Computational approaches to predict the toxicity of bioactive natural products: a mini review of methodologies
Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This find...
Saved in:
Published in | Food science and biotechnology Vol. 34; no. 2; pp. 299 - 305 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
Springer Nature B.V
01.01.2025
한국식품과학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products. |
---|---|
AbstractList | Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products.Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products. Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products. Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products. KCI Citation Count: 0 |
Author | Kim, Ji Yeon Choi, Kwanyong |
Author_xml | – sequence: 1 givenname: Kwanyong surname: Choi fullname: Choi, Kwanyong – sequence: 2 givenname: Ji Yeon orcidid: 0000-0002-4316-2726 surname: Kim fullname: Kim, Ji Yeon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39944664$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003172529$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqF0k1LHTEUBuBQLPVq-we6kICbUpia78m4k0utglAoug6ZzBlvdGYyJhlb_73xXuuim25yOPCcQE7eA7Q3hQkQ-kzJN0pIfZLKqXRFmKgIrQmt6Du0YqRhlRJS7aEVZUxVdU30PjpI6a5oymrxAe3zphFCKbFC0zqM85Jt9mGyA7bzHIN1G0g4BzxH6LzLOG-gtH-88_kJhx63vpjsHwFPNi-xzJWpbnE5nWKLRz95HOHRw-8XPELehC4M4dZD-oje93ZI8Om1HqKb8-_X64vq6uePy_XZVeW4JLlqmZYgbEu1ZB3w0jYKWiUa6ZwGSTmjTLQ91M61hHFKtRVW9J2QkggigR-ir7t7p9ibe-dNsH5bb4O5j-bs1_WloWV5hElR8JcdLq94WCBlM_rkYBjsBGFJhjNCeFlXrf9PqVJMNVqTQo__oXdhiWXJWyV5U1hT1NGrWtoROjNHP9r4ZP7-UAFsB1wMKUXo3wgl5iUGZhcDU2JgtjEwlD8Dedijnw |
Cites_doi | 10.1016/j.tox.2014.09.003 10.1186/s40360-018-0282-6 10.1093/toxsci/kfz243 10.1109/ACCESS.2018.2874089 10.1093/bib/bbx151 10.1016/j.tips.2005.02.006 10.1002/0470857897.ch8 10.1093/toxsci/kfl103 10.3390/life12030363 10.1016/j.tox.2004.01.028 10.1007/s10068-022-01047-6 10.1186/1472-6882-8-58 10.1007/s13530-020-00056-4 10.1109/NAFOSTED.2017.8108071 10.1023/A:1025361621494 10.1016/j.fct.2015.01.020 10.1038/nbt0702-649 10.1111/cbdd.13690 10.1177/1177932220921350 10.3389/fnut.2024.1393366 10.1007/s00204-021-03023-1 10.1080/15563650.2017.1333123 10.1007/s40484-019-0172-y 10.14573/altex.1803011 10.1093/bioinformatics/btw228 10.1016/j.drudis.2016.02.015 10.1155/2016/6012761 10.1201/9781003075363-20 10.1016/j.jff.2020.103896 10.1016/j.compbiolchem.2020.107402 10.1038/nphys260 10.1371/journal.pone.0142498 10.1021/acs.molpharmaceut.5b00465 10.1016/j.tifs.2023.104191 10.1080/1062936X.2015.1136680 10.1186/s12859-018-2199-x 10.1186/s12911-018-0592-z 10.1016/j.jbi.2010.01.002 10.1111/j.1365-2621.2005.tb09054.x 10.1055/a-0605-3786 10.3389/fphar.2022.961012 10.1038/s43016-021-00316-7 10.1016/S0278-6915(03)00018-8 10.1111/bcp.12234 10.3390/biom11020216 10.1021/acssynbio.7b00296 |
ContentType | Journal Article |
Copyright | The Korean Society of Food Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Korean Society of Food Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 ACYCR |
DOI | 10.1007/s10068-024-01701-1 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2092-6456 |
EndPage | 305 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10680254 39944664 10_1007_s10068_024_01701_1 |
Genre | Journal Article Review |
GroupedDBID | 06D 0R~ 0VY 1N0 203 29H 2KG 30V 4.4 406 408 40D 5GY 67Z 96X 9ZL AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSTC ACZOJ ADBBV ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AOIJS ATHPR AXYYD AYFIA AYJHY BGNMA CITATION CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FYJPI GGCAI GGRSB GJIRD GQ7 HG6 HMJXF HRMNR I0C IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J OK1 P2P P9N PT4 R9I RLLFE ROL RPM RSV S27 S3B SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 2VQ AARHV AAYTO ABRTQ ACBXY AEBTG AEKMD AFLOW AGJBK AHSBF AJBLW CAG COF DBRKI EJD FINBP FSGXE GW5 H13 HF~ HYE HZ~ KVFHK M1Z MZR NPM O9- S1Z ZZE 7X8 7S9 L.6 -EM .UV ACYCR ADINQ GQ6 Z7U Z7V Z7W |
ID | FETCH-LOGICAL-c350t-b285e4ab1852de3b2896eb6495cc8e5132124bfe7ccb023118a4a4fd4550405e3 |
ISSN | 1226-7708 2092-6456 |
IngestDate | Thu Feb 13 03:47:21 EST 2025 Fri Jul 11 18:33:37 EDT 2025 Fri Jul 11 06:04:25 EDT 2025 Sun Jul 13 03:48:44 EDT 2025 Mon Jul 21 05:32:08 EDT 2025 Tue Jul 01 04:26:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | In silico Top-down Natural products Toxicity Bottom-up |
Language | English |
License | The Korean Society of Food Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c350t-b285e4ab1852de3b2896eb6495cc8e5132124bfe7ccb023118a4a4fd4550405e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4316-2726 |
PMID | 39944664 |
PQID | 3165396989 |
PQPubID | 2043650 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10680254 proquest_miscellaneous_3200346678 proquest_miscellaneous_3166269880 proquest_journals_3165396989 pubmed_primary_39944664 crossref_primary_10_1007_s10068_024_01701_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) – name: Heidelberg |
PublicationTitle | Food science and biotechnology |
PublicationTitleAlternate | Food Sci Biotechnol |
PublicationYear | 2025 |
Publisher | Springer Nature B.V 한국식품과학회 |
Publisher_xml | – name: Springer Nature B.V – name: 한국식품과학회 |
References | L Pu (1701_CR35) 2019; 20 JC Dearden (1701_CR4) 2003; 17 S Li (1701_CR27) 2021; 95 S-H Huang (1701_CR15) 2015; 78 N Tsamandouras (1701_CR42) 2015; 79 H Luo (1701_CR29) 2016; 32 M Yang (1701_CR44) 2015; 12 S Ekins (1701_CR9) 2005; 26 ME Manful (1701_CR30) 2023; 142 Z Mozafari (1701_CR31) 2020; 96 GC Fonger (1701_CR12) 2014; 325 L Wang (1701_CR43) 2018; 7 T Tralau (1701_CR41) 2021; 2 1701_CR24 Y Li (1701_CR26) 2016 R Kroes (1701_CR22) 2004; 198 I Lee (1701_CR25) 2018; 19 NA Rivero-Segura (1701_CR37) 2021; 11 RS Thomas (1701_CR40) 2018; 35 V Jakkula (1701_CR17) 2006; 37 A Oulas (1701_CR33) 2017; 20 S Yoo (1701_CR46) 2018; 6 A Hudson (1701_CR16) 2018; 84 KT Rim (1701_CR36) 2020; 12 V Sharma (1701_CR39) 2020; 14 B Palsson (1701_CR34) 2002; 20 LD Díaz (1701_CR6) 2020; 68 Y-C Fang (1701_CR11) 2008; 8 P Ruiz (1701_CR38) 2020; 174 S Dimitrov (1701_CR7) 2016; 27 J An (1701_CR1) 2022; 13 DJ Dix (1701_CR8) 2007; 95 B Devleesschauwer (1701_CR5) 2015; 10 SE Kenny (1701_CR20) 2022; 12 P Zhao (1701_CR47) 2017; 55 1701_CR19 1701_CR13 A Bausch (1701_CR2) 2006; 2 EP Gutiérrez-Grijalva (1701_CR14) 2024; 11 C Kruger (1701_CR23) 2003; 41 X Jiao (1701_CR18) 2021; 90 X Zhou (1701_CR48) 2010; 43 J Fan (1701_CR10) 2019; 7 1701_CR32 M Chen (1701_CR3) 2016; 21 MA Lila (1701_CR28) 2005; 70 K Yang (1701_CR45) 2018; 18 S-S Kim (1701_CR21) 2022; 31 |
References_xml | – volume: 325 start-page: 209 year: 2014 ident: 1701_CR12 publication-title: Toxicology doi: 10.1016/j.tox.2014.09.003 – volume: 20 start-page: 1 year: 2019 ident: 1701_CR35 publication-title: BMC Pharmacology and Toxicology doi: 10.1186/s40360-018-0282-6 – volume: 174 start-page: 38 year: 2020 ident: 1701_CR38 publication-title: Toxicological Sciences doi: 10.1093/toxsci/kfz243 – volume: 6 start-page: 58106 year: 2018 ident: 1701_CR46 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2874089 – volume: 20 start-page: 806 year: 2017 ident: 1701_CR33 publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbx151 – volume: 26 start-page: 202 year: 2005 ident: 1701_CR9 publication-title: Trends in Pharmacological Sciences doi: 10.1016/j.tips.2005.02.006 – ident: 1701_CR19 doi: 10.1002/0470857897.ch8 – volume: 95 start-page: 5 year: 2007 ident: 1701_CR8 publication-title: Toxicological Sciences doi: 10.1093/toxsci/kfl103 – volume: 12 start-page: 363 year: 2022 ident: 1701_CR20 publication-title: Life doi: 10.3390/life12030363 – volume: 198 start-page: 213 year: 2004 ident: 1701_CR22 publication-title: Toxicology doi: 10.1016/j.tox.2004.01.028 – volume: 31 start-page: 399 year: 2022 ident: 1701_CR21 publication-title: Food Science and Biotechnology doi: 10.1007/s10068-022-01047-6 – volume: 8 start-page: 58 year: 2008 ident: 1701_CR11 publication-title: BMC Complementary and Alternative Medicine doi: 10.1186/1472-6882-8-58 – volume: 12 start-page: 191 year: 2020 ident: 1701_CR36 publication-title: Toxicol Environ Health Sci doi: 10.1007/s13530-020-00056-4 – ident: 1701_CR24 doi: 10.1109/NAFOSTED.2017.8108071 – volume: 17 start-page: 119 year: 2003 ident: 1701_CR4 publication-title: Journal of Computer-Aided Molecular Design doi: 10.1023/A:1025361621494 – volume: 78 start-page: 71 year: 2015 ident: 1701_CR15 publication-title: Food and Chemical Toxicology doi: 10.1016/j.fct.2015.01.020 – volume: 20 start-page: 649 year: 2002 ident: 1701_CR34 publication-title: Nature Biotechnology doi: 10.1038/nbt0702-649 – volume: 96 start-page: 812 year: 2020 ident: 1701_CR31 publication-title: Chemical Biology & Drug Design doi: 10.1111/cbdd.13690 – volume: 14 start-page: 117793222092135 year: 2020 ident: 1701_CR39 publication-title: Bioinformatics and Biology Insights doi: 10.1177/1177932220921350 – volume: 11 start-page: 1393366 year: 2024 ident: 1701_CR14 publication-title: Frontiers in Nutrition doi: 10.3389/fnut.2024.1393366 – volume: 95 start-page: 1683 year: 2021 ident: 1701_CR27 publication-title: Archives of Toxicology doi: 10.1007/s00204-021-03023-1 – volume: 55 start-page: 996 year: 2017 ident: 1701_CR47 publication-title: Clinical Toxicology doi: 10.1080/15563650.2017.1333123 – volume: 7 start-page: 83 year: 2019 ident: 1701_CR10 publication-title: Quantitative Biology doi: 10.1007/s40484-019-0172-y – volume: 35 start-page: 163 year: 2018 ident: 1701_CR40 publication-title: Altex doi: 10.14573/altex.1803011 – volume: 32 start-page: 2664 year: 2016 ident: 1701_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw228 – volume: 21 start-page: 648 year: 2016 ident: 1701_CR3 publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2016.02.015 – year: 2016 ident: 1701_CR26 publication-title: Evidence-Based Complementary and Alternative Medicine doi: 10.1155/2016/6012761 – ident: 1701_CR13 doi: 10.1201/9781003075363-20 – volume: 68 start-page: 103896 year: 2020 ident: 1701_CR6 publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2020.103896 – volume: 90 start-page: 107402 year: 2021 ident: 1701_CR18 publication-title: Computational Biology and Chemistry doi: 10.1016/j.compbiolchem.2020.107402 – ident: 1701_CR32 – volume: 2 start-page: 231 year: 2006 ident: 1701_CR2 publication-title: Nature Physics doi: 10.1038/nphys260 – volume: 10 start-page: e0142498 year: 2015 ident: 1701_CR5 publication-title: PloS One doi: 10.1371/journal.pone.0142498 – volume: 12 start-page: 3691 year: 2015 ident: 1701_CR44 publication-title: Molecular Pharmaceutics doi: 10.1021/acs.molpharmaceut.5b00465 – volume: 142 start-page: 104191 year: 2023 ident: 1701_CR30 publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2023.104191 – volume: 27 start-page: 203 year: 2016 ident: 1701_CR7 publication-title: SAR and QSAR in Environmental Research doi: 10.1080/1062936X.2015.1136680 – volume: 19 start-page: 9 year: 2018 ident: 1701_CR25 publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2199-x – volume: 18 start-page: 17 year: 2018 ident: 1701_CR45 publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-018-0592-z – volume: 43 start-page: 650 year: 2010 ident: 1701_CR48 publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2010.01.002 – volume: 70 start-page: R20 year: 2005 ident: 1701_CR28 publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.2005.tb09054.x – volume: 84 start-page: 613 year: 2018 ident: 1701_CR16 publication-title: Planta Medica doi: 10.1055/a-0605-3786 – volume: 13 start-page: 961012 year: 2022 ident: 1701_CR1 publication-title: Frontiers in Pharmacology doi: 10.3389/fphar.2022.961012 – volume: 2 start-page: 463 year: 2021 ident: 1701_CR41 publication-title: Nature Food doi: 10.1038/s43016-021-00316-7 – volume: 41 start-page: 793 year: 2003 ident: 1701_CR23 publication-title: Food and Chemical Toxicology doi: 10.1016/S0278-6915(03)00018-8 – volume: 37 start-page: 3 year: 2006 ident: 1701_CR17 publication-title: School of EECS, Washington State University – volume: 79 start-page: 48 year: 2015 ident: 1701_CR42 publication-title: British Journal of Clinical Pharmacology doi: 10.1111/bcp.12234 – volume: 11 start-page: 216 year: 2021 ident: 1701_CR37 publication-title: Biomolecules doi: 10.3390/biom11020216 – volume: 7 start-page: 462 year: 2018 ident: 1701_CR43 publication-title: ACS Synthetic Biology doi: 10.1021/acssynbio.7b00296 |
SSID | ssj0061274 |
Score | 2.334028 |
SecondaryResourceType | review_article |
Snippet | Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition... |
SourceID | nrf proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 299 |
SubjectTerms | Biocompatibility Biological activity Biotechnology Composition effects computer simulation Food composition Food safety Food science Food selection Functional foods & nutraceuticals Machine learning Natural & organic foods Natural products Physiological effects Predictions Side effects Toxicity Toxicity testing 식품과학 |
Title | Computational approaches to predict the toxicity of bioactive natural products: a mini review of methodologies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39944664 https://www.proquest.com/docview/3165396989 https://www.proquest.com/docview/3166269880 https://www.proquest.com/docview/3200346678 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003172529 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Food Science and Biotechnology, 2025, 34(2), , pp.299-305 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKvbSHCvoMhcpVe1ulysN5LDeEQBRRetmVtifLdpwSISVoCWrFr--MH8luoRXtxbvxepPI83k8Y3u-IeRjogotaqVB-6kiZHGlQlnhwNNItgalNrvnX87zkzk7XWSLMcemiS7p5Sd1e29cyf9IFepArhgl-w-SHW4KFfAd5AslSBjKB8nYpmTwy3meHtySNlwtcQvGRCrC5c9GubMXsumE0XETw-mJgViW9PXaxj0j18hKQIvNMG00pDttOOT07KqJDwrC1Xe4cX9nnf7worPHBX6A0uncLCmGJM6nzeSbdsBwSw9JtrL0YDRUEk2TMGeZ47K-p86pWLde2ax4uk5f2uxId_R45OOao7wMwYwIkeYnDuNx1vI79edf-fH87IzPjhazDfI4AW8BE1nMkwM_IYMNZ8i4hzdzsVMugvK3J6zZJxvtsv6z62FMkNkWeeZ8B3pggbBNHun2OXm6wij5grRrkKAjJGjfUQcJCpCgHhK0q-kACeogQT0k9qmgCAhqAYGN1wDxksyPj2aHJ6FLqRGqNIv6UCZlppmQGDJf6RQup7mWOXjJSsHAjFOwZJisdaGURGbAuBRMsLrC2Hcw7XX6imy2XavfEAqOhVApYzU4pEzncpqlVanAgq7TQsZREZCJ70h-ZZlT-MiRjd3Oodu56XYeB-QD9DW_VA1HwnP8_N7xyyUHt-4z_CkvkbYhILteFtyNw2uexkivjIlQA_J--Bm0JG59iVZ3N6YNeO5TmKz-0gbPabIcrLeAvLZyHl4czHg8-MB2HvCEt-TJOFh2yWa_vNF7YLn28p3B5S8YVZlC |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+approaches+to+predict+the+toxicity+of+bioactive+natural+products%3A+a+mini+review+of+methodologies&rft.jtitle=Food+science+and+biotechnology&rft.au=Choi%2C+Kwanyong&rft.au=Kim%2C+Ji+Yeon&rft.date=2025-01-01&rft.issn=2092-6456&rft.eissn=2092-6456&rft.volume=34&rft.issue=2&rft.spage=299&rft_id=info:doi/10.1007%2Fs10068-024-01701-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7708&client=summon |