KAM for the nonlinear beam equation
In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus u t t + Δ 2 u + m u + ∂ u G ( x , u ) = 0 , t ∈ R , x ∈ T d , ( ∗ ) where G ( x , u ) = u 4 + O ( u 5 ) . Namely, we show that, for generic m , many of the small amplitude in...
Saved in:
Published in | Geometric and functional analysis Vol. 26; no. 6; pp. 1588 - 1715 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2016
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus
u
t
t
+
Δ
2
u
+
m
u
+
∂
u
G
(
x
,
u
)
=
0
,
t
∈
R
,
x
∈
T
d
,
(
∗
)
where
G
(
x
,
u
)
=
u
4
+
O
(
u
5
)
. Namely, we show that, for generic
m
, many of the small amplitude invariant finite dimensional tori of the linear equation
(
∗
)
G
=
0
, written as the system
u
t
=
-
v
,
v
t
=
Δ
2
u
+
m
u
,
persist as invariant tori of the nonlinear equation
(
∗
)
, re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of
(
∗
)
. If
d
≥
2
, then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way. |
---|---|
AbstractList | In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus u t t + Δ 2 u + m u + ∂ u G ( x , u ) = 0 , t ∈ R , x ∈ T d , ( ∗ ) where G ( x , u ) = u 4 + O ( u 5 ) . Namely, we show that, for generic m, many of the small amplitude invariant finite dimensional tori of the linear equation ( ∗ ) G = 0 , written as the system u t = - v , v t = Δ 2 u + m u , persist as invariant tori of the nonlinear equation ( ∗ ) , re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of ( ∗ ) . If d ≥ 2 , then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way. In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus u t t + Δ 2 u + m u + ∂ u G ( x , u ) = 0 , t ∈ R , x ∈ T d , ( ∗ ) where G ( x , u ) = u 4 + O ( u 5 ) . Namely, we show that, for generic m , many of the small amplitude invariant finite dimensional tori of the linear equation ( ∗ ) G = 0 , written as the system u t = - v , v t = Δ 2 u + m u , persist as invariant tori of the nonlinear equation ( ∗ ) , re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of ( ∗ ) . If d ≥ 2 , then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way. In this paper we prove a KAM result for the non linear beam equation on the d-dimensional torusutt+∆2u+mu+g(x,u)=0, t∈R,x∈Td, (∗)where g(x,u) = 4u3 +O(u4). Namely, we show that, for generic m, many of the small amplitude invariant finite dimensional tori of the linear equation (∗)g=0, written as the systemut =−v, vt =∆2u+mu,persist as invariant tori of the nonlinear equation (∗), re-written similarly. If d ≥ 2, then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensonal hamiltonian PDEs behave in a chaotic way. |
Author | Kuksin, Sergei B. Grébert, Benoît Eliasson, L. Hakan |
Author_xml | – sequence: 1 givenname: L. Hakan surname: Eliasson fullname: Eliasson, L. Hakan organization: Université Paris Diderot, Sorbonne Paris Cité, Institut de, Mathémathiques de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Sorbonne Universités, UPMC Univ. Paris 06 – sequence: 2 givenname: Benoît surname: Grébert fullname: Grébert, Benoît organization: Laboratoire de Mathématiques Jean Leray, Université de Nantes, UMR CNRS 6629 – sequence: 3 givenname: Sergei B. surname: Kuksin fullname: Kuksin, Sergei B. email: kuksin@gmail.com, sergei.kuksin@imj-prg.fr organization: CNRS, Institut de Mathémathiques de Jussieu-Paris Rive Gauche, UMR 7586, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06 |
BackLink | https://hal.science/hal-01480367$$DView record in HAL |
BookMark | eNp9kEFLAzEQhYNUsK3-AG8LPXmITjbJJnssRa1Y8aLgLWSzid2y3W2TreC_N-uKiKCnGWa-92Z4EzRq2sYidE7gkgCIqwAANMdAMhwrYHGExoSlgGUuYBT7fsMYfTlBkxA2keac8TGa3c8fEtf6pFvbJHrWVWO1Twqrt4ndH3RXtc0pOna6Dvbsq07R883102KJV4-3d4v5ChvKocOFcKw00rlS58Jk0tG0yHlmrcmAkpywLC2ojGPNc0qdy0VpuKGGaWekAUen6GLwXeta7Xy11f5dtbpSy_lK9TMgTALNxBuJ7Gxgd77dH2zo1KY9-Ca-p4iUIFPGGUSKDJTxbQjeum9bAqrPTQ25RedM9bkpETXil8ZU3WcOnddV_a8yHZQhXmlerf_x05-iD9mpgNw |
CitedBy_id | crossref_primary_10_1134_S1560354724540013 crossref_primary_10_1007_s10884_023_10298_8 crossref_primary_10_1134_S0012266122080067 crossref_primary_10_1007_s10884_017_9630_2 crossref_primary_10_1007_s10884_020_09829_4 crossref_primary_10_1063_5_0006536 crossref_primary_10_1088_1361_6544_aad3d9 crossref_primary_10_2140_apde_2021_14_2327 crossref_primary_10_1134_S0001434624050158 crossref_primary_10_1007_s10958_023_06383_4 crossref_primary_10_2140_apde_2023_16_1133 crossref_primary_10_1016_j_jde_2025_113229 crossref_primary_10_1007_s12346_023_00797_w crossref_primary_10_1134_S0012266120030064 crossref_primary_10_1134_S1560354724040026 crossref_primary_10_1137_23M162171X crossref_primary_10_3934_dcds_2022064 crossref_primary_10_1093_imrn_rnx167 crossref_primary_10_1093_imrn_rnz344 crossref_primary_10_1016_j_jfa_2022_109430 crossref_primary_10_1007_s10884_019_09819_1 crossref_primary_10_1137_20M1320742 crossref_primary_10_1016_j_jde_2023_12_041 crossref_primary_10_1088_1361_6544_ad673e crossref_primary_10_1155_2022_7106366 crossref_primary_10_1063_1_5045780 crossref_primary_10_1007_s00205_020_01596_2 crossref_primary_10_18698_1812_3368_2019_3_4_21 crossref_primary_10_1007_s00209_020_02575_9 crossref_primary_10_1007_s11464_017_0667_7 crossref_primary_10_1016_j_jfa_2018_10_009 crossref_primary_10_1007_s10884_021_09941_z crossref_primary_10_1016_j_cnsns_2021_106091 crossref_primary_10_1007_s10884_019_09754_1 crossref_primary_10_1063_5_0018196 crossref_primary_10_1007_s00033_023_01948_4 crossref_primary_10_1080_00036811_2018_1555325 crossref_primary_10_1007_s10884_018_9661_3 crossref_primary_10_1016_j_jde_2018_05_005 crossref_primary_10_1063_5_0154905 crossref_primary_10_1007_s10884_023_10296_w crossref_primary_10_11650_tjm_7951 crossref_primary_10_1186_s13661_018_0996_9 crossref_primary_10_1016_j_jde_2020_07_040 crossref_primary_10_1007_s10884_021_10025_1 crossref_primary_10_1016_j_cnsns_2021_105756 crossref_primary_10_1007_s12346_022_00654_2 crossref_primary_10_1007_s10884_021_09972_6 crossref_primary_10_1186_s13661_020_01374_9 crossref_primary_10_1016_j_jde_2019_02_004 crossref_primary_10_4213_sm9711 crossref_primary_10_1016_j_jde_2018_02_005 crossref_primary_10_1002_cpa_21931 crossref_primary_10_58997_ejde_2022_69 crossref_primary_10_1186_s13661_017_0810_0 crossref_primary_10_1137_22M1512958 crossref_primary_10_1007_s00526_022_02404_3 crossref_primary_10_1063_5_0183958 crossref_primary_10_1007_s10114_024_3159_1 crossref_primary_10_1016_j_jde_2019_02_010 crossref_primary_10_1007_s40574_018_0164_2 crossref_primary_10_1007_s12346_022_00687_7 crossref_primary_10_1007_s10884_021_10058_6 crossref_primary_10_1016_j_na_2020_112120 crossref_primary_10_1007_s10958_020_05004_8 crossref_primary_10_1007_s40818_020_00089_5 crossref_primary_10_1007_s00222_023_01195_4 crossref_primary_10_1016_j_taml_2025_100583 crossref_primary_10_1016_j_jde_2019_04_009 crossref_primary_10_1017_fms_2020_8 crossref_primary_10_3934_math_2021039 crossref_primary_10_1007_s10884_019_09804_8 crossref_primary_10_1007_s12346_020_00425_x crossref_primary_10_1016_j_physd_2024_134102 crossref_primary_10_1088_1361_6544_aad6fe crossref_primary_10_1016_j_jmaa_2020_124529 crossref_primary_10_4213_sm9711e crossref_primary_10_1016_j_na_2019_111585 crossref_primary_10_1063_1_5074094 crossref_primary_10_1016_j_jde_2023_03_036 |
Cites_doi | 10.1007/BF02577134 10.1007/s00220-008-0683-2 10.1007/s00222-010-0242-2 10.1088/0951-7715/25/9/2579 10.1007/978-0-8176-8134-0 10.2307/2118656 10.4007/annals.2010.172.371 10.1007/s00220-012-1483-2 10.4171/JEMS/361 10.1515/9781400837144 10.1090/pspum/069/1858550 10.1007/BF02566420 10.1093/oso/9780198503958.001.0001 10.2307/121001 10.1006/jdeq.1998.3515 10.1016/j.aim.2014.12.004 10.1007/s00220-005-1497-0 10.1007/BF00251855 10.1007/s00220-002-0774-4 10.1007/978-3-540-47928-4_1 10.1007/BF02566000 10.1088/0951-7715/19/10/007 10.1007/s00033-006-6030-6 10.1007/s40574-016-0072-2 10.1215/S0012-7094-06-13534-2 10.1016/j.aim.2011.01.013 10.1007/BFb0092243 |
ContentType | Journal Article |
Copyright | Springer International Publishing 2016 Copyright Springer Science & Business Media 2016 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer International Publishing 2016 – notice: Copyright Springer Science & Business Media 2016 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1007/s00039-016-0390-7 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1420-8970 |
EndPage | 1715 |
ExternalDocumentID | oai_HAL_hal_01480367v1 10_1007_s00039_016_0390_7 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OK1 P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I REI RHV RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 1XC |
ID | FETCH-LOGICAL-c350t-b7f4dc8ffda97c68f32b956eec603191462b388f3a5933ff97dc5c3c4afc8c0f3 |
IEDL.DBID | U2A |
ISSN | 1016-443X |
IngestDate | Fri May 09 12:17:07 EDT 2025 Fri Jul 25 11:17:33 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Tue Jul 01 02:31:06 EDT 2025 Fri Feb 21 02:32:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Hamiltonian systems Beam equation KAM theory hamiltonian systems |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-b7f4dc8ffda97c68f32b956eec603191462b388f3a5933ff97dc5c3c4afc8c0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1880824540 |
PQPubID | 2044207 |
PageCount | 128 |
ParticipantIDs | hal_primary_oai_HAL_hal_01480367v1 proquest_journals_1880824540 crossref_primary_10_1007_s00039_016_0390_7 crossref_citationtrail_10_1007_s00039_016_0390_7 springer_journals_10_1007_s00039_016_0390_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationSubtitle | GAFA |
PublicationTitle | Geometric and functional analysis |
PublicationTitleAbbrev | Geom. Funct. Anal |
PublicationYear | 2016 |
Publisher | Springer International Publishing Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer Verlag |
References | I. M. Vinogradov. An Introduction to the Theory of Numbers. Pergamon Press, London (1955). BourgainJ.Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equationsGAFA199562012350872.35007 J. Moser and C. L. Siegel. Lectures on Celestial Mechanics. Springer, Berlin (1971). W. Craig. Problèmes de Petits Diviseurs dans les Équations aux Dérivées Partielles. Panoramas et Synthèses, Société Mathématique de France (2000). L.H. Eliasson, B. Grébert and S.B. Kuksin. KAM for the non-linear Beam equation 1: small-amplitude solutions. arXiv:1412.2803v3. GengJ.YouJ.KAM tori for higher dimensional beam equations with constant potentialsNonlinearity20061924052423226026910.1088/0951-7715/19/10/0071190.37082 BertiM.BolleP.Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potentialNonlinearity20122525792613296711710.1088/0951-7715/25/9/25791262.35015 GengJ.YouJ.A KAM theorem for Hamiltonian partial differential equations in higher dimensional spacesCommunications in Mathematical Physics2006262343372220026410.1007/s00220-005-1497-01103.37047 G. H. Hardy and E. M. Wright. An Introduction to the Theory of Number. Oxford University Press, Oxford (2008). EliassonL.H.KuksinS.B.Infinite Töplitz–Lipschitz matrices and operatorsZeitschrift für angewandte Mathematik und Physik2008592450238040710.1007/s00033-006-6030-61140.15025 KuksinS. B.Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrumFunctional Analysis and Its Applications19872119220591177210.1007/BF025771340716.34083 BourgainJ.Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Shödinger equationAnnals of Mathematics1998148363439166854710.2307/1210010928.35161 CollianderJ.KeelM.StaffilaniG.TakaokaH.TaoT.Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equationInventiones Mathematicae201018131113265138110.1007/s00222-010-0242-21197.35265 ProcesiC.ProcesiM.A normal form of the nonlinear Schrdinger equation with analytic non–linearitiesCommunications in Mathematical Physics2012312501557291717410.1007/s00220-012-1483-21277.35318 BambusiD.GrébertB.Birkhoff normal form for PDE’s with tame modulusDuke Mathematical Journal20061353507567227297510.1215/S0012-7094-06-13534-21110.37057 BobenkoA. I.KuksinS. B.The nonlinear Klein–Gordon equation on an interval as a perturbed Sine–Gordon equationCommentarii Mathematici Helvetici19957063112131494110.1007/BF025660000842.35099 GengJ.XuX.YouJ.An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equationAdvances in Mathematics201122653615402277590510.1016/j.aim.2011.01.0131213.37104 ProcesiC.ProcesiM.A KAM Algorithm for the Resonant Nonlinear Schrödinger EquationAdvances in Mathematics2015272399470330323810.1016/j.aim.2014.12.0041312.37047 EliassonL.H.Perturbations of stable invariant tori for Hamiltonian systemsAnnali della Scoula Normale Superiore di Pisa19881511514710010320685.58024 WangW.-M.Energy supercritical nonlinear Schrödinger equations: Quasiperiodic solutionsDuke Mathematical Journal20161651129119234864161342.35358 J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematical Studies, Princeton (2004). B. Grébert and É. Paturel. KAM for the Klein Gordon equation on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^d}$$\end{document}, Bollettino dellUnione Matematica Italiana 9 (2016), 237–288. BertiM.BolleP.Quasi-periodic solutions with Sobolev regularity of NLS on Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}^d}$$\end{document} and a multiplicative potentialJournal of the European Mathematical Society201315229286299883510.4171/JEMS/3611260.35196 L.H Eliasson. Perturbations of Linear Quasi-Periodic Systems. In: Dynamical Systems and Small Divisors (Cetraro, Italy, 1998), 1–60, Lect. Notes Math. 1784, Springer (2002). YouJ.Perturbations of lower dimensional tori for Hamiltonian systemsJournal of Differential Equations1999152129167200810.1006/jdeq.1998.35150919.58055 HörmanderL.Note on Hölder Estimates. The boundary problem of physical geodesyArchive for Rational Mechanics and Analysis19766215260218110.1007/BF002518550331.35020 KuksinS. B.PöschelJ.Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equationAnnals of Mathematics1996143149179137076110.2307/21186560847.35130 EliassonL.H.KuksinS.B.On reducibility of Schrödinger equations with quasiperiodic in time potentialsCommunications in Mathematical Physics20092861125135247092610.1007/s00220-008-0683-21176.35141 S. Krantz and H. Parks. A Premier of Real Analytic Functions. Birkhäuser, Basel (2002). PöschelJ.Quasi-periodic solutions for a nonlinear wave equationCommentarii Mathematici Helvetici199671269296139667610.1007/BF025664200866.35013 S. B. Kuksin. Analysis of Hamiltonian PDEs. Oxford University Press, Oxford (2000). S. B. Kuksin. Nearly Integrable Infinite-dimensional Hamiltonian Systems. Lecture Notes in Mathematics, 1556. Springer, Berlin (1993). L.H Eliasson. Almost reducibility of linear quasi-periodic systems. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), 679–705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI (2001). V.I. Arnold. Mathematical Methods in Classical Mechanics, 3rd edn. Springer, Berlin (2006). BambusiD.Birkhoff normal form for some nonlinear PDEsCommunications in Mathematical Physics2003234253283196246210.1007/s00220-002-0774-41032.37051 L.H. Eliasson, B. Grébert and S.B. Kuksin. KAM for the nonlinear beam equation 2: a normal form theorem. arXiv:1502.02262. EliassonL.H.KuksinS.B.KAM for the nonlinear Schrödinger equationAnnals of Mathematics2010172371435268042210.4007/annals.2010.172.3711201.35177 390_CR31 C. Procesi (390_CR33) 2012; 312 390_CR13 390_CR35 390_CR14 390_CR11 390_CR9 D. Bambusi (390_CR2) 2003; 234 390_CR15 J. Geng (390_CR23) 2006; 19 J. You (390_CR37) 1999; 152 390_CR16 L.H. Eliasson (390_CR18) 2009; 286 J. Bourgain (390_CR7) 1995; 6 W.-M. Wang (390_CR36) 2016; 165 M. Berti (390_CR4) 2012; 25 390_CR1 390_CR20 C. Procesi (390_CR34) 2015; 272 390_CR24 D. Bambusi (390_CR3) 2006; 135 390_CR28 390_CR29 390_CR26 S. B. Kuksin (390_CR27) 1987; 21 J. Pöschel (390_CR32) 1996; 71 S. B. Kuksin (390_CR30) 1996; 143 A. I. Bobenko (390_CR6) 1995; 70 J. Bourgain (390_CR8) 1998; 148 L. Hörmander (390_CR25) 1976; 62 J. Geng (390_CR22) 2006; 262 M. Berti (390_CR5) 2013; 15 L.H. Eliasson (390_CR12) 1988; 15 J. Colliander (390_CR10) 2010; 181 J. Geng (390_CR21) 2011; 226 L.H. Eliasson (390_CR19) 2010; 172 L.H. Eliasson (390_CR17) 2008; 59 |
References_xml | – reference: BourgainJ.Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Shödinger equationAnnals of Mathematics1998148363439166854710.2307/1210010928.35161 – reference: HörmanderL.Note on Hölder Estimates. The boundary problem of physical geodesyArchive for Rational Mechanics and Analysis19766215260218110.1007/BF002518550331.35020 – reference: BambusiD.Birkhoff normal form for some nonlinear PDEsCommunications in Mathematical Physics2003234253283196246210.1007/s00220-002-0774-41032.37051 – reference: EliassonL.H.KuksinS.B.On reducibility of Schrödinger equations with quasiperiodic in time potentialsCommunications in Mathematical Physics20092861125135247092610.1007/s00220-008-0683-21176.35141 – reference: KuksinS. B.PöschelJ.Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equationAnnals of Mathematics1996143149179137076110.2307/21186560847.35130 – reference: ProcesiC.ProcesiM.A KAM Algorithm for the Resonant Nonlinear Schrödinger EquationAdvances in Mathematics2015272399470330323810.1016/j.aim.2014.12.0041312.37047 – reference: BertiM.BolleP.Quasi-periodic solutions with Sobolev regularity of NLS on Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}^d}$$\end{document} and a multiplicative potentialJournal of the European Mathematical Society201315229286299883510.4171/JEMS/3611260.35196 – reference: B. Grébert and É. Paturel. KAM for the Klein Gordon equation on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^d}$$\end{document}, Bollettino dellUnione Matematica Italiana 9 (2016), 237–288. – reference: V.I. Arnold. Mathematical Methods in Classical Mechanics, 3rd edn. Springer, Berlin (2006). – reference: EliassonL.H.KuksinS.B.KAM for the nonlinear Schrödinger equationAnnals of Mathematics2010172371435268042210.4007/annals.2010.172.3711201.35177 – reference: W. Craig. Problèmes de Petits Diviseurs dans les Équations aux Dérivées Partielles. Panoramas et Synthèses, Société Mathématique de France (2000). – reference: WangW.-M.Energy supercritical nonlinear Schrödinger equations: Quasiperiodic solutionsDuke Mathematical Journal20161651129119234864161342.35358 – reference: BourgainJ.Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equationsGAFA199562012350872.35007 – reference: L.H. Eliasson, B. Grébert and S.B. Kuksin. KAM for the non-linear Beam equation 1: small-amplitude solutions. arXiv:1412.2803v3. – reference: BobenkoA. I.KuksinS. B.The nonlinear Klein–Gordon equation on an interval as a perturbed Sine–Gordon equationCommentarii Mathematici Helvetici19957063112131494110.1007/BF025660000842.35099 – reference: J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematical Studies, Princeton (2004). – reference: YouJ.Perturbations of lower dimensional tori for Hamiltonian systemsJournal of Differential Equations1999152129167200810.1006/jdeq.1998.35150919.58055 – reference: ProcesiC.ProcesiM.A normal form of the nonlinear Schrdinger equation with analytic non–linearitiesCommunications in Mathematical Physics2012312501557291717410.1007/s00220-012-1483-21277.35318 – reference: L.H. Eliasson, B. Grébert and S.B. Kuksin. KAM for the nonlinear beam equation 2: a normal form theorem. arXiv:1502.02262. – reference: EliassonL.H.Perturbations of stable invariant tori for Hamiltonian systemsAnnali della Scoula Normale Superiore di Pisa19881511514710010320685.58024 – reference: PöschelJ.Quasi-periodic solutions for a nonlinear wave equationCommentarii Mathematici Helvetici199671269296139667610.1007/BF025664200866.35013 – reference: GengJ.XuX.YouJ.An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equationAdvances in Mathematics201122653615402277590510.1016/j.aim.2011.01.0131213.37104 – reference: G. H. Hardy and E. M. Wright. An Introduction to the Theory of Number. Oxford University Press, Oxford (2008). – reference: GengJ.YouJ.KAM tori for higher dimensional beam equations with constant potentialsNonlinearity20061924052423226026910.1088/0951-7715/19/10/0071190.37082 – reference: I. M. Vinogradov. An Introduction to the Theory of Numbers. Pergamon Press, London (1955). – reference: L.H Eliasson. Perturbations of Linear Quasi-Periodic Systems. In: Dynamical Systems and Small Divisors (Cetraro, Italy, 1998), 1–60, Lect. Notes Math. 1784, Springer (2002). – reference: S. Krantz and H. Parks. A Premier of Real Analytic Functions. Birkhäuser, Basel (2002). – reference: KuksinS. B.Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrumFunctional Analysis and Its Applications19872119220591177210.1007/BF025771340716.34083 – reference: J. Moser and C. L. Siegel. Lectures on Celestial Mechanics. Springer, Berlin (1971). – reference: L.H Eliasson. Almost reducibility of linear quasi-periodic systems. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), 679–705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI (2001). – reference: BertiM.BolleP.Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potentialNonlinearity20122525792613296711710.1088/0951-7715/25/9/25791262.35015 – reference: S. B. Kuksin. Nearly Integrable Infinite-dimensional Hamiltonian Systems. Lecture Notes in Mathematics, 1556. Springer, Berlin (1993). – reference: S. B. Kuksin. Analysis of Hamiltonian PDEs. Oxford University Press, Oxford (2000). – reference: CollianderJ.KeelM.StaffilaniG.TakaokaH.TaoT.Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equationInventiones Mathematicae201018131113265138110.1007/s00222-010-0242-21197.35265 – reference: GengJ.YouJ.A KAM theorem for Hamiltonian partial differential equations in higher dimensional spacesCommunications in Mathematical Physics2006262343372220026410.1007/s00220-005-1497-01103.37047 – reference: BambusiD.GrébertB.Birkhoff normal form for PDE’s with tame modulusDuke Mathematical Journal20061353507567227297510.1215/S0012-7094-06-13534-21110.37057 – reference: EliassonL.H.KuksinS.B.Infinite Töplitz–Lipschitz matrices and operatorsZeitschrift für angewandte Mathematik und Physik2008592450238040710.1007/s00033-006-6030-61140.15025 – volume: 21 start-page: 192 year: 1987 ident: 390_CR27 publication-title: Functional Analysis and Its Applications doi: 10.1007/BF02577134 – volume: 286 start-page: 125 issue: 1 year: 2009 ident: 390_CR18 publication-title: Communications in Mathematical Physics doi: 10.1007/s00220-008-0683-2 – volume: 181 start-page: 31 year: 2010 ident: 390_CR10 publication-title: Inventiones Mathematicae doi: 10.1007/s00222-010-0242-2 – ident: 390_CR24 – volume: 25 start-page: 2579 year: 2012 ident: 390_CR4 publication-title: Nonlinearity doi: 10.1088/0951-7715/25/9/2579 – ident: 390_CR26 doi: 10.1007/978-0-8176-8134-0 – volume: 143 start-page: 149 year: 1996 ident: 390_CR30 publication-title: Annals of Mathematics doi: 10.2307/2118656 – volume: 172 start-page: 371 year: 2010 ident: 390_CR19 publication-title: Annals of Mathematics doi: 10.4007/annals.2010.172.371 – ident: 390_CR15 – volume: 312 start-page: 501 year: 2012 ident: 390_CR33 publication-title: Communications in Mathematical Physics doi: 10.1007/s00220-012-1483-2 – volume: 15 start-page: 229 year: 2013 ident: 390_CR5 publication-title: Journal of the European Mathematical Society doi: 10.4171/JEMS/361 – ident: 390_CR9 doi: 10.1515/9781400837144 – ident: 390_CR11 – ident: 390_CR14 doi: 10.1090/pspum/069/1858550 – volume: 6 start-page: 201 year: 1995 ident: 390_CR7 publication-title: GAFA – volume: 71 start-page: 269 year: 1996 ident: 390_CR32 publication-title: Commentarii Mathematici Helvetici doi: 10.1007/BF02566420 – volume: 15 start-page: 115 year: 1988 ident: 390_CR12 publication-title: Annali della Scoula Normale Superiore di Pisa – ident: 390_CR29 doi: 10.1093/oso/9780198503958.001.0001 – ident: 390_CR31 – volume: 165 start-page: 1129 year: 2016 ident: 390_CR36 publication-title: Duke Mathematical Journal – ident: 390_CR35 – volume: 148 start-page: 363 year: 1998 ident: 390_CR8 publication-title: Annals of Mathematics doi: 10.2307/121001 – volume: 152 start-page: 1 year: 1999 ident: 390_CR37 publication-title: Journal of Differential Equations doi: 10.1006/jdeq.1998.3515 – volume: 272 start-page: 399 year: 2015 ident: 390_CR34 publication-title: Advances in Mathematics doi: 10.1016/j.aim.2014.12.004 – volume: 262 start-page: 343 year: 2006 ident: 390_CR22 publication-title: Communications in Mathematical Physics doi: 10.1007/s00220-005-1497-0 – volume: 62 start-page: 1 year: 1976 ident: 390_CR25 publication-title: Archive for Rational Mechanics and Analysis doi: 10.1007/BF00251855 – volume: 234 start-page: 253 year: 2003 ident: 390_CR2 publication-title: Communications in Mathematical Physics doi: 10.1007/s00220-002-0774-4 – ident: 390_CR13 doi: 10.1007/978-3-540-47928-4_1 – volume: 70 start-page: 63 year: 1995 ident: 390_CR6 publication-title: Commentarii Mathematici Helvetici doi: 10.1007/BF02566000 – ident: 390_CR1 – ident: 390_CR16 – volume: 19 start-page: 2405 year: 2006 ident: 390_CR23 publication-title: Nonlinearity doi: 10.1088/0951-7715/19/10/007 – volume: 59 start-page: 24 year: 2008 ident: 390_CR17 publication-title: Zeitschrift für angewandte Mathematik und Physik doi: 10.1007/s00033-006-6030-6 – ident: 390_CR20 doi: 10.1007/s40574-016-0072-2 – volume: 135 start-page: 507 issue: 3 year: 2006 ident: 390_CR3 publication-title: Duke Mathematical Journal doi: 10.1215/S0012-7094-06-13534-2 – volume: 226 start-page: 5361 year: 2011 ident: 390_CR21 publication-title: Advances in Mathematics doi: 10.1016/j.aim.2011.01.013 – ident: 390_CR28 doi: 10.1007/BFb0092243 |
SSID | ssj0005545 |
Score | 2.4713316 |
Snippet | In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus
u
t
t
+
Δ
2
u
+
m
u
+
∂
u
G
(
x
,... In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus u t t + Δ 2 u + m u + ∂ u G ( x ,... In this paper we prove a KAM result for the non linear beam equation on the d-dimensional torusutt+∆2u+mu+g(x,u)=0, t∈R,x∈Td, (∗)where g(x,u) = 4u3 +O(u4).... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1588 |
SubjectTerms | Analysis Analysis of PDEs Invariants Mathematics Mathematics and Statistics Nonlinear equations Toruses |
Title | KAM for the nonlinear beam equation |
URI | https://link.springer.com/article/10.1007/s00039-016-0390-7 https://www.proquest.com/docview/1880824540 https://hal.science/hal-01480367 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoEDjwGiMKYKOIEqdU3atMcObUyM7cSkcaqSNBEHmGAd_H6cvhgIkDhVcpNGsh0_GuczwIUmXi-QRDhSUebQQAgnpFygQDinIXell-NsT6bBaEZv5_68vMedVdXu1ZFkbqnry275PVJMfTEDxkTdYQ1o-SZ1RyWeefFnXYefdyY2WalDKZlXR5k_feKLM2o8mlLItTjz29Fo7nGGu7Bdhop2XMh2DzbUog07Zdhol5sya8PWpIZezfbhfBxPbIxEbaTZiwIIgy9tofizrV4LYO8DmA0H99cjp-yE4EjiuytHME1TGWqd8ojJIEQOC0xslJKmSXSE1s4TJEQy9yNCtI5YKn1JJOVahtLV5BCauKI6AjsNVNoT6LmY4jQKaISTBNo4ikYv9XVkgVuxJJElTLjpVvGU1ADHORcTUxpmuJgwCy7rKS8FRsZfg8-Qz_U4g249iu8SQzM_N9GhsveeBZ1KDEm5p7LEIMeFnkEMtOCqEs3a699WPP7X6BPY9IyC5BUrHWiulm_qFOOOlehCKx72-1PzvHkYD7q53n0A6jHONg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYOAAHHgNEYUAFnECVuiZ9HSfEVNi60ybtViVpIg4wwTr4_Tjpg4EAiWuah2QnftT2Z4ArRbxeIAh3hKShQwPOnYgyjgxhjEbMFZ7B2U7HQTKlDzN_VtVxF3W2ex2SNJK6KXYzdaTo-qIHjI66E7ZgHW2BSOdxTb3-Z16HbzoTa6_UoZTM6lDmT1t8UUatR50KuWJnfguNGo0z2IXtylS0-yVv92BNzjuwU5mNdvUoiw5spQ30arEPl8N-aqMlauOYPS-BMNjC5pI92_K1BPY-gOngbnKbOFUnBEcQ3106PFQ0F5FSOYtDEURIYY6OjZRCN4mOUdp5HCmhCPNjQpSKw1z4ggjKlIiEq8ghtPFEeQR2Hsi8x1FzhZLROKAxLuIo4ygKvdxXsQVuTZJMVDDhulvFU9YAHBsqZjo1TFMxCy24bpa8lBgZf02-QDo38zS6ddIfZXpM_9xEhRq-9yzo1mzIqjdVZBo5LvI0YqAFNzVrVj7_duLxv2afw0YySUfZ6H48PIFNT18Wk73ShfZy8SZP0QZZ8jNz5z4A26XOGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYkBAceAwQhQEVcAJV65r0dayAabCHODBptypJE3GAaayF34_TFwMBElc3D8l2_GiczwAXijhdTxBuCUl9i3qcWwFlHAXCGA2YLZwcZ3s09voTej91p2Wf07Sqdq-uJIs3DRqlaZZ15onq1A_f8jelmAZjNoxJu-U3YBWtcVer9cSJPms83LxLsc5QLUrJtLrW_GmJL46p8aTLIpdizm_XpLn36W3DZhk2mlEh5x1YkbMWbJUhpFke0LQFG6MahjXdhfNBNDIxKjWRZs4KUAy2MLlkL6Z8LUC-92DSu3287ltlVwRLENfOLO4rmohAqYSFvvAC5DbHJEdKoRtGh2j5HE4CJDM3JESp0E-EK4igTIlA2IrsQxN3lAdgJp5Muhy9mC8ZDT0a4iSO9o6iAUxcFRpgVyyJRQkZrjtXPMc12HHOxViXiWkuxr4Bl_WUeYGX8dfgM-RzPU4jXfejYaxp-kcnOlf_vWtAuxJDXJ6vNNYocoGj0QMNuKpEs_T5tx0P_zX6FNYebnrx8G48OIJ1R-tKXsjShma2eJPHGI5k_CRXuQ8rlNJV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KAM+for+the+nonlinear+beam+equation&rft.jtitle=Geometric+and+functional+analysis&rft.au=Eliasson%2C+L.+Hakan&rft.au=Gr%C3%A9bert%2C+Beno%C3%AEt&rft.au=Kuksin%2C+Sergei+B.&rft.date=2016-12-01&rft.pub=Springer+Verlag&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=26&rft.issue=6&rft.spage=1588&rft.epage=1715&rft_id=info:doi/10.1007%2Fs00039-016-0390-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01480367v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon |