Reactive hot pressing and mechanical properties of TiAl3/Ti3AlC2/Al2O3 in situ composite

Dense TiAl3/Ti3AlC2/Al2O3 composites were synthesised from Al, TiO2 and TiC powder mixtures at 1250 C and 50 MPa for 10 min using an in-situ reaction/hot-pressing method. The reaction kinetics, microstructure, mechanical properties and toughening mechanism of the fabricated composites were investiga...

Full description

Saved in:
Bibliographic Details
Published inMaterials in engineering Vol. 49; pp. 929 - 934
Main Authors Chen, Weiping, Xiao, Huaqiang, Fu, Zhiqiang, Fang, Sicong, Zhu, Dezhi
Format Journal Article
LanguageEnglish
Published 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dense TiAl3/Ti3AlC2/Al2O3 composites were synthesised from Al, TiO2 and TiC powder mixtures at 1250 C and 50 MPa for 10 min using an in-situ reaction/hot-pressing method. The reaction kinetics, microstructure, mechanical properties and toughening mechanism of the fabricated composites were investigated. TiO was a transitional phase, and a reaction path for the Al/TiO2/TiC system was proposed. The composites achieved Vickers hardness, three-point bending strength and fracture toughness values of about 8.4 GPa, about 658.9 MPa and about 7.9 MPa.m1/2, respectively. Analysis of microstructure/crack propagation path interaction revealed that crack deflection, crack bridging, and Ti3AlC2 particle pullout were the main mechanisms responsible for toughening. The compressive strength of the in-situ composites was much higher than that of as-cast TiAl3 and was maintained even at 1000 C due to the cooperative strengthening introduced by Ti3AlC2 and Al2O3.
AbstractList Dense TiAl3/Ti3AlC2/Al2O3 composite was synthesized from Al, TiO2 and TiC powder mixture at 1250 degree C and 50MPa for 10min using an in situ reaction/hot-pressing method. The reaction kinetic, microstructure, mechanical properties and toughening mechanism of the fabricated composite were investigated. TiO was found to be the transitional phase, and the reaction path for the Al/TiO2/TiC system was proposed. The composite achieved Vickers Hardness, three-point bending strength and fracture toughness of 8.4GPa, 658.9MPa and 7.9MPa/m1/2, respectively. Analysis of microstructure/crack propagation paths interaction revealed that crack deflection, crack bridging, and pull-out of the Ti3AlC2 particles were the main mechanism responsible for the toughening. The compressive strength of the in situ composite was much higher than that of as-cast TiAl3 and could be maintained even at 1000 degree C. This was mainly attributed to the cooperative strengthening introduced by Ti3AlC2 and Al2O3.
Dense TiAl3/Ti3AlC2/Al2O3 composites were synthesised from Al, TiO2 and TiC powder mixtures at 1250 C and 50 MPa for 10 min using an in-situ reaction/hot-pressing method. The reaction kinetics, microstructure, mechanical properties and toughening mechanism of the fabricated composites were investigated. TiO was a transitional phase, and a reaction path for the Al/TiO2/TiC system was proposed. The composites achieved Vickers hardness, three-point bending strength and fracture toughness values of about 8.4 GPa, about 658.9 MPa and about 7.9 MPa.m1/2, respectively. Analysis of microstructure/crack propagation path interaction revealed that crack deflection, crack bridging, and Ti3AlC2 particle pullout were the main mechanisms responsible for toughening. The compressive strength of the in-situ composites was much higher than that of as-cast TiAl3 and was maintained even at 1000 C due to the cooperative strengthening introduced by Ti3AlC2 and Al2O3.
Author Chen, Weiping
Fu, Zhiqiang
Zhu, Dezhi
Fang, Sicong
Xiao, Huaqiang
Author_xml – sequence: 1
  givenname: Weiping
  surname: Chen
  fullname: Chen, Weiping
– sequence: 2
  givenname: Huaqiang
  surname: Xiao
  fullname: Xiao, Huaqiang
– sequence: 3
  givenname: Zhiqiang
  surname: Fu
  fullname: Fu, Zhiqiang
– sequence: 4
  givenname: Sicong
  surname: Fang
  fullname: Fang, Sicong
– sequence: 5
  givenname: Dezhi
  surname: Zhu
  fullname: Zhu, Dezhi
BookMark eNqNkU1r3DAQhnVIoPn6Bz3o2Mt6Z0a2ZOe2LG1SCATCBnITQho3WmxrY2kL_fd12J56CDnNy_C8w8BzKc6mNLEQXxEqBNTrfTW6EjhXBKgqoAoadSYugDSuFOjui7jMeQ-ABpEuxMsTO1_ib5avqcjDzDnH6Zd0U5Aj-1c3Re-GZZ8OPJfIWaZe7uJmUOtdVJthS-vNQI9KxknmWI7Sp_GQlsTX4rx3Q-abf_NKPP_4vtverx4e735uNw8rrxooK28gdB1AaELXG009AiGFBjv0pjG-DuC5DZpb3yBrcoZMCG0IzkCtnVZX4tvp7vLj25FzsWPMnofBTZyO2aLuSBF1pv4E2jYtkqo_gdZoOgINsKD1CfVzynnm3h7mOLr5j0Ww70rs3p6U2HclFsguSpba7X81H4srMU1ldnH4uPwXGReWtQ
CitedBy_id crossref_primary_10_1016_j_msea_2014_05_054
crossref_primary_10_1007_s10973_018_7636_6
crossref_primary_10_1111_jace_19217
crossref_primary_10_1016_j_ceramint_2016_06_167
crossref_primary_10_1016_S1003_6326_20_65284_0
crossref_primary_10_1111_jace_18703
crossref_primary_10_1016_j_apt_2018_11_007
crossref_primary_10_1016_j_compstruct_2019_111379
crossref_primary_10_1016_j_ceramint_2022_07_226
crossref_primary_10_1016_j_jallcom_2015_04_238
crossref_primary_10_1016_j_jallcom_2020_157313
crossref_primary_10_1016_j_vacuum_2023_111806
crossref_primary_10_3390_app13021104
crossref_primary_10_1007_s11661_021_06575_0
crossref_primary_10_1016_j_ceramint_2016_03_102
crossref_primary_10_1016_j_msea_2021_142393
crossref_primary_10_3390_ma13122821
crossref_primary_10_4028_www_scientific_net_MSF_816_210
crossref_primary_10_1016_j_jeurceramsoc_2022_12_009
crossref_primary_10_1016_j_matlet_2014_05_023
crossref_primary_10_1016_j_ceramint_2016_04_124
crossref_primary_10_1016_j_jallcom_2018_09_376
crossref_primary_10_1016_j_jeurceramsoc_2013_11_020
crossref_primary_10_1080_17436753_2015_1104054
crossref_primary_10_1080_17436753_2019_1707411
crossref_primary_10_1016_j_corsci_2021_109643
crossref_primary_10_1016_j_intermet_2023_107963
crossref_primary_10_1016_j_surfcoat_2019_125323
crossref_primary_10_1016_j_surfcoat_2013_09_023
crossref_primary_10_1016_j_ceramint_2024_11_379
crossref_primary_10_1016_j_msea_2013_12_096
Cites_doi 10.1016/S1003-6326(08)60431-8
10.1016/j.ceramint.2005.07.024
10.1111/j.1151-2916.2000.tb01281.x
10.1016/j.scriptamat.2004.09.010
10.1016/S0955-2219(99)00133-8
10.1016/j.msea.2010.12.087
10.1007/s11663-002-0082-6
10.1016/S0254-0584(99)00116-9
10.1111/j.1551-2916.2007.01668.x
10.1557/JMR.2000.0280
10.1016/j.matdes.2008.05.011
10.1007/s10853-009-3618-1
10.1016/S1359-835X(99)00041-X
10.1016/S0966-9795(00)00014-5
10.1007/BF03026100
10.1016/j.matdes.2010.06.009
10.1023/A:1012540927009
10.1016/j.jeurceramsoc.2005.06.024
10.1016/S1359-6454(02)00117-9
10.1016/S0966-9795(01)00073-5
ContentType Journal Article
DBID AAYXX
CITATION
7QF
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.matdes.2013.02.053
DatabaseName CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 934
ExternalDocumentID 10_1016_j_matdes_2013_02_053
GroupedDBID -~X
4G.
5VS
7-5
8P~
9JN
AABNK
AAEDT
AAEDW
AAEPC
AAKOC
AALRI
AAOAW
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACNNM
ACRLP
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEUPX
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
EFJIC
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FYGXN
G-2
IHE
J1W
M24
M41
OAUVE
Q38
R2-
ROL
SDF
SMS
SPC
SSH
SSM
SST
SSZ
T5K
7QF
7QQ
7SR
8BQ
8FD
AFXIZ
JG9
ID FETCH-LOGICAL-c350t-c70d9900d5d9f762f10212d5191c757c4d0ce8d6e8c51e62a727dd8dda7046a63
ISSN 0261-3069
IngestDate Thu Jul 10 22:08:29 EDT 2025
Thu Jul 10 23:41:40 EDT 2025
Thu Jul 10 16:36:41 EDT 2025
Tue Jul 01 04:23:08 EDT 2025
Thu Apr 24 23:44:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-c70d9900d5d9f762f10212d5191c757c4d0ce8d6e8c51e62a727dd8dda7046a63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1417920600
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1692322974
proquest_miscellaneous_1685812344
proquest_miscellaneous_1417920600
crossref_primary_10_1016_j_matdes_2013_02_053
crossref_citationtrail_10_1016_j_matdes_2013_02_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Materials in engineering
PublicationYear 2013
References Wang (10.1016/j.matdes.2013.02.053_b0095) 2002; 50
10.1016/j.matdes.2013.02.053_b0080
Tzenov (10.1016/j.matdes.2013.02.053_b0105) 2000; 83
Milman (10.1016/j.matdes.2013.02.053_b0110) 2001; 9
Price (10.1016/j.matdes.2013.02.053_b0025) 2011; 528
Peng (10.1016/j.matdes.2013.02.053_b0020) 2005; 52
Avraham (10.1016/j.matdes.2013.02.053_b0045) 2006; 26
Liu (10.1016/j.matdes.2013.02.053_b0030) 2009; 44
He (10.1016/j.matdes.2013.02.053_b0065) 2009; 19
Wang (10.1016/j.matdes.2013.02.053_b0015) 2009; 30
Peng (10.1016/j.matdes.2013.02.053_b0040) 2000; 15
Wagner (10.1016/j.matdes.2013.02.053_b0050) 1999; 19
Yin (10.1016/j.matdes.2013.02.053_b0060) 2007; 90
Matsubara (10.1016/j.matdes.2013.02.053_b0100) 2000; 8
Fu (10.1016/j.matdes.2013.02.053_b0010) 2001; 36
Li (10.1016/j.matdes.2013.02.053_b0090) 2007; 33
Essl (10.1016/j.matdes.2013.02.053_b0070) 1999; 61
10.1016/j.matdes.2013.02.053_b0075
10.1016/j.matdes.2013.02.053_b0085
Chang (10.1016/j.matdes.2013.02.053_b0005) 1997; 3
Yang (10.1016/j.matdes.2013.02.053_b0035) 2011; 32
Hsu (10.1016/j.matdes.2013.02.053_b0055) 2002; 33
References_xml – volume: 19
  start-page: 1215
  issue: 5
  year: 2009
  ident: 10.1016/j.matdes.2013.02.053_b0065
  article-title: Ti3AlC2–Al2O3–TiAl3 composite fabricated by reactive melt infiltration
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(08)60431-8
– volume: 33
  start-page: 169
  issue: 2
  year: 2007
  ident: 10.1016/j.matdes.2013.02.053_b0090
  article-title: Synthesis and microstructure of Ti3AlC2 by mechanically activated sintering of elemental powders
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2005.07.024
– volume: 83
  start-page: 825
  issue: 4
  year: 2000
  ident: 10.1016/j.matdes.2013.02.053_b0105
  article-title: Synthesis and characterization of Ti3AlC2
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.2000.tb01281.x
– volume: 52
  start-page: 243
  issue: 3
  year: 2005
  ident: 10.1016/j.matdes.2013.02.053_b0020
  article-title: Synthesis and microstructure characterization of Ti–Al3Ti metal-intermetallic laminate (MIL) composites
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2004.09.010
– volume: 19
  start-page: 2449
  issue: 13–14
  year: 1999
  ident: 10.1016/j.matdes.2013.02.053_b0050
  article-title: Interpenetrating Al2O3–TiAl3 alloys produced by reactive infiltration
  publication-title: J Eur Ceram Soc
  doi: 10.1016/S0955-2219(99)00133-8
– volume: 528
  start-page: 3134
  issue: 7–8
  year: 2011
  ident: 10.1016/j.matdes.2013.02.053_b0025
  article-title: Effects of ductile phase volume fraction on the mechanical properties of Ti–Al3Ti metal-intermetallic laminate (MIL) composites
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2010.12.087
– ident: 10.1016/j.matdes.2013.02.053_b0080
– volume: 33
  start-page: 31
  issue: 1
  year: 2002
  ident: 10.1016/j.matdes.2013.02.053_b0055
  article-title: Effect of heat treatments on in-situ Al2O3/TiAl3 composites produced from squeeze casting of TiO2/A356
  publication-title: Metall Mater Trans B
  doi: 10.1007/s11663-002-0082-6
– volume: 61
  start-page: 69
  issue: 1
  year: 1999
  ident: 10.1016/j.matdes.2013.02.053_b0070
  article-title: Wet milling of Al-containing powder mixtures as precursor materials for reaction bonding of alumina (RBAO) and reaction sintering of alumina-aluminide alloys (3A)
  publication-title: Mater Chem Phys
  doi: 10.1016/S0254-0584(99)00116-9
– volume: 90
  start-page: 2128
  issue: 7
  year: 2007
  ident: 10.1016/j.matdes.2013.02.053_b0060
  article-title: Three-dimensional printing of nanolaminated Ti3AlC2 toughened TiAl3–Al2O3 composites
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1551-2916.2007.01668.x
– volume: 15
  start-page: 1943
  issue: 9
  year: 2000
  ident: 10.1016/j.matdes.2013.02.053_b0040
  article-title: In situ Al3Ti–Al2O3 intermetallic matrix composite: Synthesis, microstructure, and compressive behavior
  publication-title: J Mater Res
  doi: 10.1557/JMR.2000.0280
– volume: 30
  start-page: 704
  issue: 3
  year: 2009
  ident: 10.1016/j.matdes.2013.02.053_b0015
  article-title: Microstructure and mechanical properties of (Al, Cr)3Ti based alloy with different Al additions
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2008.05.011
– volume: 44
  start-page: 4258
  issue: 16
  year: 2009
  ident: 10.1016/j.matdes.2013.02.053_b0030
  article-title: Study on Ti fiber reinforced TiAl3 composite by infiltration-in situ reaction
  publication-title: J Mater Sci
  doi: 10.1007/s10853-009-3618-1
– ident: 10.1016/j.matdes.2013.02.053_b0075
– ident: 10.1016/j.matdes.2013.02.053_b0085
  doi: 10.1016/S1359-835X(99)00041-X
– volume: 8
  start-page: 815
  issue: 7
  year: 2000
  ident: 10.1016/j.matdes.2013.02.053_b0100
  article-title: Fabrication of a thick surface layer of Al3Ti on Ti substrate by reactive-pulsed electric current sintering
  publication-title: Intermetallics
  doi: 10.1016/S0966-9795(00)00014-5
– volume: 3
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.matdes.2013.02.053_b0005
  article-title: Trialuminide intermetallic alloys for elevated temperature applications-overview
  publication-title: Met Mater Int
  doi: 10.1007/BF03026100
– volume: 32
  start-page: 207
  issue: 1
  year: 2011
  ident: 10.1016/j.matdes.2013.02.053_b0035
  article-title: Microstructure evolution and oxidation of Tif/TiAl3 composites
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.06.009
– volume: 36
  start-page: 5537
  issue: 23
  year: 2001
  ident: 10.1016/j.matdes.2013.02.053_b0010
  article-title: Reaction synthesis of titanium aluminides
  publication-title: J Mater Sci
  doi: 10.1023/A:1012540927009
– volume: 26
  start-page: 2719
  issue: 13
  year: 2006
  ident: 10.1016/j.matdes.2013.02.053_b0045
  article-title: Characterization of α-Al2O3–(Al–Si)3Ti composites
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2005.06.024
– volume: 50
  start-page: 3141
  issue: 12
  year: 2002
  ident: 10.1016/j.matdes.2013.02.053_b0095
  article-title: Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(02)00117-9
– volume: 9
  start-page: 839
  issue: 9
  year: 2001
  ident: 10.1016/j.matdes.2013.02.053_b0110
  article-title: Mechanical behaviour of Al3Ti intermetallic and L12 phases on its basis
  publication-title: Intermetallics
  doi: 10.1016/S0966-9795(01)00073-5
SSID ssj0017112
Score 2.239103
Snippet Dense TiAl3/Ti3AlC2/Al2O3 composites were synthesised from Al, TiO2 and TiC powder mixtures at 1250 C and 50 MPa for 10 min using an in-situ...
Dense TiAl3/Ti3AlC2/Al2O3 composite was synthesized from Al, TiO2 and TiC powder mixture at 1250 degree C and 50MPa for 10min using an in situ...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 929
SubjectTerms Aluminum
Aluminum oxide
Intermetallic compounds
Intermetallics
Microstructure
Molecular composites
Particulate composites
Titanium aluminides
Titanium carbide
Titanium dioxide
Toughening
Title Reactive hot pressing and mechanical properties of TiAl3/Ti3AlC2/Al2O3 in situ composite
URI https://www.proquest.com/docview/1417920600
https://www.proquest.com/docview/1685812344
https://www.proquest.com/docview/1692322974
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZt9tIelj7pbh-o0FvwrizLr6MJNk67iZfFKb4ZW1IgS0iW1rn013ck-RGzZbvtxRihJM58ZvRpNPMNQl8qLgVZU27RcM0tJgWzAk_UFqE1k8Rxpay12ufSS1fsa-EWQ2c6XV3S1Bf81x_rSv4HVRgDXFWV7D8g238pDMA94AtXQBiuj8L4JlY5IN_jaZrlxpYq9qQEoxbxLI2WWuvgWqXq3eRA-3SGzybaKhGFfONE25mSRY22NHOmc_Cs83w1nWWL6wzu4mPWuqga83e0wMigYDjkBhjn1cdrik21H1U-JIfRKUjSRamPgw6qAUTQBR2MbzJhK9NlpXOkRnu09YRhG8gwi2poIpb3_LUJHdxeADsXUqmn246WUDUCwmN57GVWJqurqzKPi_wpOqGwL6ATdBLNv6XL_uDIt_UBd_98XbWkTum7_ytjNjJejDXDyF-g03ZrgCOD80v0RO5eoedHgpGvUdEhjgFx3CGOAXE8II4HxHGWYI34ZYv3pUYbt2jjHu03aJXE-Sy12t4YFndc0ljcJwKIBBGuCNewoK1Vi3YqgI_b3Hd9zgThMhCeDLhrS49WwFOFCISofMK8ynPeosluv5PvEGZuCMO2kKoqOXC9OvQrPyCKONPaYfQMOZ2NSt4Kx6v-JduyyxC8LY1lS2XZktASLHuGrP5Td0Y45S_zP3fmL8HDqWOraif3h5-wOYVFgxJg5g_MUW0UgIQx9tAc2MxQChvo80fMeY-eDS_-BzRpfhzkR-CfTf2pfed-AwWXdbM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REACTIVE+HOT+PRESSING+AND+MECHANICAL+PROPERTIES+OF+TiAl3%2FTi3AlC2%2FAl2O3+IN-SITU+COMPOSITE&rft.jtitle=Materials+in+engineering&rft.au=Chen%2C+W&rft.au=Xiao%2C+H&rft.au=Fu%2C+Z&rft.au=Fang%2C+S&rft.date=2013-08-01&rft.issn=0261-3069&rft.volume=49&rft.spage=929&rft.epage=934&rft_id=info:doi/10.1016%2Fj.matdes.2013.02.053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon