Computational approaches to predict the toxicity of bioactive natural products: a mini review of methodologies

Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This find...

Full description

Saved in:
Bibliographic Details
Published inFood science and biotechnology Vol. 34; no. 2; pp. 299 - 305
Main Authors Choi, Kwanyong, Kim, Ji Yeon
Format Journal Article
LanguageEnglish
Published Korea (South) Springer Nature B.V 01.01.2025
한국식품과학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products.
AbstractList Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products.Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products.
Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products.
Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products. KCI Citation Count: 0
Author Kim, Ji Yeon
Choi, Kwanyong
Author_xml – sequence: 1
  givenname: Kwanyong
  surname: Choi
  fullname: Choi, Kwanyong
– sequence: 2
  givenname: Ji Yeon
  orcidid: 0000-0002-4316-2726
  surname: Kim
  fullname: Kim, Ji Yeon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39944664$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003172529$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqF0k1LHTEUBuBQLPVq-we6kICbUpia78m4k0utglAoug6ZzBlvdGYyJhlb_73xXuuim25yOPCcQE7eA7Q3hQkQ-kzJN0pIfZLKqXRFmKgIrQmt6Du0YqRhlRJS7aEVZUxVdU30PjpI6a5oymrxAe3zphFCKbFC0zqM85Jt9mGyA7bzHIN1G0g4BzxH6LzLOG-gtH-88_kJhx63vpjsHwFPNi-xzJWpbnE5nWKLRz95HOHRw-8XPELehC4M4dZD-oje93ZI8Om1HqKb8-_X64vq6uePy_XZVeW4JLlqmZYgbEu1ZB3w0jYKWiUa6ZwGSTmjTLQ91M61hHFKtRVW9J2QkggigR-ir7t7p9ibe-dNsH5bb4O5j-bs1_WloWV5hElR8JcdLq94WCBlM_rkYBjsBGFJhjNCeFlXrf9PqVJMNVqTQo__oXdhiWXJWyV5U1hT1NGrWtoROjNHP9r4ZP7-UAFsB1wMKUXo3wgl5iUGZhcDU2JgtjEwlD8Dedijnw
Cites_doi 10.1016/j.tox.2014.09.003
10.1186/s40360-018-0282-6
10.1093/toxsci/kfz243
10.1109/ACCESS.2018.2874089
10.1093/bib/bbx151
10.1016/j.tips.2005.02.006
10.1002/0470857897.ch8
10.1093/toxsci/kfl103
10.3390/life12030363
10.1016/j.tox.2004.01.028
10.1007/s10068-022-01047-6
10.1186/1472-6882-8-58
10.1007/s13530-020-00056-4
10.1109/NAFOSTED.2017.8108071
10.1023/A:1025361621494
10.1016/j.fct.2015.01.020
10.1038/nbt0702-649
10.1111/cbdd.13690
10.1177/1177932220921350
10.3389/fnut.2024.1393366
10.1007/s00204-021-03023-1
10.1080/15563650.2017.1333123
10.1007/s40484-019-0172-y
10.14573/altex.1803011
10.1093/bioinformatics/btw228
10.1016/j.drudis.2016.02.015
10.1155/2016/6012761
10.1201/9781003075363-20
10.1016/j.jff.2020.103896
10.1016/j.compbiolchem.2020.107402
10.1038/nphys260
10.1371/journal.pone.0142498
10.1021/acs.molpharmaceut.5b00465
10.1016/j.tifs.2023.104191
10.1080/1062936X.2015.1136680
10.1186/s12859-018-2199-x
10.1186/s12911-018-0592-z
10.1016/j.jbi.2010.01.002
10.1111/j.1365-2621.2005.tb09054.x
10.1055/a-0605-3786
10.3389/fphar.2022.961012
10.1038/s43016-021-00316-7
10.1016/S0278-6915(03)00018-8
10.1111/bcp.12234
10.3390/biom11020216
10.1021/acssynbio.7b00296
ContentType Journal Article
Copyright The Korean Society of Food Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Korean Society of Food Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
ACYCR
DOI 10.1007/s10068-024-01701-1
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2092-6456
EndPage 305
ExternalDocumentID oai_kci_go_kr_ARTI_10680254
39944664
10_1007_s10068_024_01701_1
Genre Journal Article
Review
GroupedDBID 06D
0R~
0VY
1N0
203
29H
2KG
30V
4.4
406
408
40D
5GY
67Z
96X
9ZL
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
AAYZH
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AOIJS
ATHPR
AXYYD
AYFIA
AYJHY
BGNMA
CITATION
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HG6
HMJXF
HRMNR
I0C
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OK1
P2P
P9N
PT4
R9I
RLLFE
ROL
RPM
RSV
S27
S3B
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
2VQ
AARHV
AAYTO
ABRTQ
ACBXY
AEBTG
AEKMD
AFLOW
AGJBK
AHSBF
AJBLW
CAG
COF
DBRKI
EJD
FINBP
FSGXE
GW5
H13
HF~
HYE
HZ~
KVFHK
M1Z
MZR
NPM
O9-
S1Z
ZZE
7X8
7S9
L.6
-EM
.UV
ACYCR
ADINQ
GQ6
Z7U
Z7V
Z7W
ID FETCH-LOGICAL-c350t-b285e4ab1852de3b2896eb6495cc8e5132124bfe7ccb023118a4a4fd4550405e3
ISSN 1226-7708
2092-6456
IngestDate Thu Feb 13 03:47:21 EST 2025
Fri Jul 11 18:33:37 EDT 2025
Fri Jul 11 06:04:25 EDT 2025
Sun Jul 13 03:48:44 EDT 2025
Mon Jul 21 05:32:08 EDT 2025
Tue Jul 01 04:26:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords In silico
Top-down
Natural products
Toxicity
Bottom-up
Language English
License The Korean Society of Food Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-b285e4ab1852de3b2896eb6495cc8e5132124bfe7ccb023118a4a4fd4550405e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4316-2726
PMID 39944664
PQID 3165396989
PQPubID 2043650
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10680254
proquest_miscellaneous_3200346678
proquest_miscellaneous_3166269880
proquest_journals_3165396989
pubmed_primary_39944664
crossref_primary_10_1007_s10068_024_01701_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
– name: Heidelberg
PublicationTitle Food science and biotechnology
PublicationTitleAlternate Food Sci Biotechnol
PublicationYear 2025
Publisher Springer Nature B.V
한국식품과학회
Publisher_xml – name: Springer Nature B.V
– name: 한국식품과학회
References L Pu (1701_CR35) 2019; 20
JC Dearden (1701_CR4) 2003; 17
S Li (1701_CR27) 2021; 95
S-H Huang (1701_CR15) 2015; 78
N Tsamandouras (1701_CR42) 2015; 79
H Luo (1701_CR29) 2016; 32
M Yang (1701_CR44) 2015; 12
S Ekins (1701_CR9) 2005; 26
ME Manful (1701_CR30) 2023; 142
Z Mozafari (1701_CR31) 2020; 96
GC Fonger (1701_CR12) 2014; 325
L Wang (1701_CR43) 2018; 7
T Tralau (1701_CR41) 2021; 2
1701_CR24
Y Li (1701_CR26) 2016
R Kroes (1701_CR22) 2004; 198
I Lee (1701_CR25) 2018; 19
NA Rivero-Segura (1701_CR37) 2021; 11
RS Thomas (1701_CR40) 2018; 35
V Jakkula (1701_CR17) 2006; 37
A Oulas (1701_CR33) 2017; 20
S Yoo (1701_CR46) 2018; 6
A Hudson (1701_CR16) 2018; 84
KT Rim (1701_CR36) 2020; 12
V Sharma (1701_CR39) 2020; 14
B Palsson (1701_CR34) 2002; 20
LD Díaz (1701_CR6) 2020; 68
Y-C Fang (1701_CR11) 2008; 8
P Ruiz (1701_CR38) 2020; 174
S Dimitrov (1701_CR7) 2016; 27
J An (1701_CR1) 2022; 13
DJ Dix (1701_CR8) 2007; 95
B Devleesschauwer (1701_CR5) 2015; 10
SE Kenny (1701_CR20) 2022; 12
P Zhao (1701_CR47) 2017; 55
1701_CR19
1701_CR13
A Bausch (1701_CR2) 2006; 2
EP Gutiérrez-Grijalva (1701_CR14) 2024; 11
C Kruger (1701_CR23) 2003; 41
X Jiao (1701_CR18) 2021; 90
X Zhou (1701_CR48) 2010; 43
J Fan (1701_CR10) 2019; 7
1701_CR32
M Chen (1701_CR3) 2016; 21
MA Lila (1701_CR28) 2005; 70
K Yang (1701_CR45) 2018; 18
S-S Kim (1701_CR21) 2022; 31
References_xml – volume: 325
  start-page: 209
  year: 2014
  ident: 1701_CR12
  publication-title: Toxicology
  doi: 10.1016/j.tox.2014.09.003
– volume: 20
  start-page: 1
  year: 2019
  ident: 1701_CR35
  publication-title: BMC Pharmacology and Toxicology
  doi: 10.1186/s40360-018-0282-6
– volume: 174
  start-page: 38
  year: 2020
  ident: 1701_CR38
  publication-title: Toxicological Sciences
  doi: 10.1093/toxsci/kfz243
– volume: 6
  start-page: 58106
  year: 2018
  ident: 1701_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2874089
– volume: 20
  start-page: 806
  year: 2017
  ident: 1701_CR33
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbx151
– volume: 26
  start-page: 202
  year: 2005
  ident: 1701_CR9
  publication-title: Trends in Pharmacological Sciences
  doi: 10.1016/j.tips.2005.02.006
– ident: 1701_CR19
  doi: 10.1002/0470857897.ch8
– volume: 95
  start-page: 5
  year: 2007
  ident: 1701_CR8
  publication-title: Toxicological Sciences
  doi: 10.1093/toxsci/kfl103
– volume: 12
  start-page: 363
  year: 2022
  ident: 1701_CR20
  publication-title: Life
  doi: 10.3390/life12030363
– volume: 198
  start-page: 213
  year: 2004
  ident: 1701_CR22
  publication-title: Toxicology
  doi: 10.1016/j.tox.2004.01.028
– volume: 31
  start-page: 399
  year: 2022
  ident: 1701_CR21
  publication-title: Food Science and Biotechnology
  doi: 10.1007/s10068-022-01047-6
– volume: 8
  start-page: 58
  year: 2008
  ident: 1701_CR11
  publication-title: BMC Complementary and Alternative Medicine
  doi: 10.1186/1472-6882-8-58
– volume: 12
  start-page: 191
  year: 2020
  ident: 1701_CR36
  publication-title: Toxicol Environ Health Sci
  doi: 10.1007/s13530-020-00056-4
– ident: 1701_CR24
  doi: 10.1109/NAFOSTED.2017.8108071
– volume: 17
  start-page: 119
  year: 2003
  ident: 1701_CR4
  publication-title: Journal of Computer-Aided Molecular Design
  doi: 10.1023/A:1025361621494
– volume: 78
  start-page: 71
  year: 2015
  ident: 1701_CR15
  publication-title: Food and Chemical Toxicology
  doi: 10.1016/j.fct.2015.01.020
– volume: 20
  start-page: 649
  year: 2002
  ident: 1701_CR34
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt0702-649
– volume: 96
  start-page: 812
  year: 2020
  ident: 1701_CR31
  publication-title: Chemical Biology & Drug Design
  doi: 10.1111/cbdd.13690
– volume: 14
  start-page: 117793222092135
  year: 2020
  ident: 1701_CR39
  publication-title: Bioinformatics and Biology Insights
  doi: 10.1177/1177932220921350
– volume: 11
  start-page: 1393366
  year: 2024
  ident: 1701_CR14
  publication-title: Frontiers in Nutrition
  doi: 10.3389/fnut.2024.1393366
– volume: 95
  start-page: 1683
  year: 2021
  ident: 1701_CR27
  publication-title: Archives of Toxicology
  doi: 10.1007/s00204-021-03023-1
– volume: 55
  start-page: 996
  year: 2017
  ident: 1701_CR47
  publication-title: Clinical Toxicology
  doi: 10.1080/15563650.2017.1333123
– volume: 7
  start-page: 83
  year: 2019
  ident: 1701_CR10
  publication-title: Quantitative Biology
  doi: 10.1007/s40484-019-0172-y
– volume: 35
  start-page: 163
  year: 2018
  ident: 1701_CR40
  publication-title: Altex
  doi: 10.14573/altex.1803011
– volume: 32
  start-page: 2664
  year: 2016
  ident: 1701_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw228
– volume: 21
  start-page: 648
  year: 2016
  ident: 1701_CR3
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2016.02.015
– year: 2016
  ident: 1701_CR26
  publication-title: Evidence-Based Complementary and Alternative Medicine
  doi: 10.1155/2016/6012761
– ident: 1701_CR13
  doi: 10.1201/9781003075363-20
– volume: 68
  start-page: 103896
  year: 2020
  ident: 1701_CR6
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2020.103896
– volume: 90
  start-page: 107402
  year: 2021
  ident: 1701_CR18
  publication-title: Computational Biology and Chemistry
  doi: 10.1016/j.compbiolchem.2020.107402
– ident: 1701_CR32
– volume: 2
  start-page: 231
  year: 2006
  ident: 1701_CR2
  publication-title: Nature Physics
  doi: 10.1038/nphys260
– volume: 10
  start-page: e0142498
  year: 2015
  ident: 1701_CR5
  publication-title: PloS One
  doi: 10.1371/journal.pone.0142498
– volume: 12
  start-page: 3691
  year: 2015
  ident: 1701_CR44
  publication-title: Molecular Pharmaceutics
  doi: 10.1021/acs.molpharmaceut.5b00465
– volume: 142
  start-page: 104191
  year: 2023
  ident: 1701_CR30
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2023.104191
– volume: 27
  start-page: 203
  year: 2016
  ident: 1701_CR7
  publication-title: SAR and QSAR in Environmental Research
  doi: 10.1080/1062936X.2015.1136680
– volume: 19
  start-page: 9
  year: 2018
  ident: 1701_CR25
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2199-x
– volume: 18
  start-page: 17
  year: 2018
  ident: 1701_CR45
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-018-0592-z
– volume: 43
  start-page: 650
  year: 2010
  ident: 1701_CR48
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2010.01.002
– volume: 70
  start-page: R20
  year: 2005
  ident: 1701_CR28
  publication-title: Journal of Food Science
  doi: 10.1111/j.1365-2621.2005.tb09054.x
– volume: 84
  start-page: 613
  year: 2018
  ident: 1701_CR16
  publication-title: Planta Medica
  doi: 10.1055/a-0605-3786
– volume: 13
  start-page: 961012
  year: 2022
  ident: 1701_CR1
  publication-title: Frontiers in Pharmacology
  doi: 10.3389/fphar.2022.961012
– volume: 2
  start-page: 463
  year: 2021
  ident: 1701_CR41
  publication-title: Nature Food
  doi: 10.1038/s43016-021-00316-7
– volume: 41
  start-page: 793
  year: 2003
  ident: 1701_CR23
  publication-title: Food and Chemical Toxicology
  doi: 10.1016/S0278-6915(03)00018-8
– volume: 37
  start-page: 3
  year: 2006
  ident: 1701_CR17
  publication-title: School of EECS, Washington State University
– volume: 79
  start-page: 48
  year: 2015
  ident: 1701_CR42
  publication-title: British Journal of Clinical Pharmacology
  doi: 10.1111/bcp.12234
– volume: 11
  start-page: 216
  year: 2021
  ident: 1701_CR37
  publication-title: Biomolecules
  doi: 10.3390/biom11020216
– volume: 7
  start-page: 462
  year: 2018
  ident: 1701_CR43
  publication-title: ACS Synthetic Biology
  doi: 10.1021/acssynbio.7b00296
SSID ssj0061274
Score 2.334028
SecondaryResourceType review_article
Snippet Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition...
SourceID nrf
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 299
SubjectTerms Biocompatibility
Biological activity
Biotechnology
Composition effects
computer simulation
Food composition
Food safety
Food science
Food selection
Functional foods & nutraceuticals
Machine learning
Natural & organic foods
Natural products
Physiological effects
Predictions
Side effects
Toxicity
Toxicity testing
식품과학
Title Computational approaches to predict the toxicity of bioactive natural products: a mini review of methodologies
URI https://www.ncbi.nlm.nih.gov/pubmed/39944664
https://www.proquest.com/docview/3165396989
https://www.proquest.com/docview/3166269880
https://www.proquest.com/docview/3200346678
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003172529
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Food Science and Biotechnology, 2025, 34(2), , pp.299-305
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKvbSHCvoMhcpVe1ulysN5LDeEQBRRetmVtifLdpwSISVoCWrFr--MH8luoRXtxbvxepPI83k8Y3u-IeRjogotaqVB-6kiZHGlQlnhwNNItgalNrvnX87zkzk7XWSLMcemiS7p5Sd1e29cyf9IFepArhgl-w-SHW4KFfAd5AslSBjKB8nYpmTwy3meHtySNlwtcQvGRCrC5c9GubMXsumE0XETw-mJgViW9PXaxj0j18hKQIvNMG00pDttOOT07KqJDwrC1Xe4cX9nnf7worPHBX6A0uncLCmGJM6nzeSbdsBwSw9JtrL0YDRUEk2TMGeZ47K-p86pWLde2ax4uk5f2uxId_R45OOao7wMwYwIkeYnDuNx1vI79edf-fH87IzPjhazDfI4AW8BE1nMkwM_IYMNZ8i4hzdzsVMugvK3J6zZJxvtsv6z62FMkNkWeeZ8B3pggbBNHun2OXm6wij5grRrkKAjJGjfUQcJCpCgHhK0q-kACeogQT0k9qmgCAhqAYGN1wDxksyPj2aHJ6FLqRGqNIv6UCZlppmQGDJf6RQup7mWOXjJSsHAjFOwZJisdaGURGbAuBRMsLrC2Hcw7XX6imy2XavfEAqOhVApYzU4pEzncpqlVanAgq7TQsZREZCJ70h-ZZlT-MiRjd3Oodu56XYeB-QD9DW_VA1HwnP8_N7xyyUHt-4z_CkvkbYhILteFtyNw2uexkivjIlQA_J--Bm0JG59iVZ3N6YNeO5TmKz-0gbPabIcrLeAvLZyHl4czHg8-MB2HvCEt-TJOFh2yWa_vNF7YLn28p3B5S8YVZlC
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+approaches+to+predict+the+toxicity+of+bioactive+natural+products%3A+a+mini+review+of+methodologies&rft.jtitle=Food+science+and+biotechnology&rft.au=Choi%2C+Kwanyong&rft.au=Kim%2C+Ji+Yeon&rft.date=2025-01-01&rft.issn=2092-6456&rft.eissn=2092-6456&rft.volume=34&rft.issue=2&rft.spage=299&rft_id=info:doi/10.1007%2Fs10068-024-01701-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7708&client=summon