_qdn5bc0Ewb1W7fjM5K-fR3yU5tNdJ7C_MeaZlsn2zZPpLlAXmvkhrG7GlR3tHlK8ZeMJuZDhmVmaYjhmFao-lsUaq8KG36G8W4cUHzlFZ9-ipJfAcwtOJumGcFTUqKefEz2iRcV0L1BrCeJZ9F4g6cs8QUbVMckkn_cfwwYHWbBaZ44KyYCv00ciUXQkVgLICDoTjXwpcJ3NZeqF1fhTKKTMB1oFSkwWFT2k0T2QtS7rqGH5F2lmfmhNBUOsh7rEMF2ARuT2phVJga-AQzzZMd4jdHHKuagxxbYSxiGwvn8SYysUWmQ27X05aWhOO3CTeA319lrxqUY7haGC-RmYHjjj1kW8TAPMgcW_jXS3J83xKhOP3HTmdkG8ytCDWfG5yTNmBkLsCkWSWX1W_8AbWW-ts |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPRINT-Gly%3A+predicting+N-+and+O-linked+glycosylation+sites+of+human+and+mouse+proteins+by+using+sequence+and+predicted+structural+properties&rft.jtitle=Bioinformatics&rft.au=Taherzadeh%2C+Ghazaleh&rft.au=Dehzangi%2C+Abdollah&rft.au=Golchin%2C+Maryam&rft.au=Zhou%2C+Yaoqi&rft.date=2019-10-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=35&rft.issue=20&rft.spage=4140&rft.epage=4146&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz215&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtz215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |