Reactive hot pressing and mechanical properties of TiAl3/Ti3AlC2/Al2O3 in situ composite
Dense TiAl3/Ti3AlC2/Al2O3 composites were synthesised from Al, TiO2 and TiC powder mixtures at 1250 C and 50 MPa for 10 min using an in-situ reaction/hot-pressing method. The reaction kinetics, microstructure, mechanical properties and toughening mechanism of the fabricated composites were investiga...
Saved in:
Published in | Materials in engineering Vol. 49; pp. 929 - 934 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dense TiAl3/Ti3AlC2/Al2O3 composites were synthesised from Al, TiO2 and TiC powder mixtures at 1250 C and 50 MPa for 10 min using an in-situ reaction/hot-pressing method. The reaction kinetics, microstructure, mechanical properties and toughening mechanism of the fabricated composites were investigated. TiO was a transitional phase, and a reaction path for the Al/TiO2/TiC system was proposed. The composites achieved Vickers hardness, three-point bending strength and fracture toughness values of about 8.4 GPa, about 658.9 MPa and about 7.9 MPa.m1/2, respectively. Analysis of microstructure/crack propagation path interaction revealed that crack deflection, crack bridging, and Ti3AlC2 particle pullout were the main mechanisms responsible for toughening. The compressive strength of the in-situ composites was much higher than that of as-cast TiAl3 and was maintained even at 1000 C due to the cooperative strengthening introduced by Ti3AlC2 and Al2O3. |
---|---|
AbstractList | Dense TiAl3/Ti3AlC2/Al2O3 composite was synthesized from Al, TiO2 and TiC powder mixture at 1250 degree C and 50MPa for 10min using an in situ reaction/hot-pressing method. The reaction kinetic, microstructure, mechanical properties and toughening mechanism of the fabricated composite were investigated. TiO was found to be the transitional phase, and the reaction path for the Al/TiO2/TiC system was proposed. The composite achieved Vickers Hardness, three-point bending strength and fracture toughness of 8.4GPa, 658.9MPa and 7.9MPa/m1/2, respectively. Analysis of microstructure/crack propagation paths interaction revealed that crack deflection, crack bridging, and pull-out of the Ti3AlC2 particles were the main mechanism responsible for the toughening. The compressive strength of the in situ composite was much higher than that of as-cast TiAl3 and could be maintained even at 1000 degree C. This was mainly attributed to the cooperative strengthening introduced by Ti3AlC2 and Al2O3. Dense TiAl3/Ti3AlC2/Al2O3 composites were synthesised from Al, TiO2 and TiC powder mixtures at 1250 C and 50 MPa for 10 min using an in-situ reaction/hot-pressing method. The reaction kinetics, microstructure, mechanical properties and toughening mechanism of the fabricated composites were investigated. TiO was a transitional phase, and a reaction path for the Al/TiO2/TiC system was proposed. The composites achieved Vickers hardness, three-point bending strength and fracture toughness values of about 8.4 GPa, about 658.9 MPa and about 7.9 MPa.m1/2, respectively. Analysis of microstructure/crack propagation path interaction revealed that crack deflection, crack bridging, and Ti3AlC2 particle pullout were the main mechanisms responsible for toughening. The compressive strength of the in-situ composites was much higher than that of as-cast TiAl3 and was maintained even at 1000 C due to the cooperative strengthening introduced by Ti3AlC2 and Al2O3. |
Author | Chen, Weiping Fu, Zhiqiang Zhu, Dezhi Fang, Sicong Xiao, Huaqiang |
Author_xml | – sequence: 1 givenname: Weiping surname: Chen fullname: Chen, Weiping – sequence: 2 givenname: Huaqiang surname: Xiao fullname: Xiao, Huaqiang – sequence: 3 givenname: Zhiqiang surname: Fu fullname: Fu, Zhiqiang – sequence: 4 givenname: Sicong surname: Fang fullname: Fang, Sicong – sequence: 5 givenname: Dezhi surname: Zhu fullname: Zhu, Dezhi |
BookMark | eNqNkU1r3DAQhnVIoPn6Bz3o2Mt6Z0a2ZOe2LG1SCATCBnITQho3WmxrY2kL_fd12J56CDnNy_C8w8BzKc6mNLEQXxEqBNTrfTW6EjhXBKgqoAoadSYugDSuFOjui7jMeQ-ABpEuxMsTO1_ib5avqcjDzDnH6Zd0U5Aj-1c3Re-GZZ8OPJfIWaZe7uJmUOtdVJthS-vNQI9KxknmWI7Sp_GQlsTX4rx3Q-abf_NKPP_4vtverx4e735uNw8rrxooK28gdB1AaELXG009AiGFBjv0pjG-DuC5DZpb3yBrcoZMCG0IzkCtnVZX4tvp7vLj25FzsWPMnofBTZyO2aLuSBF1pv4E2jYtkqo_gdZoOgINsKD1CfVzynnm3h7mOLr5j0Ww70rs3p6U2HclFsguSpba7X81H4srMU1ldnH4uPwXGReWtQ |
CitedBy_id | crossref_primary_10_1016_j_msea_2014_05_054 crossref_primary_10_1007_s10973_018_7636_6 crossref_primary_10_1111_jace_19217 crossref_primary_10_1016_j_ceramint_2016_06_167 crossref_primary_10_1016_S1003_6326_20_65284_0 crossref_primary_10_1111_jace_18703 crossref_primary_10_1016_j_apt_2018_11_007 crossref_primary_10_1016_j_compstruct_2019_111379 crossref_primary_10_1016_j_ceramint_2022_07_226 crossref_primary_10_1016_j_jallcom_2015_04_238 crossref_primary_10_1016_j_jallcom_2020_157313 crossref_primary_10_1016_j_vacuum_2023_111806 crossref_primary_10_3390_app13021104 crossref_primary_10_1007_s11661_021_06575_0 crossref_primary_10_1016_j_ceramint_2016_03_102 crossref_primary_10_1016_j_msea_2021_142393 crossref_primary_10_3390_ma13122821 crossref_primary_10_4028_www_scientific_net_MSF_816_210 crossref_primary_10_1016_j_jeurceramsoc_2022_12_009 crossref_primary_10_1016_j_matlet_2014_05_023 crossref_primary_10_1016_j_ceramint_2016_04_124 crossref_primary_10_1016_j_jallcom_2018_09_376 crossref_primary_10_1016_j_jeurceramsoc_2013_11_020 crossref_primary_10_1080_17436753_2015_1104054 crossref_primary_10_1080_17436753_2019_1707411 crossref_primary_10_1016_j_corsci_2021_109643 crossref_primary_10_1016_j_intermet_2023_107963 crossref_primary_10_1016_j_surfcoat_2019_125323 crossref_primary_10_1016_j_surfcoat_2013_09_023 crossref_primary_10_1016_j_ceramint_2024_11_379 crossref_primary_10_1016_j_msea_2013_12_096 |
Cites_doi | 10.1016/S1003-6326(08)60431-8 10.1016/j.ceramint.2005.07.024 10.1111/j.1151-2916.2000.tb01281.x 10.1016/j.scriptamat.2004.09.010 10.1016/S0955-2219(99)00133-8 10.1016/j.msea.2010.12.087 10.1007/s11663-002-0082-6 10.1016/S0254-0584(99)00116-9 10.1111/j.1551-2916.2007.01668.x 10.1557/JMR.2000.0280 10.1016/j.matdes.2008.05.011 10.1007/s10853-009-3618-1 10.1016/S1359-835X(99)00041-X 10.1016/S0966-9795(00)00014-5 10.1007/BF03026100 10.1016/j.matdes.2010.06.009 10.1023/A:1012540927009 10.1016/j.jeurceramsoc.2005.06.024 10.1016/S1359-6454(02)00117-9 10.1016/S0966-9795(01)00073-5 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7QF 7QQ 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.matdes.2013.02.053 |
DatabaseName | CrossRef Aluminium Industry Abstracts Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Ceramic Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 934 |
ExternalDocumentID | 10_1016_j_matdes_2013_02_053 |
GroupedDBID | -~X 4G. 5VS 7-5 8P~ 9JN AABNK AAEDT AAEDW AAEPC AAKOC AALRI AAOAW AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABMAC ABWVN ABXDB ABXRA ACDAQ ACNNM ACRLP ACRPL ACVFH ADCNI ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEUPX AFPUW AFTJW AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR AZFZN BKOJK BLXMC CITATION EFJIC EO8 EO9 EP2 EP3 FDB FGOYB FIRID FYGXN G-2 IHE J1W M24 M41 OAUVE Q38 R2- ROL SDF SMS SPC SSH SSM SST SSZ T5K 7QF 7QQ 7SR 8BQ 8FD AFXIZ JG9 |
ID | FETCH-LOGICAL-c350t-c70d9900d5d9f762f10212d5191c757c4d0ce8d6e8c51e62a727dd8dda7046a63 |
ISSN | 0261-3069 |
IngestDate | Thu Jul 10 22:08:29 EDT 2025 Thu Jul 10 23:41:40 EDT 2025 Thu Jul 10 16:36:41 EDT 2025 Tue Jul 01 04:23:08 EDT 2025 Thu Apr 24 23:44:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c350t-c70d9900d5d9f762f10212d5191c757c4d0ce8d6e8c51e62a727dd8dda7046a63 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1417920600 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1692322974 proquest_miscellaneous_1685812344 proquest_miscellaneous_1417920600 crossref_primary_10_1016_j_matdes_2013_02_053 crossref_citationtrail_10_1016_j_matdes_2013_02_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Materials in engineering |
PublicationYear | 2013 |
References | Wang (10.1016/j.matdes.2013.02.053_b0095) 2002; 50 10.1016/j.matdes.2013.02.053_b0080 Tzenov (10.1016/j.matdes.2013.02.053_b0105) 2000; 83 Milman (10.1016/j.matdes.2013.02.053_b0110) 2001; 9 Price (10.1016/j.matdes.2013.02.053_b0025) 2011; 528 Peng (10.1016/j.matdes.2013.02.053_b0020) 2005; 52 Avraham (10.1016/j.matdes.2013.02.053_b0045) 2006; 26 Liu (10.1016/j.matdes.2013.02.053_b0030) 2009; 44 He (10.1016/j.matdes.2013.02.053_b0065) 2009; 19 Wang (10.1016/j.matdes.2013.02.053_b0015) 2009; 30 Peng (10.1016/j.matdes.2013.02.053_b0040) 2000; 15 Wagner (10.1016/j.matdes.2013.02.053_b0050) 1999; 19 Yin (10.1016/j.matdes.2013.02.053_b0060) 2007; 90 Matsubara (10.1016/j.matdes.2013.02.053_b0100) 2000; 8 Fu (10.1016/j.matdes.2013.02.053_b0010) 2001; 36 Li (10.1016/j.matdes.2013.02.053_b0090) 2007; 33 Essl (10.1016/j.matdes.2013.02.053_b0070) 1999; 61 10.1016/j.matdes.2013.02.053_b0075 10.1016/j.matdes.2013.02.053_b0085 Chang (10.1016/j.matdes.2013.02.053_b0005) 1997; 3 Yang (10.1016/j.matdes.2013.02.053_b0035) 2011; 32 Hsu (10.1016/j.matdes.2013.02.053_b0055) 2002; 33 |
References_xml | – volume: 19 start-page: 1215 issue: 5 year: 2009 ident: 10.1016/j.matdes.2013.02.053_b0065 article-title: Ti3AlC2–Al2O3–TiAl3 composite fabricated by reactive melt infiltration publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(08)60431-8 – volume: 33 start-page: 169 issue: 2 year: 2007 ident: 10.1016/j.matdes.2013.02.053_b0090 article-title: Synthesis and microstructure of Ti3AlC2 by mechanically activated sintering of elemental powders publication-title: Ceram Int doi: 10.1016/j.ceramint.2005.07.024 – volume: 83 start-page: 825 issue: 4 year: 2000 ident: 10.1016/j.matdes.2013.02.053_b0105 article-title: Synthesis and characterization of Ti3AlC2 publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.2000.tb01281.x – volume: 52 start-page: 243 issue: 3 year: 2005 ident: 10.1016/j.matdes.2013.02.053_b0020 article-title: Synthesis and microstructure characterization of Ti–Al3Ti metal-intermetallic laminate (MIL) composites publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2004.09.010 – volume: 19 start-page: 2449 issue: 13–14 year: 1999 ident: 10.1016/j.matdes.2013.02.053_b0050 article-title: Interpenetrating Al2O3–TiAl3 alloys produced by reactive infiltration publication-title: J Eur Ceram Soc doi: 10.1016/S0955-2219(99)00133-8 – volume: 528 start-page: 3134 issue: 7–8 year: 2011 ident: 10.1016/j.matdes.2013.02.053_b0025 article-title: Effects of ductile phase volume fraction on the mechanical properties of Ti–Al3Ti metal-intermetallic laminate (MIL) composites publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2010.12.087 – ident: 10.1016/j.matdes.2013.02.053_b0080 – volume: 33 start-page: 31 issue: 1 year: 2002 ident: 10.1016/j.matdes.2013.02.053_b0055 article-title: Effect of heat treatments on in-situ Al2O3/TiAl3 composites produced from squeeze casting of TiO2/A356 publication-title: Metall Mater Trans B doi: 10.1007/s11663-002-0082-6 – volume: 61 start-page: 69 issue: 1 year: 1999 ident: 10.1016/j.matdes.2013.02.053_b0070 article-title: Wet milling of Al-containing powder mixtures as precursor materials for reaction bonding of alumina (RBAO) and reaction sintering of alumina-aluminide alloys (3A) publication-title: Mater Chem Phys doi: 10.1016/S0254-0584(99)00116-9 – volume: 90 start-page: 2128 issue: 7 year: 2007 ident: 10.1016/j.matdes.2013.02.053_b0060 article-title: Three-dimensional printing of nanolaminated Ti3AlC2 toughened TiAl3–Al2O3 composites publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2007.01668.x – volume: 15 start-page: 1943 issue: 9 year: 2000 ident: 10.1016/j.matdes.2013.02.053_b0040 article-title: In situ Al3Ti–Al2O3 intermetallic matrix composite: Synthesis, microstructure, and compressive behavior publication-title: J Mater Res doi: 10.1557/JMR.2000.0280 – volume: 30 start-page: 704 issue: 3 year: 2009 ident: 10.1016/j.matdes.2013.02.053_b0015 article-title: Microstructure and mechanical properties of (Al, Cr)3Ti based alloy with different Al additions publication-title: Mater Des doi: 10.1016/j.matdes.2008.05.011 – volume: 44 start-page: 4258 issue: 16 year: 2009 ident: 10.1016/j.matdes.2013.02.053_b0030 article-title: Study on Ti fiber reinforced TiAl3 composite by infiltration-in situ reaction publication-title: J Mater Sci doi: 10.1007/s10853-009-3618-1 – ident: 10.1016/j.matdes.2013.02.053_b0075 – ident: 10.1016/j.matdes.2013.02.053_b0085 doi: 10.1016/S1359-835X(99)00041-X – volume: 8 start-page: 815 issue: 7 year: 2000 ident: 10.1016/j.matdes.2013.02.053_b0100 article-title: Fabrication of a thick surface layer of Al3Ti on Ti substrate by reactive-pulsed electric current sintering publication-title: Intermetallics doi: 10.1016/S0966-9795(00)00014-5 – volume: 3 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.matdes.2013.02.053_b0005 article-title: Trialuminide intermetallic alloys for elevated temperature applications-overview publication-title: Met Mater Int doi: 10.1007/BF03026100 – volume: 32 start-page: 207 issue: 1 year: 2011 ident: 10.1016/j.matdes.2013.02.053_b0035 article-title: Microstructure evolution and oxidation of Tif/TiAl3 composites publication-title: Mater Des doi: 10.1016/j.matdes.2010.06.009 – volume: 36 start-page: 5537 issue: 23 year: 2001 ident: 10.1016/j.matdes.2013.02.053_b0010 article-title: Reaction synthesis of titanium aluminides publication-title: J Mater Sci doi: 10.1023/A:1012540927009 – volume: 26 start-page: 2719 issue: 13 year: 2006 ident: 10.1016/j.matdes.2013.02.053_b0045 article-title: Characterization of α-Al2O3–(Al–Si)3Ti composites publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2005.06.024 – volume: 50 start-page: 3141 issue: 12 year: 2002 ident: 10.1016/j.matdes.2013.02.053_b0095 article-title: Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process publication-title: Acta Mater doi: 10.1016/S1359-6454(02)00117-9 – volume: 9 start-page: 839 issue: 9 year: 2001 ident: 10.1016/j.matdes.2013.02.053_b0110 article-title: Mechanical behaviour of Al3Ti intermetallic and L12 phases on its basis publication-title: Intermetallics doi: 10.1016/S0966-9795(01)00073-5 |
SSID | ssj0017112 |
Score | 2.239103 |
Snippet | Dense TiAl3/Ti3AlC2/Al2O3 composites were synthesised from Al, TiO2 and TiC powder mixtures at 1250 C and 50 MPa for 10 min using an in-situ... Dense TiAl3/Ti3AlC2/Al2O3 composite was synthesized from Al, TiO2 and TiC powder mixture at 1250 degree C and 50MPa for 10min using an in situ... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 929 |
SubjectTerms | Aluminum Aluminum oxide Intermetallic compounds Intermetallics Microstructure Molecular composites Particulate composites Titanium aluminides Titanium carbide Titanium dioxide Toughening |
Title | Reactive hot pressing and mechanical properties of TiAl3/Ti3AlC2/Al2O3 in situ composite |
URI | https://www.proquest.com/docview/1417920600 https://www.proquest.com/docview/1685812344 https://www.proquest.com/docview/1692322974 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZt9tIelj7pbh-o0FvwrizLr6MJNk67iZfFKb4ZW1IgS0iW1rn013ck-RGzZbvtxRihJM58ZvRpNPMNQl8qLgVZU27RcM0tJgWzAk_UFqE1k8Rxpay12ufSS1fsa-EWQ2c6XV3S1Bf81x_rSv4HVRgDXFWV7D8g238pDMA94AtXQBiuj8L4JlY5IN_jaZrlxpYq9qQEoxbxLI2WWuvgWqXq3eRA-3SGzybaKhGFfONE25mSRY22NHOmc_Cs83w1nWWL6wzu4mPWuqga83e0wMigYDjkBhjn1cdrik21H1U-JIfRKUjSRamPgw6qAUTQBR2MbzJhK9NlpXOkRnu09YRhG8gwi2poIpb3_LUJHdxeADsXUqmn246WUDUCwmN57GVWJqurqzKPi_wpOqGwL6ATdBLNv6XL_uDIt_UBd_98XbWkTum7_ytjNjJejDXDyF-g03ZrgCOD80v0RO5eoedHgpGvUdEhjgFx3CGOAXE8II4HxHGWYI34ZYv3pUYbt2jjHu03aJXE-Sy12t4YFndc0ljcJwKIBBGuCNewoK1Vi3YqgI_b3Hd9zgThMhCeDLhrS49WwFOFCISofMK8ynPeosluv5PvEGZuCMO2kKoqOXC9OvQrPyCKONPaYfQMOZ2NSt4Kx6v-JduyyxC8LY1lS2XZktASLHuGrP5Td0Y45S_zP3fmL8HDqWOraif3h5-wOYVFgxJg5g_MUW0UgIQx9tAc2MxQChvo80fMeY-eDS_-BzRpfhzkR-CfTf2pfed-AwWXdbM |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REACTIVE+HOT+PRESSING+AND+MECHANICAL+PROPERTIES+OF+TiAl3%2FTi3AlC2%2FAl2O3+IN-SITU+COMPOSITE&rft.jtitle=Materials+in+engineering&rft.au=Chen%2C+W&rft.au=Xiao%2C+H&rft.au=Fu%2C+Z&rft.au=Fang%2C+S&rft.date=2013-08-01&rft.issn=0261-3069&rft.volume=49&rft.spage=929&rft.epage=934&rft_id=info:doi/10.1016%2Fj.matdes.2013.02.053&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon |