Tight Bounds on the Optimization Time of a Randomized Search Heuristic on Linear Functions

The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolution...

Full description

Saved in:
Bibliographic Details
Published inCombinatorics, probability & computing Vol. 22; no. 2; pp. 294 - 318
Main Author WITT, CARSTEN
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class of linear functions. We improve the previously best known bound in this setting from (1.39+o(1))en ln n to en ln n+O(n) in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation probabilities p are derived, which imply expected polynomial optimization time as long as p = O((ln n)/n) and p = Ω(n−C) for a constant C > 0, and which are tight if p = c/n for a constant c > 0. As a consequence, the standard mutation probability p = 1/n is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large neighbourhood explored by the mutation operator does not disrupt the search.
AbstractList The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class of linear functions. We improve the previously best known bound in this setting from (1.39+o(1))en ln n to en ln n+O(n) in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation probabilities p are derived, which imply expected polynomial optimization time as long as p = O((ln n)/n) and p = Ω(n−C) for a constant C > 0, and which are tight if p = c/n for a constant c > 0. As a consequence, the standard mutation probability p = 1/n is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large neighbourhood explored by the mutation operator does not disrupt the search.
The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class of linear functions. We improve the previously best known bound in this setting from (1.39+o(1))en ln n to en ln n+O(n) in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation probabilities p are derived, which imply expected polynomial optimization time as long as p = O((ln n)/n) and p = Omega (n super(-)C for a constant C > 0, and which are tight if p = c/n for a constant c > 0. As a consequence, the standard mutation probability p = 1/n is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large neighbourhood explored by the mutation operator does not disrupt the search.
The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class of linear functions. We improve the previously best known bound in this setting from (1.39+o(1))en ln n to en ln n+O(n) in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation probabilities p are derived, which imply expected polynomial optimization time as long as p = O((ln n)/n) and p = Ω(n -C ) for a constant C > 0, and which are tight if p = c/n for a constant c > 0. As a consequence, the standard mutation probability p = 1/n is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large neighbourhood explored by the mutation operator does not disrupt the search. [PUBLICATION ABSTRACT]
The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class of linear functions. We improve the previously best known bound in this setting from (1.39+ o (1)) en ln n to en ln n + O ( n ) in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation probabilities p are derived, which imply expected polynomial optimization time as long as p = O ((ln n )/ n ) and p = Ω( n − C ) for a constant C > 0, and which are tight if p = c / n for a constant c > 0. As a consequence, the standard mutation probability p = 1/ n is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large neighbourhood explored by the mutation operator does not disrupt the search.
Author WITT, CARSTEN
Author_xml – sequence: 1
  givenname: CARSTEN
  surname: WITT
  fullname: WITT, CARSTEN
  email: cawi@imm.dtu.dk
  organization: DTU Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark (e-mail: cawi@imm.dtu.dk)
BookMark eNp9kM1KxDAURoOM4Dj6AO4CbtxU89OkzVLFUWFA0HHjpqRJ6mSYJmOSLvTpTdWFKLoK97vnhMu3DybOOwPAEUanGOHq7AEJTllZU0wQQhyhHTDFJRcFwZxOwHRcF-N-D-zHuM4MYxxNwdPSPq8SvPCD0xF6B9PKwLttsr19k8nmYGl7A30HJbyXTvucGw0fjAxqBW_MEGxMVo3mwrqcwvng1CjGA7DbyU00h1_vDDzOr5aXN8Xi7vr28nxRKMpQKlrMOsWQoUhXtCy1wJxrShDRdVWTluWRCcXaTlCjKly1TJeMCqExViU1gs7Ayee_2-BfBhNT09uozGYjnfFDbDCtCCeMszKjxz_QtR-Cy9c1mNSEU1Rzlin8SangYwyma7bB9jK8Nhg1Y9vNr7azU_1wlE0fBaYg7eZfk36Zsm-D1c_m21F_Wu9mLJHS
CitedBy_id crossref_primary_10_1007_s00453_021_00881_0
crossref_primary_10_1007_s00453_020_00731_5
crossref_primary_10_1109_TEVC_2017_2745715
crossref_primary_10_1007_s00453_018_0445_2
crossref_primary_10_1007_s00453_018_0480_z
crossref_primary_10_1145_3472304
crossref_primary_10_1007_s10586_016_0587_4
crossref_primary_10_1007_s00453_017_0341_1
crossref_primary_10_1007_s00521_016_2651_7
crossref_primary_10_1016_j_tcs_2014_03_015
crossref_primary_10_1061__ASCE_CO_1943_7862_0002221
crossref_primary_10_1007_s00453_024_01254_z
crossref_primary_10_1017_S0963548320000565
crossref_primary_10_1007_s00453_022_00957_5
crossref_primary_10_1007_s00453_018_0451_4
crossref_primary_10_1007_s11047_022_09915_0
crossref_primary_10_1007_s00453_022_00933_z
crossref_primary_10_1007_s00453_022_00952_w
crossref_primary_10_1162_evco_a_00170
crossref_primary_10_1016_j_artint_2023_104061
crossref_primary_10_1162_evco_a_00210
crossref_primary_10_1109_TEVC_2019_2917014
crossref_primary_10_1162_evco_a_00212
crossref_primary_10_1007_s00453_016_0214_z
crossref_primary_10_1162_EVCO_a_00130
crossref_primary_10_1007_s00453_023_01153_9
crossref_primary_10_1162_evco_a_00325
crossref_primary_10_3390_biomimetics9020117
crossref_primary_10_1109_TEVC_2015_2501315
crossref_primary_10_1016_j_tcs_2020_01_011
crossref_primary_10_1007_s00453_015_0027_5
crossref_primary_10_1016_j_tcs_2019_08_025
crossref_primary_10_1162_EVCO_a_00171
crossref_primary_10_1007_s00453_020_00779_3
crossref_primary_10_1007_s00453_018_0463_0
crossref_primary_10_1016_j_asoc_2019_105929
crossref_primary_10_1016_j_tcs_2018_09_024
crossref_primary_10_1007_s00453_017_0354_9
crossref_primary_10_1016_j_asoc_2019_106027
crossref_primary_10_1109_TEVC_2014_2378891
crossref_primary_10_1109_TEVC_2023_3320278
crossref_primary_10_1007_s00453_017_0360_y
crossref_primary_10_1016_j_tcs_2018_04_051
crossref_primary_10_1017_S0963548318000275
crossref_primary_10_1109_TEVC_2022_3216349
crossref_primary_10_1007_s00453_016_0201_4
crossref_primary_10_1007_s00453_018_0477_7
crossref_primary_10_1007_s00453_022_00977_1
crossref_primary_10_1007_s00453_020_00780_w
crossref_primary_10_1007_s00453_015_0019_5
crossref_primary_10_1016_j_tcs_2018_06_004
crossref_primary_10_1016_j_tcs_2020_07_001
crossref_primary_10_1007_s00453_020_00726_2
crossref_primary_10_1007_s00453_024_01258_9
crossref_primary_10_1145_3469800
crossref_primary_10_1007_s00453_020_00743_1
crossref_primary_10_1162_evco_a_00270
crossref_primary_10_1007_s00453_021_00893_w
crossref_primary_10_1016_j_tcs_2014_11_028
crossref_primary_10_1016_j_tcs_2019_05_021
crossref_primary_10_1007_s00453_021_00896_7
crossref_primary_10_1016_j_autcon_2021_103692
crossref_primary_10_1016_j_tcs_2013_09_036
crossref_primary_10_1016_j_tcs_2020_09_032
crossref_primary_10_1016_j_autcon_2022_104686
crossref_primary_10_1007_s00453_021_00907_7
crossref_primary_10_1109_JSTARS_2021_3056198
crossref_primary_10_1016_j_orl_2017_05_002
crossref_primary_10_4018_IJSIR_2017100101
crossref_primary_10_1016_j_tcs_2023_114072
crossref_primary_10_1016_j_tcs_2019_06_014
Cites_doi 10.1142/7438
10.1023/B:NACO.0000023417.31393.c7
10.1109/IECON.2000.972425
10.1007/978-0-387-68276-1
10.2307/1426671
10.1145/1830483.1830748
10.1017/CBO9780511814075
10.1109/TEVC.2012.2202241
10.1016/j.tcs.2007.02.042
10.1016/S0304-3975(01)00182-7
10.1007/s00453-012-9616-8
10.1007/s00453-010-9396-y
10.1007/978-3-642-16544-3
10.1145/1830483.1830749
10.1016/j.jda.2004.02.001
10.1145/2001576.2001856
10.1016/S0004-3702(01)00058-3
10.1017/S0963548304006650
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2013
Copyright_xml – notice: Copyright © Cambridge University Press 2013
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0963548312000600
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer and Information Systems Abstracts
Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Tight Bounds on the Optimization Time of an RSH on Linear Functions
C. Witt
EISSN 1469-2163
EndPage 318
ExternalDocumentID 2878649771
10_1017_S0963548312000600
Genre Feature
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
29F
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZCX
ABZUI
ACBMC
ACDLN
ACETC
ACGFS
ACIMK
ACIWK
ACMRT
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
DC4
DOHLZ
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABHFL
ABXHF
ACEJA
ACOZI
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c350t-b15fc50e30d7344d9166d3202d8782b516659c5bf93ec717b5d45399d11c43e93
IEDL.DBID BENPR
ISSN 0963-5483
IngestDate Fri Jul 11 02:50:30 EDT 2025
Fri Jul 25 10:46:19 EDT 2025
Tue Jul 01 03:52:21 EDT 2025
Thu Apr 24 23:04:45 EDT 2025
Tue Jan 21 06:24:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Primary 68W20
Secondary 68Q25
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c350t-b15fc50e30d7344d9166d3202d8782b516659c5bf93ec717b5d45399d11c43e93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1282630865
PQPubID 33829
PageCount 25
ParticipantIDs proquest_miscellaneous_1372625654
proquest_journals_1282630865
crossref_primary_10_1017_S0963548312000600
crossref_citationtrail_10_1017_S0963548312000600
cambridge_journals_10_1017_S0963548312000600
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130300
2013-03-00
20130301
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 20130300
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationSubtitle CPC
PublicationTitle Combinatorics, probability & computing
PublicationTitleAlternate Combinator. Probab. Comp
PublicationYear 2013
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Jägersküpper (S0963548312000600_ref15) 2008
Doerr (S0963548312000600_ref7) 2010
S0963548312000600_ref10
S0963548312000600_ref11
S0963548312000600_ref12
Witt (S0963548312000600_ref27) 2012
S0963548312000600_ref17
S0963548312000600_ref1
S0963548312000600_ref18
S0963548312000600_ref19
Wegener (S0963548312000600_ref24) 2001
S0963548312000600_ref13
S0963548312000600_ref4
S0963548312000600_ref14
Doerr (S0963548312000600_ref5) 2010
S0963548312000600_ref3
S0963548312000600_ref16
S0963548312000600_ref8
S0963548312000600_ref9
S0963548312000600_ref6
Mühlenbein (S0963548312000600_ref20) 1992
S0963548312000600_ref21
S0963548312000600_ref23
Bäck (S0963548312000600_ref2) 1993
S0963548312000600_ref25
S0963548312000600_ref26
Sudholt (S0963548312000600_ref22) 2010
References_xml – ident: S0963548312000600_ref1
  doi: 10.1142/7438
– ident: S0963548312000600_ref13
  doi: 10.1023/B:NACO.0000023417.31393.c7
– ident: S0963548312000600_ref9
  doi: 10.1109/IECON.2000.972425
– ident: S0963548312000600_ref18
  doi: 10.1007/978-0-387-68276-1
– ident: S0963548312000600_ref11
  doi: 10.2307/1426671
– volume-title: Evolutionary Optimization
  year: 2001
  ident: S0963548312000600_ref24
– start-page: 41
  volume-title: Proc. Parallel Problem Solving from Nature X, PPSN '08
  year: 2008
  ident: S0963548312000600_ref15
– start-page: 124
  volume-title: Proc. Parallel Problem Solving from Nature XI, PPSN '10
  year: 2010
  ident: S0963548312000600_ref22
– start-page: 2
  volume-title: Proc. International Conference on Genetic Algorithms, ICGA '93
  year: 1993
  ident: S0963548312000600_ref2
– ident: S0963548312000600_ref8
  doi: 10.1145/1830483.1830748
– ident: S0963548312000600_ref6
– ident: S0963548312000600_ref19
  doi: 10.1017/CBO9780511814075
– ident: S0963548312000600_ref23
  doi: 10.1109/TEVC.2012.2202241
– start-page: 32
  volume-title: Proc. Parallel Problem Solving from Nature XI, PPSN '10
  year: 2010
  ident: S0963548312000600_ref5
– ident: S0963548312000600_ref14
  doi: 10.1016/j.tcs.2007.02.042
– ident: S0963548312000600_ref10
  doi: 10.1016/S0304-3975(01)00182-7
– start-page: 1
  volume-title: Proc. Congress on Evolutionary Computation, CEC '10
  year: 2010
  ident: S0963548312000600_ref7
– ident: S0963548312000600_ref17
  doi: 10.1007/s00453-012-9616-8
– ident: S0963548312000600_ref16
  doi: 10.1007/s00453-010-9396-y
– ident: S0963548312000600_ref21
  doi: 10.1007/978-3-642-16544-3
– start-page: 420
  volume-title: Proc. Symposium on Theoretical Aspects of Computer Science, STACS '12
  year: 2012
  ident: S0963548312000600_ref27
– ident: S0963548312000600_ref3
  doi: 10.1145/1830483.1830749
– ident: S0963548312000600_ref25
  doi: 10.1016/j.jda.2004.02.001
– ident: S0963548312000600_ref4
  doi: 10.1145/2001576.2001856
– start-page: 15
  volume-title: Proc. Parallel Problem Solving from Nature I, PPSN '92
  year: 1992
  ident: S0963548312000600_ref20
– ident: S0963548312000600_ref12
  doi: 10.1016/S0004-3702(01)00058-3
– ident: S0963548312000600_ref26
  doi: 10.1017/S0963548304006650
SSID ssj0005560
Score 2.4141243
Snippet The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 294
SubjectTerms Algorithms
Combinatorial analysis
Heuristic
Mathematical analysis
Mathematical models
Mutations
Optimization
Searching
Title Tight Bounds on the Optimization Time of a Randomized Search Heuristic on Linear Functions
URI https://www.cambridge.org/core/product/identifier/S0963548312000600/type/journal_article
https://www.proquest.com/docview/1282630865
https://www.proquest.com/docview/1372625654
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEG8EXvTB-BlRJDXxybi4re0-nowYkJiAhkBCfCFbP550Q4H_37utDIkJj7u2y9Lerr9r735HyG0oBPNNEDsKLLDDU8GdhCHlfhrFofIMc31McB4Mg_6Ev07F1B64LWxY5domFoZa5RLPyB_AjvoBAwAuHuffDlaNwttVW0KjRhpggiNwvhqd7vB9tAnyKPOEAadjCEDE1veaBWk0CFHmFdkqmOK2YVfY3qW2jXSx8_SOyKGFjPSpXONjsqezE3IwqPhWF6fkY4w-Nu1gjaQFzTMKbfQNrMGXTbOkmOpBc0MTOkoylYNcK1rGGtO-XpV8zTgSnFOQ0h7sd4VKnpFJrzt-7ju2aoIjmXCXTuoJI4WrmatCxrkC_BcorJKuIkADqYBHEUuRmphpCc5cKhRHelrleZIzHbNzUs_yTF8QGmplwIXlngok1wH4NgCQEhmZyE2DxJgmua9mbGZ1fzEr48bC2b8JbhJ3PakzaRnIsRDG564hd9WQeUm_satza71Sf76m0psmuama4R_Ci5Ek0_kK-rDQBz8wEPxy9yuuyL5flMPAGLQWqS9_VvoaQMkybZNa1HtpW_37BVMb2k0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOEAPCChVl_IwUrkgoiaxnccBIV7L8liQqkVCvYTEjxNNtt1dIf4Uv5GZvAAh7Y1jxnYUjcfziGe-AfgZSsl9G8SORg3siEwKJ-UEuZ9Fcag9y12fCpz710HvVlzcybsZeG5qYSitstGJpaLWhaJ_5L9Qj_oBRwdcHgz_OdQ1im5XmxYalVhcmqdHDNlG--cnuL87vt89HRz3nLqrgKO4dMdO5kmrpGu4q0MuhEb_KNDURVxHaC0ziY8yVjKzMTcKg51MakHwrdrzlOCGwJdQ5c8JzmM6UVH37DWlpKpKxqiAEg4i3tyilhDVSCSaV9bGUEHdK5bDe5v43iSUdq67BIu1g8oOK4lahhmTr8CXfovuOvoKfwYU0bMj6sg0YkXOcIzdoO75Wxd1MiosYYVlKfud5rpAutGsymxmPTOp0KFpJYbCSGVdtK7lAViF20_h5jeYzYvcfAcWGm0xYBaeDpQwAUZS6I6lKrKRmwWptR3YazmW1CdtlFRZamHygcEdcBumJqrGO6e2Gw_Tluy2S4YV2Me0yevNTr35mlZKO7DdDuOJpWuYNDfFBOfw0MeoM5BibfortmC-N-hfJVfn15c_YMEvG3FQ9ts6zI7_T8wGukPjbLOUQQb3ny30L8bREu4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tight+Bounds+on+the+Optimization+Time+of+a+Randomized+Search+Heuristic+on+Linear+Functions&rft.jtitle=Combinatorics%2C+probability+%26+computing&rft.au=Witt%2C+Carsten&rft.date=2013-03-01&rft.issn=0963-5483&rft.eissn=1469-2163&rft.volume=22&rft.issue=2&rft.spage=294&rft.epage=318&rft_id=info:doi/10.1017%2FS0963548312000600&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-5483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-5483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-5483&client=summon