KAM for the nonlinear beam equation

In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus u t t + Δ 2 u + m u + ∂ u G ( x , u ) = 0 , t ∈ R , x ∈ T d , ( ∗ ) where G ( x , u ) = u 4 + O ( u 5 ) . Namely, we show that, for generic m , many of the small amplitude in...

Full description

Saved in:
Bibliographic Details
Published inGeometric and functional analysis Vol. 26; no. 6; pp. 1588 - 1715
Main Authors Eliasson, L. Hakan, Grébert, Benoît, Kuksin, Sergei B.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2016
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus u t t + Δ 2 u + m u + ∂ u G ( x , u ) = 0 , t ∈ R , x ∈ T d , ( ∗ ) where G ( x , u ) = u 4 + O ( u 5 ) . Namely, we show that, for generic m , many of the small amplitude invariant finite dimensional tori of the linear equation ( ∗ ) G = 0 , written as the system u t = - v , v t = Δ 2 u + m u , persist as invariant tori of the nonlinear equation ( ∗ ) , re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of ( ∗ ) . If d ≥ 2 , then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.
AbstractList In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus u t t + Δ 2 u + m u + ∂ u G ( x , u ) = 0 , t ∈ R , x ∈ T d , ( ∗ ) where G ( x , u ) = u 4 + O ( u 5 ) . Namely, we show that, for generic m, many of the small amplitude invariant finite dimensional tori of the linear equation ( ∗ ) G = 0 , written as the system u t = - v , v t = Δ 2 u + m u , persist as invariant tori of the nonlinear equation ( ∗ ) , re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of ( ∗ ) . If d ≥ 2 , then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.
In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus u t t + Δ 2 u + m u + ∂ u G ( x , u ) = 0 , t ∈ R , x ∈ T d , ( ∗ ) where G ( x , u ) = u 4 + O ( u 5 ) . Namely, we show that, for generic m , many of the small amplitude invariant finite dimensional tori of the linear equation ( ∗ ) G = 0 , written as the system u t = - v , v t = Δ 2 u + m u , persist as invariant tori of the nonlinear equation ( ∗ ) , re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of ( ∗ ) . If d ≥ 2 , then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.
In this paper we prove a KAM result for the non linear beam equation on the d-dimensional torusutt+∆2u+mu+g(x,u)=0, t∈R,x∈Td, (∗)where g(x,u) = 4u3 +O(u4). Namely, we show that, for generic m, many of the small amplitude invariant finite dimensional tori of the linear equation (∗)g=0, written as the systemut =−v, vt =∆2u+mu,persist as invariant tori of the nonlinear equation (∗), re-written similarly. If d ≥ 2, then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensonal hamiltonian PDEs behave in a chaotic way.
Author Kuksin, Sergei B.
Grébert, Benoît
Eliasson, L. Hakan
Author_xml – sequence: 1
  givenname: L. Hakan
  surname: Eliasson
  fullname: Eliasson, L. Hakan
  organization: Université Paris Diderot, Sorbonne Paris Cité, Institut de, Mathémathiques de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Sorbonne Universités, UPMC Univ. Paris 06
– sequence: 2
  givenname: Benoît
  surname: Grébert
  fullname: Grébert, Benoît
  organization: Laboratoire de Mathématiques Jean Leray, Université de Nantes, UMR CNRS 6629
– sequence: 3
  givenname: Sergei B.
  surname: Kuksin
  fullname: Kuksin, Sergei B.
  email: kuksin@gmail.com, sergei.kuksin@imj-prg.fr
  organization: CNRS, Institut de Mathémathiques de Jussieu-Paris Rive Gauche, UMR 7586, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06
BackLink https://hal.science/hal-01480367$$DView record in HAL
BookMark eNp9kEFLAzEQhYNUsK3-AG8LPXmITjbJJnssRa1Y8aLgLWSzid2y3W2TreC_N-uKiKCnGWa-92Z4EzRq2sYidE7gkgCIqwAANMdAMhwrYHGExoSlgGUuYBT7fsMYfTlBkxA2keac8TGa3c8fEtf6pFvbJHrWVWO1Twqrt4ndH3RXtc0pOna6Dvbsq07R883102KJV4-3d4v5ChvKocOFcKw00rlS58Jk0tG0yHlmrcmAkpywLC2ojGPNc0qdy0VpuKGGaWekAUen6GLwXeta7Xy11f5dtbpSy_lK9TMgTALNxBuJ7Gxgd77dH2zo1KY9-Ca-p4iUIFPGGUSKDJTxbQjeum9bAqrPTQ25RedM9bkpETXil8ZU3WcOnddV_a8yHZQhXmlerf_x05-iD9mpgNw
CitedBy_id crossref_primary_10_1134_S1560354724540013
crossref_primary_10_1007_s10884_023_10298_8
crossref_primary_10_1134_S0012266122080067
crossref_primary_10_1007_s10884_017_9630_2
crossref_primary_10_1007_s10884_020_09829_4
crossref_primary_10_1063_5_0006536
crossref_primary_10_1088_1361_6544_aad3d9
crossref_primary_10_2140_apde_2021_14_2327
crossref_primary_10_1134_S0001434624050158
crossref_primary_10_1007_s10958_023_06383_4
crossref_primary_10_2140_apde_2023_16_1133
crossref_primary_10_1016_j_jde_2025_113229
crossref_primary_10_1007_s12346_023_00797_w
crossref_primary_10_1134_S0012266120030064
crossref_primary_10_1134_S1560354724040026
crossref_primary_10_1137_23M162171X
crossref_primary_10_3934_dcds_2022064
crossref_primary_10_1093_imrn_rnx167
crossref_primary_10_1093_imrn_rnz344
crossref_primary_10_1016_j_jfa_2022_109430
crossref_primary_10_1007_s10884_019_09819_1
crossref_primary_10_1137_20M1320742
crossref_primary_10_1016_j_jde_2023_12_041
crossref_primary_10_1088_1361_6544_ad673e
crossref_primary_10_1155_2022_7106366
crossref_primary_10_1063_1_5045780
crossref_primary_10_1007_s00205_020_01596_2
crossref_primary_10_18698_1812_3368_2019_3_4_21
crossref_primary_10_1007_s00209_020_02575_9
crossref_primary_10_1007_s11464_017_0667_7
crossref_primary_10_1016_j_jfa_2018_10_009
crossref_primary_10_1007_s10884_021_09941_z
crossref_primary_10_1016_j_cnsns_2021_106091
crossref_primary_10_1007_s10884_019_09754_1
crossref_primary_10_1063_5_0018196
crossref_primary_10_1007_s00033_023_01948_4
crossref_primary_10_1080_00036811_2018_1555325
crossref_primary_10_1007_s10884_018_9661_3
crossref_primary_10_1016_j_jde_2018_05_005
crossref_primary_10_1063_5_0154905
crossref_primary_10_1007_s10884_023_10296_w
crossref_primary_10_11650_tjm_7951
crossref_primary_10_1186_s13661_018_0996_9
crossref_primary_10_1016_j_jde_2020_07_040
crossref_primary_10_1007_s10884_021_10025_1
crossref_primary_10_1016_j_cnsns_2021_105756
crossref_primary_10_1007_s12346_022_00654_2
crossref_primary_10_1007_s10884_021_09972_6
crossref_primary_10_1186_s13661_020_01374_9
crossref_primary_10_1016_j_jde_2019_02_004
crossref_primary_10_4213_sm9711
crossref_primary_10_1016_j_jde_2018_02_005
crossref_primary_10_1002_cpa_21931
crossref_primary_10_58997_ejde_2022_69
crossref_primary_10_1186_s13661_017_0810_0
crossref_primary_10_1137_22M1512958
crossref_primary_10_1007_s00526_022_02404_3
crossref_primary_10_1063_5_0183958
crossref_primary_10_1007_s10114_024_3159_1
crossref_primary_10_1016_j_jde_2019_02_010
crossref_primary_10_1007_s40574_018_0164_2
crossref_primary_10_1007_s12346_022_00687_7
crossref_primary_10_1007_s10884_021_10058_6
crossref_primary_10_1016_j_na_2020_112120
crossref_primary_10_1007_s10958_020_05004_8
crossref_primary_10_1007_s40818_020_00089_5
crossref_primary_10_1007_s00222_023_01195_4
crossref_primary_10_1016_j_taml_2025_100583
crossref_primary_10_1016_j_jde_2019_04_009
crossref_primary_10_1017_fms_2020_8
crossref_primary_10_3934_math_2021039
crossref_primary_10_1007_s10884_019_09804_8
crossref_primary_10_1007_s12346_020_00425_x
crossref_primary_10_1016_j_physd_2024_134102
crossref_primary_10_1088_1361_6544_aad6fe
crossref_primary_10_1016_j_jmaa_2020_124529
crossref_primary_10_4213_sm9711e
crossref_primary_10_1016_j_na_2019_111585
crossref_primary_10_1063_1_5074094
crossref_primary_10_1016_j_jde_2023_03_036
Cites_doi 10.1007/BF02577134
10.1007/s00220-008-0683-2
10.1007/s00222-010-0242-2
10.1088/0951-7715/25/9/2579
10.1007/978-0-8176-8134-0
10.2307/2118656
10.4007/annals.2010.172.371
10.1007/s00220-012-1483-2
10.4171/JEMS/361
10.1515/9781400837144
10.1090/pspum/069/1858550
10.1007/BF02566420
10.1093/oso/9780198503958.001.0001
10.2307/121001
10.1006/jdeq.1998.3515
10.1016/j.aim.2014.12.004
10.1007/s00220-005-1497-0
10.1007/BF00251855
10.1007/s00220-002-0774-4
10.1007/978-3-540-47928-4_1
10.1007/BF02566000
10.1088/0951-7715/19/10/007
10.1007/s00033-006-6030-6
10.1007/s40574-016-0072-2
10.1215/S0012-7094-06-13534-2
10.1016/j.aim.2011.01.013
10.1007/BFb0092243
ContentType Journal Article
Copyright Springer International Publishing 2016
Copyright Springer Science & Business Media 2016
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer International Publishing 2016
– notice: Copyright Springer Science & Business Media 2016
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1007/s00039-016-0390-7
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1420-8970
EndPage 1715
ExternalDocumentID oai_HAL_hal_01480367v1
10_1007_s00039_016_0390_7
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
1XC
ID FETCH-LOGICAL-c350t-b7f4dc8ffda97c68f32b956eec603191462b388f3a5933ff97dc5c3c4afc8c0f3
IEDL.DBID U2A
ISSN 1016-443X
IngestDate Fri May 09 12:17:07 EDT 2025
Fri Jul 25 11:17:33 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Tue Jul 01 02:31:06 EDT 2025
Fri Feb 21 02:32:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Hamiltonian systems
Beam equation
KAM theory
hamiltonian systems
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-b7f4dc8ffda97c68f32b956eec603191462b388f3a5933ff97dc5c3c4afc8c0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880824540
PQPubID 2044207
PageCount 128
ParticipantIDs hal_primary_oai_HAL_hal_01480367v1
proquest_journals_1880824540
crossref_primary_10_1007_s00039_016_0390_7
crossref_citationtrail_10_1007_s00039_016_0390_7
springer_journals_10_1007_s00039_016_0390_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationSubtitle GAFA
PublicationTitle Geometric and functional analysis
PublicationTitleAbbrev Geom. Funct. Anal
PublicationYear 2016
Publisher Springer International Publishing
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer Verlag
References I. M. Vinogradov. An Introduction to the Theory of Numbers. Pergamon Press, London (1955).
BourgainJ.Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equationsGAFA199562012350872.35007
J. Moser and C. L. Siegel. Lectures on Celestial Mechanics. Springer, Berlin (1971).
W. Craig. Problèmes de Petits Diviseurs dans les Équations aux Dérivées Partielles. Panoramas et Synthèses, Société Mathématique de France (2000).
L.H. Eliasson, B. Grébert and S.B. Kuksin. KAM for the non-linear Beam equation 1: small-amplitude solutions. arXiv:1412.2803v3.
GengJ.YouJ.KAM tori for higher dimensional beam equations with constant potentialsNonlinearity20061924052423226026910.1088/0951-7715/19/10/0071190.37082
BertiM.BolleP.Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potentialNonlinearity20122525792613296711710.1088/0951-7715/25/9/25791262.35015
GengJ.YouJ.A KAM theorem for Hamiltonian partial differential equations in higher dimensional spacesCommunications in Mathematical Physics2006262343372220026410.1007/s00220-005-1497-01103.37047
G. H. Hardy and E. M. Wright. An Introduction to the Theory of Number. Oxford University Press, Oxford (2008).
EliassonL.H.KuksinS.B.Infinite Töplitz–Lipschitz matrices and operatorsZeitschrift für angewandte Mathematik und Physik2008592450238040710.1007/s00033-006-6030-61140.15025
KuksinS. B.Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrumFunctional Analysis and Its Applications19872119220591177210.1007/BF025771340716.34083
BourgainJ.Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Shödinger equationAnnals of Mathematics1998148363439166854710.2307/1210010928.35161
CollianderJ.KeelM.StaffilaniG.TakaokaH.TaoT.Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equationInventiones Mathematicae201018131113265138110.1007/s00222-010-0242-21197.35265
ProcesiC.ProcesiM.A normal form of the nonlinear Schrdinger equation with analytic non–linearitiesCommunications in Mathematical Physics2012312501557291717410.1007/s00220-012-1483-21277.35318
BambusiD.GrébertB.Birkhoff normal form for PDE’s with tame modulusDuke Mathematical Journal20061353507567227297510.1215/S0012-7094-06-13534-21110.37057
BobenkoA. I.KuksinS. B.The nonlinear Klein–Gordon equation on an interval as a perturbed Sine–Gordon equationCommentarii Mathematici Helvetici19957063112131494110.1007/BF025660000842.35099
GengJ.XuX.YouJ.An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equationAdvances in Mathematics201122653615402277590510.1016/j.aim.2011.01.0131213.37104
ProcesiC.ProcesiM.A KAM Algorithm for the Resonant Nonlinear Schrödinger EquationAdvances in Mathematics2015272399470330323810.1016/j.aim.2014.12.0041312.37047
EliassonL.H.Perturbations of stable invariant tori for Hamiltonian systemsAnnali della Scoula Normale Superiore di Pisa19881511514710010320685.58024
WangW.-M.Energy supercritical nonlinear Schrödinger equations: Quasiperiodic solutionsDuke Mathematical Journal20161651129119234864161342.35358
J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematical Studies, Princeton (2004).
B. Grébert and É. Paturel. KAM for the Klein Gordon equation on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^d}$$\end{document}, Bollettino dellUnione Matematica Italiana 9 (2016), 237–288.
BertiM.BolleP.Quasi-periodic solutions with Sobolev regularity of NLS on Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}^d}$$\end{document} and a multiplicative potentialJournal of the European Mathematical Society201315229286299883510.4171/JEMS/3611260.35196
L.H Eliasson. Perturbations of Linear Quasi-Periodic Systems. In: Dynamical Systems and Small Divisors (Cetraro, Italy, 1998), 1–60, Lect. Notes Math. 1784, Springer (2002).
YouJ.Perturbations of lower dimensional tori for Hamiltonian systemsJournal of Differential Equations1999152129167200810.1006/jdeq.1998.35150919.58055
HörmanderL.Note on Hölder Estimates. The boundary problem of physical geodesyArchive for Rational Mechanics and Analysis19766215260218110.1007/BF002518550331.35020
KuksinS. B.PöschelJ.Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equationAnnals of Mathematics1996143149179137076110.2307/21186560847.35130
EliassonL.H.KuksinS.B.On reducibility of Schrödinger equations with quasiperiodic in time potentialsCommunications in Mathematical Physics20092861125135247092610.1007/s00220-008-0683-21176.35141
S. Krantz and H. Parks. A Premier of Real Analytic Functions. Birkhäuser, Basel (2002).
PöschelJ.Quasi-periodic solutions for a nonlinear wave equationCommentarii Mathematici Helvetici199671269296139667610.1007/BF025664200866.35013
S. B. Kuksin. Analysis of Hamiltonian PDEs. Oxford University Press, Oxford (2000).
S. B. Kuksin. Nearly Integrable Infinite-dimensional Hamiltonian Systems. Lecture Notes in Mathematics, 1556. Springer, Berlin (1993).
L.H Eliasson. Almost reducibility of linear quasi-periodic systems. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), 679–705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI (2001).
V.I. Arnold. Mathematical Methods in Classical Mechanics, 3rd edn. Springer, Berlin (2006).
BambusiD.Birkhoff normal form for some nonlinear PDEsCommunications in Mathematical Physics2003234253283196246210.1007/s00220-002-0774-41032.37051
L.H. Eliasson, B. Grébert and S.B. Kuksin. KAM for the nonlinear beam equation 2: a normal form theorem. arXiv:1502.02262.
EliassonL.H.KuksinS.B.KAM for the nonlinear Schrödinger equationAnnals of Mathematics2010172371435268042210.4007/annals.2010.172.3711201.35177
390_CR31
C. Procesi (390_CR33) 2012; 312
390_CR13
390_CR35
390_CR14
390_CR11
390_CR9
D. Bambusi (390_CR2) 2003; 234
390_CR15
J. Geng (390_CR23) 2006; 19
J. You (390_CR37) 1999; 152
390_CR16
L.H. Eliasson (390_CR18) 2009; 286
J. Bourgain (390_CR7) 1995; 6
W.-M. Wang (390_CR36) 2016; 165
M. Berti (390_CR4) 2012; 25
390_CR1
390_CR20
C. Procesi (390_CR34) 2015; 272
390_CR24
D. Bambusi (390_CR3) 2006; 135
390_CR28
390_CR29
390_CR26
S. B. Kuksin (390_CR27) 1987; 21
J. Pöschel (390_CR32) 1996; 71
S. B. Kuksin (390_CR30) 1996; 143
A. I. Bobenko (390_CR6) 1995; 70
J. Bourgain (390_CR8) 1998; 148
L. Hörmander (390_CR25) 1976; 62
J. Geng (390_CR22) 2006; 262
M. Berti (390_CR5) 2013; 15
L.H. Eliasson (390_CR12) 1988; 15
J. Colliander (390_CR10) 2010; 181
J. Geng (390_CR21) 2011; 226
L.H. Eliasson (390_CR19) 2010; 172
L.H. Eliasson (390_CR17) 2008; 59
References_xml – reference: BourgainJ.Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Shödinger equationAnnals of Mathematics1998148363439166854710.2307/1210010928.35161
– reference: HörmanderL.Note on Hölder Estimates. The boundary problem of physical geodesyArchive for Rational Mechanics and Analysis19766215260218110.1007/BF002518550331.35020
– reference: BambusiD.Birkhoff normal form for some nonlinear PDEsCommunications in Mathematical Physics2003234253283196246210.1007/s00220-002-0774-41032.37051
– reference: EliassonL.H.KuksinS.B.On reducibility of Schrödinger equations with quasiperiodic in time potentialsCommunications in Mathematical Physics20092861125135247092610.1007/s00220-008-0683-21176.35141
– reference: KuksinS. B.PöschelJ.Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equationAnnals of Mathematics1996143149179137076110.2307/21186560847.35130
– reference: ProcesiC.ProcesiM.A KAM Algorithm for the Resonant Nonlinear Schrödinger EquationAdvances in Mathematics2015272399470330323810.1016/j.aim.2014.12.0041312.37047
– reference: BertiM.BolleP.Quasi-periodic solutions with Sobolev regularity of NLS on Td\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}^d}$$\end{document} and a multiplicative potentialJournal of the European Mathematical Society201315229286299883510.4171/JEMS/3611260.35196
– reference: B. Grébert and É. Paturel. KAM for the Klein Gordon equation on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^d}$$\end{document}, Bollettino dellUnione Matematica Italiana 9 (2016), 237–288.
– reference: V.I. Arnold. Mathematical Methods in Classical Mechanics, 3rd edn. Springer, Berlin (2006).
– reference: EliassonL.H.KuksinS.B.KAM for the nonlinear Schrödinger equationAnnals of Mathematics2010172371435268042210.4007/annals.2010.172.3711201.35177
– reference: W. Craig. Problèmes de Petits Diviseurs dans les Équations aux Dérivées Partielles. Panoramas et Synthèses, Société Mathématique de France (2000).
– reference: WangW.-M.Energy supercritical nonlinear Schrödinger equations: Quasiperiodic solutionsDuke Mathematical Journal20161651129119234864161342.35358
– reference: BourgainJ.Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equationsGAFA199562012350872.35007
– reference: L.H. Eliasson, B. Grébert and S.B. Kuksin. KAM for the non-linear Beam equation 1: small-amplitude solutions. arXiv:1412.2803v3.
– reference: BobenkoA. I.KuksinS. B.The nonlinear Klein–Gordon equation on an interval as a perturbed Sine–Gordon equationCommentarii Mathematici Helvetici19957063112131494110.1007/BF025660000842.35099
– reference: J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematical Studies, Princeton (2004).
– reference: YouJ.Perturbations of lower dimensional tori for Hamiltonian systemsJournal of Differential Equations1999152129167200810.1006/jdeq.1998.35150919.58055
– reference: ProcesiC.ProcesiM.A normal form of the nonlinear Schrdinger equation with analytic non–linearitiesCommunications in Mathematical Physics2012312501557291717410.1007/s00220-012-1483-21277.35318
– reference: L.H. Eliasson, B. Grébert and S.B. Kuksin. KAM for the nonlinear beam equation 2: a normal form theorem. arXiv:1502.02262.
– reference: EliassonL.H.Perturbations of stable invariant tori for Hamiltonian systemsAnnali della Scoula Normale Superiore di Pisa19881511514710010320685.58024
– reference: PöschelJ.Quasi-periodic solutions for a nonlinear wave equationCommentarii Mathematici Helvetici199671269296139667610.1007/BF025664200866.35013
– reference: GengJ.XuX.YouJ.An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equationAdvances in Mathematics201122653615402277590510.1016/j.aim.2011.01.0131213.37104
– reference: G. H. Hardy and E. M. Wright. An Introduction to the Theory of Number. Oxford University Press, Oxford (2008).
– reference: GengJ.YouJ.KAM tori for higher dimensional beam equations with constant potentialsNonlinearity20061924052423226026910.1088/0951-7715/19/10/0071190.37082
– reference: I. M. Vinogradov. An Introduction to the Theory of Numbers. Pergamon Press, London (1955).
– reference: L.H Eliasson. Perturbations of Linear Quasi-Periodic Systems. In: Dynamical Systems and Small Divisors (Cetraro, Italy, 1998), 1–60, Lect. Notes Math. 1784, Springer (2002).
– reference: S. Krantz and H. Parks. A Premier of Real Analytic Functions. Birkhäuser, Basel (2002).
– reference: KuksinS. B.Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrumFunctional Analysis and Its Applications19872119220591177210.1007/BF025771340716.34083
– reference: J. Moser and C. L. Siegel. Lectures on Celestial Mechanics. Springer, Berlin (1971).
– reference: L.H Eliasson. Almost reducibility of linear quasi-periodic systems. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), 679–705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI (2001).
– reference: BertiM.BolleP.Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potentialNonlinearity20122525792613296711710.1088/0951-7715/25/9/25791262.35015
– reference: S. B. Kuksin. Nearly Integrable Infinite-dimensional Hamiltonian Systems. Lecture Notes in Mathematics, 1556. Springer, Berlin (1993).
– reference: S. B. Kuksin. Analysis of Hamiltonian PDEs. Oxford University Press, Oxford (2000).
– reference: CollianderJ.KeelM.StaffilaniG.TakaokaH.TaoT.Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equationInventiones Mathematicae201018131113265138110.1007/s00222-010-0242-21197.35265
– reference: GengJ.YouJ.A KAM theorem for Hamiltonian partial differential equations in higher dimensional spacesCommunications in Mathematical Physics2006262343372220026410.1007/s00220-005-1497-01103.37047
– reference: BambusiD.GrébertB.Birkhoff normal form for PDE’s with tame modulusDuke Mathematical Journal20061353507567227297510.1215/S0012-7094-06-13534-21110.37057
– reference: EliassonL.H.KuksinS.B.Infinite Töplitz–Lipschitz matrices and operatorsZeitschrift für angewandte Mathematik und Physik2008592450238040710.1007/s00033-006-6030-61140.15025
– volume: 21
  start-page: 192
  year: 1987
  ident: 390_CR27
  publication-title: Functional Analysis and Its Applications
  doi: 10.1007/BF02577134
– volume: 286
  start-page: 125
  issue: 1
  year: 2009
  ident: 390_CR18
  publication-title: Communications in Mathematical Physics
  doi: 10.1007/s00220-008-0683-2
– volume: 181
  start-page: 31
  year: 2010
  ident: 390_CR10
  publication-title: Inventiones Mathematicae
  doi: 10.1007/s00222-010-0242-2
– ident: 390_CR24
– volume: 25
  start-page: 2579
  year: 2012
  ident: 390_CR4
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/25/9/2579
– ident: 390_CR26
  doi: 10.1007/978-0-8176-8134-0
– volume: 143
  start-page: 149
  year: 1996
  ident: 390_CR30
  publication-title: Annals of Mathematics
  doi: 10.2307/2118656
– volume: 172
  start-page: 371
  year: 2010
  ident: 390_CR19
  publication-title: Annals of Mathematics
  doi: 10.4007/annals.2010.172.371
– ident: 390_CR15
– volume: 312
  start-page: 501
  year: 2012
  ident: 390_CR33
  publication-title: Communications in Mathematical Physics
  doi: 10.1007/s00220-012-1483-2
– volume: 15
  start-page: 229
  year: 2013
  ident: 390_CR5
  publication-title: Journal of the European Mathematical Society
  doi: 10.4171/JEMS/361
– ident: 390_CR9
  doi: 10.1515/9781400837144
– ident: 390_CR11
– ident: 390_CR14
  doi: 10.1090/pspum/069/1858550
– volume: 6
  start-page: 201
  year: 1995
  ident: 390_CR7
  publication-title: GAFA
– volume: 71
  start-page: 269
  year: 1996
  ident: 390_CR32
  publication-title: Commentarii Mathematici Helvetici
  doi: 10.1007/BF02566420
– volume: 15
  start-page: 115
  year: 1988
  ident: 390_CR12
  publication-title: Annali della Scoula Normale Superiore di Pisa
– ident: 390_CR29
  doi: 10.1093/oso/9780198503958.001.0001
– ident: 390_CR31
– volume: 165
  start-page: 1129
  year: 2016
  ident: 390_CR36
  publication-title: Duke Mathematical Journal
– ident: 390_CR35
– volume: 148
  start-page: 363
  year: 1998
  ident: 390_CR8
  publication-title: Annals of Mathematics
  doi: 10.2307/121001
– volume: 152
  start-page: 1
  year: 1999
  ident: 390_CR37
  publication-title: Journal of Differential Equations
  doi: 10.1006/jdeq.1998.3515
– volume: 272
  start-page: 399
  year: 2015
  ident: 390_CR34
  publication-title: Advances in Mathematics
  doi: 10.1016/j.aim.2014.12.004
– volume: 262
  start-page: 343
  year: 2006
  ident: 390_CR22
  publication-title: Communications in Mathematical Physics
  doi: 10.1007/s00220-005-1497-0
– volume: 62
  start-page: 1
  year: 1976
  ident: 390_CR25
  publication-title: Archive for Rational Mechanics and Analysis
  doi: 10.1007/BF00251855
– volume: 234
  start-page: 253
  year: 2003
  ident: 390_CR2
  publication-title: Communications in Mathematical Physics
  doi: 10.1007/s00220-002-0774-4
– ident: 390_CR13
  doi: 10.1007/978-3-540-47928-4_1
– volume: 70
  start-page: 63
  year: 1995
  ident: 390_CR6
  publication-title: Commentarii Mathematici Helvetici
  doi: 10.1007/BF02566000
– ident: 390_CR1
– ident: 390_CR16
– volume: 19
  start-page: 2405
  year: 2006
  ident: 390_CR23
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/19/10/007
– volume: 59
  start-page: 24
  year: 2008
  ident: 390_CR17
  publication-title: Zeitschrift für angewandte Mathematik und Physik
  doi: 10.1007/s00033-006-6030-6
– ident: 390_CR20
  doi: 10.1007/s40574-016-0072-2
– volume: 135
  start-page: 507
  issue: 3
  year: 2006
  ident: 390_CR3
  publication-title: Duke Mathematical Journal
  doi: 10.1215/S0012-7094-06-13534-2
– volume: 226
  start-page: 5361
  year: 2011
  ident: 390_CR21
  publication-title: Advances in Mathematics
  doi: 10.1016/j.aim.2011.01.013
– ident: 390_CR28
  doi: 10.1007/BFb0092243
SSID ssj0005545
Score 2.4713316
Snippet In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus u t t + Δ 2 u + m u + ∂ u G ( x ,...
In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus u t t + Δ 2 u + m u + ∂ u G ( x ,...
In this paper we prove a KAM result for the non linear beam equation on the d-dimensional torusutt+∆2u+mu+g(x,u)=0, t∈R,x∈Td, (∗)where g(x,u) = 4u3 +O(u4)....
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1588
SubjectTerms Analysis
Analysis of PDEs
Invariants
Mathematics
Mathematics and Statistics
Nonlinear equations
Toruses
Title KAM for the nonlinear beam equation
URI https://link.springer.com/article/10.1007/s00039-016-0390-7
https://www.proquest.com/docview/1880824540
https://hal.science/hal-01480367
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoEDjwGiMKYKOIEqdU3atMcObUyM7cSkcaqSNBEHmGAd_H6cvhgIkDhVcpNGsh0_GuczwIUmXi-QRDhSUebQQAgnpFygQDinIXell-NsT6bBaEZv5_68vMedVdXu1ZFkbqnry275PVJMfTEDxkTdYQ1o-SZ1RyWeefFnXYefdyY2WalDKZlXR5k_feKLM2o8mlLItTjz29Fo7nGGu7Bdhop2XMh2DzbUog07Zdhol5sya8PWpIZezfbhfBxPbIxEbaTZiwIIgy9tofizrV4LYO8DmA0H99cjp-yE4EjiuytHME1TGWqd8ojJIEQOC0xslJKmSXSE1s4TJEQy9yNCtI5YKn1JJOVahtLV5BCauKI6AjsNVNoT6LmY4jQKaISTBNo4ikYv9XVkgVuxJJElTLjpVvGU1ADHORcTUxpmuJgwCy7rKS8FRsZfg8-Qz_U4g249iu8SQzM_N9GhsveeBZ1KDEm5p7LEIMeFnkEMtOCqEs3a699WPP7X6BPY9IyC5BUrHWiulm_qFOOOlehCKx72-1PzvHkYD7q53n0A6jHONg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYOAAHHgNEYUAFnECVuiZ9HSfEVNi60ybtViVpIg4wwTr4_Tjpg4EAiWuah2QnftT2Z4ArRbxeIAh3hKShQwPOnYgyjgxhjEbMFZ7B2U7HQTKlDzN_VtVxF3W2ex2SNJK6KXYzdaTo-qIHjI66E7ZgHW2BSOdxTb3-Z16HbzoTa6_UoZTM6lDmT1t8UUatR50KuWJnfguNGo0z2IXtylS0-yVv92BNzjuwU5mNdvUoiw5spQ30arEPl8N-aqMlauOYPS-BMNjC5pI92_K1BPY-gOngbnKbOFUnBEcQ3106PFQ0F5FSOYtDEURIYY6OjZRCN4mOUdp5HCmhCPNjQpSKw1z4ggjKlIiEq8ghtPFEeQR2Hsi8x1FzhZLROKAxLuIo4ygKvdxXsQVuTZJMVDDhulvFU9YAHBsqZjo1TFMxCy24bpa8lBgZf02-QDo38zS6ddIfZXpM_9xEhRq-9yzo1mzIqjdVZBo5LvI0YqAFNzVrVj7_duLxv2afw0YySUfZ6H48PIFNT18Wk73ShfZy8SZP0QZZ8jNz5z4A26XOGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYkBAceAwQhQEVcAJV65r0dayAabCHODBptypJE3GAaayF34_TFwMBElc3D8l2_GiczwAXijhdTxBuCUl9i3qcWwFlHAXCGA2YLZwcZ3s09voTej91p2Wf07Sqdq-uJIs3DRqlaZZ15onq1A_f8jelmAZjNoxJu-U3YBWtcVer9cSJPms83LxLsc5QLUrJtLrW_GmJL46p8aTLIpdizm_XpLn36W3DZhk2mlEh5x1YkbMWbJUhpFke0LQFG6MahjXdhfNBNDIxKjWRZs4KUAy2MLlkL6Z8LUC-92DSu3287ltlVwRLENfOLO4rmohAqYSFvvAC5DbHJEdKoRtGh2j5HE4CJDM3JESp0E-EK4igTIlA2IrsQxN3lAdgJp5Muhy9mC8ZDT0a4iSO9o6iAUxcFRpgVyyJRQkZrjtXPMc12HHOxViXiWkuxr4Bl_WUeYGX8dfgM-RzPU4jXfejYaxp-kcnOlf_vWtAuxJDXJ6vNNYocoGj0QMNuKpEs_T5tx0P_zX6FNYebnrx8G48OIJ1R-tKXsjShma2eJPHGI5k_CRXuQ8rlNJV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KAM+for+the+nonlinear+beam+equation&rft.jtitle=Geometric+and+functional+analysis&rft.au=Eliasson%2C+L.+Hakan&rft.au=Gr%C3%A9bert%2C+Beno%C3%AEt&rft.au=Kuksin%2C+Sergei+B.&rft.date=2016-12-01&rft.pub=Springer+Verlag&rft.issn=1016-443X&rft.eissn=1420-8970&rft.volume=26&rft.issue=6&rft.spage=1588&rft.epage=1715&rft_id=info:doi/10.1007%2Fs00039-016-0390-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01480367v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-443X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-443X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-443X&client=summon