Tight Bounds on the Optimization Time of a Randomized Search Heuristic on Linear Functions
The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolution...
Saved in:
Published in | Combinatorics, probability & computing Vol. 22; no. 2; pp. 294 - 318 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class of linear functions. We improve the previously best known bound in this setting from (1.39+o(1))en ln n to en ln n+O(n) in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation probabilities p are derived, which imply expected polynomial optimization time as long as p = O((ln n)/n) and p = Ω(n−C) for a constant C > 0, and which are tight if p = c/n for a constant c > 0. As a consequence, the standard mutation probability p = 1/n is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large neighbourhood explored by the mutation operator does not disrupt the search. |
---|---|
AbstractList | The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class of linear functions. We improve the previously best known bound in this setting from (1.39+o(1))en ln n to en ln n+O(n) in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation probabilities p are derived, which imply expected polynomial optimization time as long as p = O((ln n)/n) and p = Ω(n−C) for a constant C > 0, and which are tight if p = c/n for a constant c > 0. As a consequence, the standard mutation probability p = 1/n is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large neighbourhood explored by the mutation operator does not disrupt the search. The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class of linear functions. We improve the previously best known bound in this setting from (1.39+o(1))en ln n to en ln n+O(n) in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation probabilities p are derived, which imply expected polynomial optimization time as long as p = O((ln n)/n) and p = Omega (n super(-)C for a constant C > 0, and which are tight if p = c/n for a constant c > 0. As a consequence, the standard mutation probability p = 1/n is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large neighbourhood explored by the mutation operator does not disrupt the search. The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class of linear functions. We improve the previously best known bound in this setting from (1.39+o(1))en ln n to en ln n+O(n) in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation probabilities p are derived, which imply expected polynomial optimization time as long as p = O((ln n)/n) and p = Ω(n -C ) for a constant C > 0, and which are tight if p = c/n for a constant c > 0. As a consequence, the standard mutation probability p = 1/n is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large neighbourhood explored by the mutation operator does not disrupt the search. [PUBLICATION ABSTRACT] The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the development of suitable proof techniques. Recently, remarkable progress has been made in bounding the expected optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class of linear functions. We improve the previously best known bound in this setting from (1.39+ o (1)) en ln n to en ln n + O ( n ) in expectation and with high probability, which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation probabilities p are derived, which imply expected polynomial optimization time as long as p = O ((ln n )/ n ) and p = Ω( n − C ) for a constant C > 0, and which are tight if p = c / n for a constant c > 0. As a consequence, the standard mutation probability p = 1/ n is optimal for all linear functions, and the (1+1) EA is found to be an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large neighbourhood explored by the mutation operator does not disrupt the search. |
Author | WITT, CARSTEN |
Author_xml | – sequence: 1 givenname: CARSTEN surname: WITT fullname: WITT, CARSTEN email: cawi@imm.dtu.dk organization: DTU Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark (e-mail: cawi@imm.dtu.dk) |
BookMark | eNp9kM1KxDAURoOM4Dj6AO4CbtxU89OkzVLFUWFA0HHjpqRJ6mSYJmOSLvTpTdWFKLoK97vnhMu3DybOOwPAEUanGOHq7AEJTllZU0wQQhyhHTDFJRcFwZxOwHRcF-N-D-zHuM4MYxxNwdPSPq8SvPCD0xF6B9PKwLttsr19k8nmYGl7A30HJbyXTvucGw0fjAxqBW_MEGxMVo3mwrqcwvng1CjGA7DbyU00h1_vDDzOr5aXN8Xi7vr28nxRKMpQKlrMOsWQoUhXtCy1wJxrShDRdVWTluWRCcXaTlCjKly1TJeMCqExViU1gs7Ayee_2-BfBhNT09uozGYjnfFDbDCtCCeMszKjxz_QtR-Cy9c1mNSEU1Rzlin8SangYwyma7bB9jK8Nhg1Y9vNr7azU_1wlE0fBaYg7eZfk36Zsm-D1c_m21F_Wu9mLJHS |
CitedBy_id | crossref_primary_10_1007_s00453_021_00881_0 crossref_primary_10_1007_s00453_020_00731_5 crossref_primary_10_1109_TEVC_2017_2745715 crossref_primary_10_1007_s00453_018_0445_2 crossref_primary_10_1007_s00453_018_0480_z crossref_primary_10_1145_3472304 crossref_primary_10_1007_s10586_016_0587_4 crossref_primary_10_1007_s00453_017_0341_1 crossref_primary_10_1007_s00521_016_2651_7 crossref_primary_10_1016_j_tcs_2014_03_015 crossref_primary_10_1061__ASCE_CO_1943_7862_0002221 crossref_primary_10_1007_s00453_024_01254_z crossref_primary_10_1017_S0963548320000565 crossref_primary_10_1007_s00453_022_00957_5 crossref_primary_10_1007_s00453_018_0451_4 crossref_primary_10_1007_s11047_022_09915_0 crossref_primary_10_1007_s00453_022_00933_z crossref_primary_10_1007_s00453_022_00952_w crossref_primary_10_1162_evco_a_00170 crossref_primary_10_1016_j_artint_2023_104061 crossref_primary_10_1162_evco_a_00210 crossref_primary_10_1109_TEVC_2019_2917014 crossref_primary_10_1162_evco_a_00212 crossref_primary_10_1007_s00453_016_0214_z crossref_primary_10_1162_EVCO_a_00130 crossref_primary_10_1007_s00453_023_01153_9 crossref_primary_10_1162_evco_a_00325 crossref_primary_10_3390_biomimetics9020117 crossref_primary_10_1109_TEVC_2015_2501315 crossref_primary_10_1016_j_tcs_2020_01_011 crossref_primary_10_1007_s00453_015_0027_5 crossref_primary_10_1016_j_tcs_2019_08_025 crossref_primary_10_1162_EVCO_a_00171 crossref_primary_10_1007_s00453_020_00779_3 crossref_primary_10_1007_s00453_018_0463_0 crossref_primary_10_1016_j_asoc_2019_105929 crossref_primary_10_1016_j_tcs_2018_09_024 crossref_primary_10_1007_s00453_017_0354_9 crossref_primary_10_1016_j_asoc_2019_106027 crossref_primary_10_1109_TEVC_2014_2378891 crossref_primary_10_1109_TEVC_2023_3320278 crossref_primary_10_1007_s00453_017_0360_y crossref_primary_10_1016_j_tcs_2018_04_051 crossref_primary_10_1017_S0963548318000275 crossref_primary_10_1109_TEVC_2022_3216349 crossref_primary_10_1007_s00453_016_0201_4 crossref_primary_10_1007_s00453_018_0477_7 crossref_primary_10_1007_s00453_022_00977_1 crossref_primary_10_1007_s00453_020_00780_w crossref_primary_10_1007_s00453_015_0019_5 crossref_primary_10_1016_j_tcs_2018_06_004 crossref_primary_10_1016_j_tcs_2020_07_001 crossref_primary_10_1007_s00453_020_00726_2 crossref_primary_10_1007_s00453_024_01258_9 crossref_primary_10_1145_3469800 crossref_primary_10_1007_s00453_020_00743_1 crossref_primary_10_1162_evco_a_00270 crossref_primary_10_1007_s00453_021_00893_w crossref_primary_10_1016_j_tcs_2014_11_028 crossref_primary_10_1016_j_tcs_2019_05_021 crossref_primary_10_1007_s00453_021_00896_7 crossref_primary_10_1016_j_autcon_2021_103692 crossref_primary_10_1016_j_tcs_2013_09_036 crossref_primary_10_1016_j_tcs_2020_09_032 crossref_primary_10_1016_j_autcon_2022_104686 crossref_primary_10_1007_s00453_021_00907_7 crossref_primary_10_1109_JSTARS_2021_3056198 crossref_primary_10_1016_j_orl_2017_05_002 crossref_primary_10_4018_IJSIR_2017100101 crossref_primary_10_1016_j_tcs_2023_114072 crossref_primary_10_1016_j_tcs_2019_06_014 |
Cites_doi | 10.1142/7438 10.1023/B:NACO.0000023417.31393.c7 10.1109/IECON.2000.972425 10.1007/978-0-387-68276-1 10.2307/1426671 10.1145/1830483.1830748 10.1017/CBO9780511814075 10.1109/TEVC.2012.2202241 10.1016/j.tcs.2007.02.042 10.1016/S0304-3975(01)00182-7 10.1007/s00453-012-9616-8 10.1007/s00453-010-9396-y 10.1007/978-3-642-16544-3 10.1145/1830483.1830749 10.1016/j.jda.2004.02.001 10.1145/2001576.2001856 10.1016/S0004-3702(01)00058-3 10.1017/S0963548304006650 |
ContentType | Journal Article |
Copyright | Copyright © Cambridge University Press 2013 |
Copyright_xml | – notice: Copyright © Cambridge University Press 2013 |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S0963548312000600 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer and Information Systems Abstracts Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Tight Bounds on the Optimization Time of an RSH on Linear Functions C. Witt |
EISSN | 1469-2163 |
EndPage | 318 |
ExternalDocumentID | 2878649771 10_1017_S0963548312000600 |
Genre | Feature |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 29F 3V. 4.4 5GY 5VS 6~7 74X 74Y 7~V 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABZCX ABZUI ACBMC ACDLN ACETC ACGFS ACIMK ACIWK ACMRT ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENGE AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF DC4 DOHLZ DWQXO EBS EGQIC EJD GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S6- S6U SAAAG T9M TN5 UT1 VH1 WFFJZ WQ3 WXU WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AAYXX ABGDZ ABHFL ABXHF ACEJA ACOZI AGQPQ AKMAY AMVHM ANOYL CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c350t-b15fc50e30d7344d9166d3202d8782b516659c5bf93ec717b5d45399d11c43e93 |
IEDL.DBID | BENPR |
ISSN | 0963-5483 |
IngestDate | Fri Jul 11 02:50:30 EDT 2025 Fri Jul 25 10:46:19 EDT 2025 Tue Jul 01 03:52:21 EDT 2025 Thu Apr 24 23:04:45 EDT 2025 Tue Jan 21 06:24:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Primary 68W20 Secondary 68Q25 |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c350t-b15fc50e30d7344d9166d3202d8782b516659c5bf93ec717b5d45399d11c43e93 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1282630865 |
PQPubID | 33829 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_1372625654 proquest_journals_1282630865 crossref_primary_10_1017_S0963548312000600 crossref_citationtrail_10_1017_S0963548312000600 cambridge_journals_10_1017_S0963548312000600 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130300 2013-03-00 20130301 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: 20130300 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationSubtitle | CPC |
PublicationTitle | Combinatorics, probability & computing |
PublicationTitleAlternate | Combinator. Probab. Comp |
PublicationYear | 2013 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Jägersküpper (S0963548312000600_ref15) 2008 Doerr (S0963548312000600_ref7) 2010 S0963548312000600_ref10 S0963548312000600_ref11 S0963548312000600_ref12 Witt (S0963548312000600_ref27) 2012 S0963548312000600_ref17 S0963548312000600_ref1 S0963548312000600_ref18 S0963548312000600_ref19 Wegener (S0963548312000600_ref24) 2001 S0963548312000600_ref13 S0963548312000600_ref4 S0963548312000600_ref14 Doerr (S0963548312000600_ref5) 2010 S0963548312000600_ref3 S0963548312000600_ref16 S0963548312000600_ref8 S0963548312000600_ref9 S0963548312000600_ref6 Mühlenbein (S0963548312000600_ref20) 1992 S0963548312000600_ref21 S0963548312000600_ref23 Bäck (S0963548312000600_ref2) 1993 S0963548312000600_ref25 S0963548312000600_ref26 Sudholt (S0963548312000600_ref22) 2010 |
References_xml | – ident: S0963548312000600_ref1 doi: 10.1142/7438 – ident: S0963548312000600_ref13 doi: 10.1023/B:NACO.0000023417.31393.c7 – ident: S0963548312000600_ref9 doi: 10.1109/IECON.2000.972425 – ident: S0963548312000600_ref18 doi: 10.1007/978-0-387-68276-1 – ident: S0963548312000600_ref11 doi: 10.2307/1426671 – volume-title: Evolutionary Optimization year: 2001 ident: S0963548312000600_ref24 – start-page: 41 volume-title: Proc. Parallel Problem Solving from Nature X, PPSN '08 year: 2008 ident: S0963548312000600_ref15 – start-page: 124 volume-title: Proc. Parallel Problem Solving from Nature XI, PPSN '10 year: 2010 ident: S0963548312000600_ref22 – start-page: 2 volume-title: Proc. International Conference on Genetic Algorithms, ICGA '93 year: 1993 ident: S0963548312000600_ref2 – ident: S0963548312000600_ref8 doi: 10.1145/1830483.1830748 – ident: S0963548312000600_ref6 – ident: S0963548312000600_ref19 doi: 10.1017/CBO9780511814075 – ident: S0963548312000600_ref23 doi: 10.1109/TEVC.2012.2202241 – start-page: 32 volume-title: Proc. Parallel Problem Solving from Nature XI, PPSN '10 year: 2010 ident: S0963548312000600_ref5 – ident: S0963548312000600_ref14 doi: 10.1016/j.tcs.2007.02.042 – ident: S0963548312000600_ref10 doi: 10.1016/S0304-3975(01)00182-7 – start-page: 1 volume-title: Proc. Congress on Evolutionary Computation, CEC '10 year: 2010 ident: S0963548312000600_ref7 – ident: S0963548312000600_ref17 doi: 10.1007/s00453-012-9616-8 – ident: S0963548312000600_ref16 doi: 10.1007/s00453-010-9396-y – ident: S0963548312000600_ref21 doi: 10.1007/978-3-642-16544-3 – start-page: 420 volume-title: Proc. Symposium on Theoretical Aspects of Computer Science, STACS '12 year: 2012 ident: S0963548312000600_ref27 – ident: S0963548312000600_ref3 doi: 10.1145/1830483.1830749 – ident: S0963548312000600_ref25 doi: 10.1016/j.jda.2004.02.001 – ident: S0963548312000600_ref4 doi: 10.1145/2001576.2001856 – start-page: 15 volume-title: Proc. Parallel Problem Solving from Nature I, PPSN '92 year: 1992 ident: S0963548312000600_ref20 – ident: S0963548312000600_ref12 doi: 10.1016/S0004-3702(01)00058-3 – ident: S0963548312000600_ref26 doi: 10.1017/S0963548304006650 |
SSID | ssj0005560 |
Score | 2.4141243 |
Snippet | The analysis of randomized search heuristics on classes of functions is fundamental to the understanding of the underlying stochastic process and the... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 294 |
SubjectTerms | Algorithms Combinatorial analysis Heuristic Mathematical analysis Mathematical models Mutations Optimization Searching |
Title | Tight Bounds on the Optimization Time of a Randomized Search Heuristic on Linear Functions |
URI | https://www.cambridge.org/core/product/identifier/S0963548312000600/type/journal_article https://www.proquest.com/docview/1282630865 https://www.proquest.com/docview/1372625654 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEG8EXvTB-BlRJDXxybi4re0-nowYkJiAhkBCfCFbP550Q4H_37utDIkJj7u2y9Lerr9r735HyG0oBPNNEDsKLLDDU8GdhCHlfhrFofIMc31McB4Mg_6Ev07F1B64LWxY5domFoZa5RLPyB_AjvoBAwAuHuffDlaNwttVW0KjRhpggiNwvhqd7vB9tAnyKPOEAadjCEDE1veaBWk0CFHmFdkqmOK2YVfY3qW2jXSx8_SOyKGFjPSpXONjsqezE3IwqPhWF6fkY4w-Nu1gjaQFzTMKbfQNrMGXTbOkmOpBc0MTOkoylYNcK1rGGtO-XpV8zTgSnFOQ0h7sd4VKnpFJrzt-7ju2aoIjmXCXTuoJI4WrmatCxrkC_BcorJKuIkADqYBHEUuRmphpCc5cKhRHelrleZIzHbNzUs_yTF8QGmplwIXlngok1wH4NgCQEhmZyE2DxJgmua9mbGZ1fzEr48bC2b8JbhJ3PakzaRnIsRDG564hd9WQeUm_satza71Sf76m0psmuama4R_Ci5Ek0_kK-rDQBz8wEPxy9yuuyL5flMPAGLQWqS9_VvoaQMkybZNa1HtpW_37BVMb2k0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOEAPCChVl_IwUrkgoiaxnccBIV7L8liQqkVCvYTEjxNNtt1dIf4Uv5GZvAAh7Y1jxnYUjcfziGe-AfgZSsl9G8SORg3siEwKJ-UEuZ9Fcag9y12fCpz710HvVlzcybsZeG5qYSitstGJpaLWhaJ_5L9Qj_oBRwdcHgz_OdQ1im5XmxYalVhcmqdHDNlG--cnuL87vt89HRz3nLqrgKO4dMdO5kmrpGu4q0MuhEb_KNDURVxHaC0ziY8yVjKzMTcKg51MakHwrdrzlOCGwJdQ5c8JzmM6UVH37DWlpKpKxqiAEg4i3tyilhDVSCSaV9bGUEHdK5bDe5v43iSUdq67BIu1g8oOK4lahhmTr8CXfovuOvoKfwYU0bMj6sg0YkXOcIzdoO75Wxd1MiosYYVlKfud5rpAutGsymxmPTOp0KFpJYbCSGVdtK7lAViF20_h5jeYzYvcfAcWGm0xYBaeDpQwAUZS6I6lKrKRmwWptR3YazmW1CdtlFRZamHygcEdcBumJqrGO6e2Gw_Tluy2S4YV2Me0yevNTr35mlZKO7DdDuOJpWuYNDfFBOfw0MeoM5BibfortmC-N-hfJVfn15c_YMEvG3FQ9ts6zI7_T8wGukPjbLOUQQb3ny30L8bREu4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tight+Bounds+on+the+Optimization+Time+of+a+Randomized+Search+Heuristic+on+Linear+Functions&rft.jtitle=Combinatorics%2C+probability+%26+computing&rft.au=Witt%2C+Carsten&rft.date=2013-03-01&rft.issn=0963-5483&rft.eissn=1469-2163&rft.volume=22&rft.issue=2&rft.spage=294&rft.epage=318&rft_id=info:doi/10.1017%2FS0963548312000600&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-5483&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-5483&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-5483&client=summon |